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REMARKS ON THE EXISTENCE AND UNIQUENESS OF
UNBOUNDED VISCOSITY SOLUTIONS OF

HAMILTON-JACOBI EQUATIONS

BY

MICHAEL G. CRANDALL AND PIERRE-LOUIS LIONS

This paper deals with existence and uniqueness questions for solutions of
general first-order Hamilton-Jacobi equations. The development of the theory
of "viscosity solutions" has resulted in existence and uniqueness results of
substantial generality for solutions which are uniformly continuous (or UC) on
RV: we refer the reader to M.G. Crandall and P.L. Lions [6] and M.G.
Crandall, L.C. Evans and P.L. Lions [4] for the main properties of viscosity
solutions including definitions, uniqueness for bounded uniformly continuous
(or BUC) solutions and existence in model cases; P.L. Lions [18], [19], P.E.
Souganidis [221, Barles [11 for existence of BUC solutions; H. Ishii [13]-[151,
M.G. Crandall and P.L. Lions [8]-[11] for existence and uniqueness of UC
solutions; P.L. Lions [18] for the relevance of viscosity solutions to determinis-
tic optimal control theory and L.C. Evans and P.E. Souganidis [12] concerning
differential games.

However, for Hamiltonians such as those which occur in control theory or
differential games, dealing only with BUC or UC value functions requires
somewhat stringent assumptions. It is our goal here to broaden the scope of
the theory and to point out relations between structure properties of the
Hamiltonian and naturally associated classes of viscosity solutions in which
existence and uniqueness holds.
For the sake of simplicity we will consider two model problems, namely the

stationary problem

(sv)z u + H(x, Du) + f(x) 0 in Rv,

which we have indexed by an "inhomogeneous" term f C(RN) for later
convenience, and the Cauchy problem

(CP) u + H(x,t, Du) 0inR 10, T],

u(x, 0) tp(x) in R,
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in which the Hamiltonians H(x, p), H(x, t, p) will always be assumed to be
at least continuous. In these problems, all the functions involved are real-val-
ued functions of the indicated arguments, x Rv and Du stands for the
gradient of u in the space variables x; Du (uxl,..., ux,,). The methods we
present below allow one to treat more general equations, for example, more
general dependencies on u of the form H(x, u, Du) 0 in place of (SP)f, but
we will not pursue this straightforward matter here.
We next introduce a condition which will often be assumed and then

illustrate the nature of our results with some examples. Here and later, BR
denotes the ball of radius R centered at the origin and is the Euclidean
norm on R. A nondecreasing, continuous and subadditive function
m: [0, oo) [0, oo) satisfying m(0)---0 will be called a modulus and a
mapping

o: [0, oo)X [0, oo)--, [0, oo)

for which r --. o(r, R) is a modulus for R > 0 will be called a local modulus. If

H C(Rv [0, r] RN)
is a Hamiltonian, we say H satisfies (U) (for "uniqueness") if there is a
modulus m such that

(u) H(y, t, 2t(x y)) H(x, t, h(x y))
_< m(Xlx yl 2 + x Yl)

forx, y RN,, > 0, and [0, T].

We are also interested in the local version of (U); that is there is a local
modulus o such that

(LU) H(y, t, h(x y)) H(x, t, 2t(x y))
_< o(Xlx -yl + Ix -yl, R)

forR > O,x, y BR, X > 0and [0, T].

For example, the Hamiltonian H(x, p) sin(x2)p in R x R satisfies (LU)
but not (U). Existence and uniqueness results using (U) and other hypotheses
are given in Crandall and Lions [8]-[11] and Ishii [15] where one can find
further commentary on this condition. Examples given below (see also [11,
Section 5]) show that it does not guarantee uniqueness by itselfmother
assumptions are needed. A generalization of (U) is given in [9], [10], but we
will not employ this generality here in either its global or local form, as this
would obscure the ideas and may easily be done by the reader once the ideas
are made clear. We will use the conditions (U) and (LU) in the stationary
problem with the obvious interpretation if H is independent of t.
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Example 1. Assume that for some # > 0 H satisfies

(1) ]H(x, p) H(x, q) < #lp ql, Vx, p, q e Rv.
Assume moreover, that H satisfies (LU). Then there is at most one viscosity
solution u C(RN) of (SP)/satisfying

(2) lim u(x)exp( Ixl/#) O.

If H also satisfies

(3) sup H(x, 0)le-/" dr < oo
Ixl<r

then (SP)0 has a viscosity solution u C(R) satisfying (2).

Example 2. Assume that there is a C and 0 (0,1) such that

(4) IH(x, p) H(x, q)[ < CIp qlO for p, q Rv and x, y RN,

and H satisfies (LU). Then there exists a unique viscosity solution u of (SP)/
in C(RU).

Observe that in this case no restriction is needed on the behaviour of the
solution for uniqueness nor on the growth of f for existence.

Example 3.
y such that

Let H satisfy (LU). Assume, moreover, that there is a modulus

IH(x, t, p) H(x, t, q)l ’(IP ql(1 + Ix[))
for x, q, p RlV, [0, T].

Then for any p C(Rv) there exists a unique viscosity solution u C(R x
[0, T]) of (CP) (i.e., the equation is satisfied in the viscosity sense on R x (0, T]
and u(x, 0) qo(x) in RV). Again, no restrictions are made at infinity.

In the text we present many more results of this kind, including existence
results in cases where nonuniqueness is possible and the existence of minimal
solutions. We also mention that the uniqueness statement in Example 1 and
some particular cases covered by Example 3 were first obtained by H. Ishii [13]
by a somewhat more complicated argument than that given herein. For
problems arising in control theory, results analogous to those of Example I are
to be found in P.L. Lions [20] (as particular cases of optimal stochastic control
situations). Some of the results given below were announced in M.G. Crandall
and P.L. Lions [7].
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Finally we would like to mention that many of the results presented below
may be adapted to the case in which the equations are set in an infinite
dimensional Banach space V (instead of Rv). This can be done by combining
the arguments outlined herein with those given in M.G. Crandall and P.L.
Lions [9], [10], [11]. Moreover, as mentioned above, the role of X(x- y) in
(U) and (LU) may be replaced by more general quantities as in these works.

I. Lipschitz Hamiltonians and the stationary problem

In this section we will assume that H satisfies (1) (or variants) and (LU) and
we will be interested in the existence and uniqueness of viscosity solutions of
(SP)y. Let us first observe that some limitations on the growth of solutions
have to be imposed in order to have uniqueness. Indeed, the simple linear
equation

(6) -/u’+u=0 inR

has the distinct C (and hence viscosity) solutions u =- 0 and u exp(x//).
In view of this example, it is natural to impose the following conditions on sub
and supersolutions as is done below:

(7) li-- u(x)exp(-Ixl/#) < 0,

(8) lim o(x)exp(-Ixl//) 0.

In the following statement of our main result, r/ max(r, 0).

THEOREM 1.1. Let H satisfy (1), (LU) andf C(RV).

Uniqueness. Let u, v C(Ru) satisfy (7) and (8). Let H satisfy (LU).
Assume that u is a viscosity subsolution of (SP)o and that v is a viscosity
supersolution of (SP)/in Riv. Then for all x RN,

(9) (u- v) + (x) < sup{f(Y) +" Ix-Y[ < tJ,t}e-tdt.

Existence. Let H(x, O) also satisfy (3). Then there exists a unique viscosity
solution u C(RN) of (SP)0 satisfying (2).

Remark. A uniqueness result of a similar form was first obtained by H.
Ishii [13] by a different method. Observe also that the right hand side of (9) is
bounded from above by sup l,, f/.
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Proof of the uniqueness. Let xo RN and let R < c. We are going to
compare u and v on B(xo, R), the open ball of radius R centered at x0. This
is achieved by use of the next lemma.

LEMMA 1.1. Let u, v C(RN) be, respectively, viscosity sub and supersolu-
tions of (SP)o and (SP)f. Let H satisfy (1) and (LU). Then we have

(U(Xo) V(Xo)) +< f./sup{f+(Y)" lY- xol < t} e-tdt

(10) +max( sup (u-v) + sup f+)e-R/t
OB(xo, R) B(x R)

We first complete the proof of (9) and then prove the lemma. We may of
course assume that the right hand side of (10) is finite; this implies that

(11) ( sup f+)exp(-Rn/lt)--,O
B(xo, R.)

for some sequence R, . On the other hand, in view of (7)-(8),

sup
OB(xo, R)

(u v) + )exp(-R/#) --, 0 asR o.

Therefore choosing R Rn in (10) and sending n ---, c, we deduce (9).
We now prove Lemma 1.1" We set

K=max( sup (u-o) +, sup f+)
OB(xo, R) B(xo, R)

and introduce the function

w(x) gexp((Ix- Xol-
+ (1/tt)exp(Ix Xol/#) fl sup(f+(y)" lY Xol s ) e-/’ ds.

One easily checks that w is the viscosity solution of

-IlDwl +w=sup{f+(Y)" ly-xol < Ix-x01} inB(x0, R)
w=K onOB(xo,R).

Next, we claim that v + w is a viscosity supersolution of (SP)0 in B(xo, R).
Formally this is clear since

H(x, D(o + w)) > H(x, Do) lDwl
> -(v + w) -f- txlDw[ + w > -(v + w).
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To justify this one first replaces Ix- x01 by (2q_ IX X012)1/2 in the
definition of w, makes the corresponding estimate (now valid since ws is Cx)
at points of superdifferentiability of o + w and then passes to the limit as
8 ---, 0.

Observing that v + w > u on OB(xo, R) and applying the comparison
results of [8], we deduce that o + w > u in B(xo, R), which implies (10).

Proof of the existence. For R > 0 let Ps be a smooth function on Rv
supported in B2s and satisfying 0 < Ps < 1, qs 1 on Bs and IDql -< 2/R,
and then define Hs(x, p) ps(x)H(x, p). We consider the approximate
problem

us + ns(x, Dus) O.

The Hamiltonian Hs satisfies (1). Moreover

HR(y, h(x y)) Hs(x h(x y))
(p(y) p(x))(n(y, h(x y))) H(y,O))

(12)
+ cpR(x)((H(y, X(x y)) H(x, X(x y)))
+ (p(x) p(y))H(y, 0).

Now the first term on the right is at most

2( lt/R )l x Y IX (x y)[

and if Ix y[ < 1, the second is at most

20(hlx Yl’- + Ix -yl,2R + 1),
where o is the local modulus of H from (LU), and the third term may
obviously be estimated by a multiple of Ix -y[. It follows that H satisfies
(U). Since also H UC(Rv Btc) for all K > 0, the existence results of [8]
apply and there are viscosity solutions us BUC(Rv) of us + Hs(x, Dus)

0. We now use the comparison result Lemma 1.1 to compare U and the
solution w 0 of w + H(x, Dw) H(x, 0) 0 and let the radius in (10)
tend to oo to conclude that

(3) lug(x) FeI1/ sup(Ill(y, 0)l" lyl < s } e-/ ds.

Let R, R’, R0, R > 0 and R, R’ > R + R0. Then for x Bso, Hs and Hs,
agree on B(x, R1) and we may use Lemma 1.1 again with u, o us, us, to
conclude that

sup lu
OB(x, Rx)

us, e R1/’.
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Using (13) in this estimate we finally deduce that

lug(x)- ua,(x)

< 2exp(R//x)f.x- sup(In(y, 0))I" lyl <- s ) e(-/) ds.
Ro)

Because H(x, 0) satisfies (3), we conclude that the uR form a Cauchy net in
C(Bo) as R oo for any Ro > 0. By the standard stability results for
viscosity solutions ([6]), we deduce that uR converges uniformly on bounded
sets to some viscosity solution u of (SP)0. In addition, letting R oo in (13),
we see that u satisfies (2).

Remark. Considering the equation txlDul + u f(x) in RN, one sees
(again) that uniqueness is false without the condition u(x)exp(-Ixl/) --, 0
as Ixl --’ oo (take f =- O, u(x) explxl// or u 0) and then that existence
in this class may fail if f does not satisfy (3).

We consider next a slightly more general situation where (1) is replaced by

(14) In(x, p) H(x, q)[< (Ixl)lp q[, vx, p, q RN

where is continuous, increasing, (0) > 0 and satisfies

(15) (s) + oo

Then the arguments used above are easily adapted to prove the following
result:

THEOREM 1.2. Let H satisfy (LU), (14) andf C(R).

Uniqueness. Let u, v C(Rv) satisfy respectively

(16) u(x)exp(_flxl do ) ( flxl do )
Il (o--- < 0 lirn v(x)exp (o--- >- 0.

Let u be a viscosity subsolution of (SP)0 and v a viscosity supersolution of (SP)f.
Then for all x R,

(u v) + (x) < fl;sup(I f+(Y)" lyl < t}exp
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Existence. In addition, let

(17) sup (l H( y, 0)l lyl-< t)exp (s) (t) < oo.

Then there exists a unique viscosity solution u C(RN) of (SP)o satisfying

II. Uniformly continuous hamiltonians and the stationary problem

We now turn to the case when H satisfies (4) or, more generally,

(19) In(x, p) n(x, q)l<_ /(IP ql), Vp, q RN

where T is a modulus. We assume that the inverse v of T satisfies

(20)
t,) (s)<

Of course if T(r) Cr with C > 0, 0 < a < 1, then (20) holds. The main
result below asserts existence and uniqueness without any conditions at
infinity: such results may be expected in view of the trivial case H(x, p)
n(x).

THEOREM II.1. Let H satisfy (LU), (19), (20) and let f C(RN).

Uniqueness. Let u, v C(RN) be, respectively, viscosity sub and supersolu-
tions of (SP)o and (SP)/. Then

(:21) sup ( u v) + < supf+.
RN RN

Ex&tence. There exists a unique viscosity solution of (SP)f.

Remark. Of course, one could formulate results which unify Theorem 1.1
and Theorem II.1. Roughly speaking, if (20) does not hold (as is the case if
T(r) =/r), then H(x, 0), u, v have to satisfy certain growth conditions at
infinity which are revealed by an examination of the proofs we present.

Sketch of proof. We will only prove (21), which follows from a simple
application of the lemma below. The existence is also obtained in a similar
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way to the above by use of the lemma. Let R > 0 and denote by wR the
function defined by

(22) R- Ixl for 0 < Ixl < R

One checks easily that wR is a viscosity solution of

(23) (IDwl) + w 0 in BR, w(x) + as Ixl R-.

Therefore, one has:

LEMMA 11.1.
xoRN, R>O,

With the notations and assumptions of Theorem H.1, for all

(24) (u-v) +(x) <w(Ix-x01 ) + sup f+,
B(Xo, R)

Vx e B(Xo, R).

Next, observe that in view of the explicit formula (22) we have: WR(IXl) 0
as R, xl --’ o, If R xl --’ o. In particular wR, converges uniformly to 0
on compact sets. This combined with (24) yields (21).

Remark. One sees in the above proof the basic role played by the solution
wR of (23), which is an HJ equation with infinite boundary conditions. In a
different context, H. Brezis [3] uses a similar method to obtain uniqueness
results without growth restrictions. Finally, let us observe that for more
general nonlinear partial differential equations, the possibility of prescribing
infinite boundary conditions as in (23) is studied in J.M. Lasry and P.L. Lions
[16], [17]. In particular, using the results and methods of [16], [17] one sees that
for any (say smooth) bounded open set 2 and bounded continuous function f
on 2 there exists a unique viscosity solution of

-/x(IDwl) 4-w=f(x) inf], w +o asdist(x, Of) +o.

In addition, w is locally Lipschitz on 2 and if 2 T RN the corresponding
solutions w, converge to 0 uniformly on compact sets.
We next formulate (without proof) an extension of (19),

(25) IH(x, p) H(x, q)[< ,((Ixl)lP q[), x, p, q e RN,

where 3’ satisfies (20), is continuous, increasing, (0) > 0 and satisfies
().

THEOREM 11.2. Let (20) and (15) hold, let f C(RN), and suppose H
satisfies (LU) and (25).
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Uniqueness. Let u, v C(RN) be, respectively, viscosity sub and supersolu-
tions of (SP)o and (SP)f with f C(RN). Then (21) holds.

Existence. There exists a viscosity solution of (SP)/.

III. Power-like Hamiltonians and the stationary problem

Motivated by the case of a Hamiltonian of the form H(x, p) X lPl m with
m > 1, ;k > 0, we consider the case of a Hamiltonian satisfying:

(26) IH(x, p) H(x, q)l_< { ColP[ m-1 + Colqlm- + C }lp ql,

Vx, p,q R

for some constants C0, C > 0. We will consider viscosity sub and supersolu-
tions which are Lipschitz locally in Rs and satisfy

(27) IDul <- Cxlxl m’-x) + C, IDol <- C=[xl <m’-x) + C a.e. on RN

where C, Ci, C2 > 0 and m’ = m/(m 1).
Then the main comparison result is"

THEOREM 111.1. Let (26) hold. Let u and v be locally Lipschitz on RN and,
respectively, viscosity sub and supersolutions of (SP)0 and (SP)f with f c(RN).
Assume that (26) and (27) hoM and

Then

Co(C’- + Cn-) < 1/m’.

sup (u v) + < supf+.
nN nN

Remark. First of all we could replace [pl m by more general convex,
increasing functions (I)(IPl). In fact, the proof below uses only (27) and the
fact that if

p D+u(x), q D-v(y), and Ix -Yl < 1

then

(28) [H(x, p) H(x, q) < (C + Olxl)lP ql

for some C > O, 0 (0,1/m’). Clearly (26) and (27) imply (28) if

> Co(C;’-’ +
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The assumption that (28) holds with 0 (0,1/m’) is nearly optimal in view of
the following example: If H(x, p) -(1/m’)[p[ m then u 0 solves (SP)0
while u(x)= (1/m’)[x[ m’ also solves (SP)0. Observe that (28) holds with
0 1/m’.

Proof.
chooses

Again, the proof is quite similar to those sketched before. One

0 (Co(C’-’+ C’-X),l/m’)
for which (28) holds and considers the solution w of

-(C / Olxl)lDwl / w 0 on B, wlas, 1,

given by

C + 0(Ixl z / 1)/ )C+ 0(R2 + 1)1/2
1/0

Considering the maximum of the function

u(x) v(y) Ix y]2 w(x)max(u- o) +

OB

on BR Bs and letting e $ 0 we deduce

(u v) + (x) < max/+ + w(x)max(u v) +
B OB

on BR.

Finally, observing that lu(x)l, Iv(x)l C + Clxl m’ and that 1/0 > m’ we
deduce that for bounded x, wg(x)maxos (u v) + - 0 as R . Thus, we
conclude by letting R go to + oo.

We now conclude this section with an existence result corresponding to the
above uniqueness result.

THEOREM 111.2. We assume (26) and

(29)
(30)

H(x, p) H(x,O) > txlplm,V(x, p) R, forsome a > 0

In(x,O)l=o(Ixl m’) aslxloo.

Then there exists a unique locally Lipschitz viscosity solution u of (SP)o with the
property that for all e > 0 there is a C such that

IDu(x)l elxl (m’-) + C a.e. on RN.
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Remark. It is possible to replace (29) by

(29’) H(x, p) H(x,0) -alPlm,V(x, p) Ru, ,for some a > 0.

Proof. We first build subsolutions of (SP)0. For each e > 0 with C
denoting a positive constant to be determined below we set

Then u satisfies

H(x, Du) + u < CIDu[ m + C + H(x,O) + u
<_ cemlxlm’ / C / O(IXl m’) -111 m’

and thus we may choose C large enough so that for e small enough u is a
viscosity subsolution of (SP)0. It is clearly enough to show that there exists a
viscosity solution of (SP)o satisfying u >_ u. Indeed the equation and (29)
yield that u is locally Lipschitz and

lOul <_ -n(x,O) u <_ o(Ixl m’) + -zlxlm’ + C
and thus for e small enough u satisfies (27) with C1 arbitrary small. Applying
the uniqueness result, we are then able to conclude. Finally, the existence of a
viscosity solution of (SP)0 above u is a very special case of the results proved
in Section V.

IV. Remarks on the existence of BUC and UC solutions of the
stationary problem

In this section (SP)0 will simply be denoted by (SP). It was proved in M.G.
Crandall and P.L. Lions [8] (see also H. Ishii [15]) that there exists a unique
viscosity solution u of (SP) in UC(RN) provided H satisfies (U) and

(31) HBUC(RvBR) forR>0.

Related results were previously obtained by G. Barles [1] in the class BUC and
then H. Ishii [13] in the class UC under more restrictive assumptions.

In the papers, H. Ishii [15] and M.G. Crandall and P.L. Lions [9], [10], [11]
the requirement (31) is replaced by a (somewhat confusing) array of more
general substitutes which we will not detail here. In particular, the subStitutes
separate various roles of (31) as they pertain to uniqueness questions and
estimates on moduli of continuity. It is our goal here to obtain existence in
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UC(Rv) or BUC(Rv) without (31). In order to do so we will need to
supplement (U) in some way, and we do so quite simply. The simplicity of the
assumptions, compared to the works mentioned above, is possible because we
give up uniqueness.
We will use the following assumptions" Either

(32) H(x,O) BUC(Rs)

or, for some 0 H (0,1) and modulus

(33) H(y,X(x- y)) H(x,X(x- y)) < OXlx- yl 2+#(Ix-yl),
Xlx, y, p H Rv.

(This is just one way to insure the existence of global supersolutions of an
associated problem--see [10].)
The existence result is"

THEOREM IV.1. Let H satisfy (U).
(1) If (32) holds, then there exists a viscosity solution u H BUC(Rv) of

(SP).
(2) If (33) holds, then there exists a viscosity solution u H UC(Rv) of (SP).

In addition, if g(r) < Cr for some C > 0 and o H (0,1), thenthis solution lies
in C’ (Rv).

Example IV.1. If H(x, p) -O(x, p) Ixl, x, p H RN. The above re-
sult shows that if 0 H (0,1) there exists a viscosity solution u (which belongs
to C’t(RV)). In view of the results of the preceding sections, u is unique. It is
given by

1u(x) i olXl.
Now, for 0 1, if there exists a viscosity solution u of (SP), then using the
relations between linear equations in viscosity form and integral equalities
proved in M.G. Crandall and P.L. Lions [4], we deduce that for all x H R,
t>O,

(34) u(x) u(etx)e-t + tlxl.

Thus, if u were a uniformly continuous viscosity solution of (SP) for O 1;
(34) would yield

tlxl < Clxl + C + {Cle’xl + C} e-t< Clxl + C,

for all > 0, which is impossible. Therefore for/9 1 there does not exist a
solution of (SP) in UC(R).
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Example IV.2. Take H(x, p) -xlv for x, p R. Then u 0 is a
solution of (SP) and

1 + Ixl

is also a Lipschitz continuous viscosity solution of (SP). Observe that H
satisfies (32). Observe also that H satisfies (33) for all 0 (0,1) with/(r)
Cor. Thus we do not have uniqueness in BUC(Rv) or even in WI,(RV).

Proof of Theorem IV.1. Step 1. We treat the case when (32) holds. Let
M sup a,lH(x, 0) l. Truncating H by + M, we may assume without loss of
generality that H is bounded by M provided we prove the existence of a
viscosity solution in BUC(Rt) bounded by M. Then, let p D(Rv) satisfy
PR -= 1 on BR, 0 < p < 1, and [Dp[ < 1/R. We consider H(x, p)=
p(x)H(x, p). Clearly, HR BUC(Rv BR), [HR[ < M and (35)

(35) H,(y, X(x y)) H(x, X(x y))

< m(hlx yl + Ix -Yl) + (M/R)Ix -yl.

Hence, by the results of [8], there exists a unique viscosity solution u of

(36) Hs(x, Dus) + us---0 in R

and lull M in Rv. Next, we go through the proof of M.G. Crandall and
P.L. Lions [8] to estimate the modulus of continuity of u and we observe that
since lug(x) u(y)l < 2M for Ix- Yl 1 and (35) holds, we obtain a
uniform modulus of continuity on u. Therefore, u (or a subsequence)
converges uniformly on bounded sets to a u BUC(Rv) which is a viscosity
solution of (SP) and which satisfies ul < M.

Step 2. We treat .the case when (33) holds. For R < oo we introduce

Hn(x, p) p(x)Max[Min(H(x, p), R), -R],

where q is defined as in Step 1. Then we have

(37) H(y, X(x y)) H(x, h(x y))

< OXlx Yl 2 +/z(lx Yl) + Ix Yl.

Hence, there exists a viscosity solution u BUC(Rv) of (36).
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Next we go through the estimates on the modulus of continuity of u in [8]
and we observe (using (37) and the subadditivity of #) that we have

( x-y) ( x-y)+e+Clx_yH x, C lx_ y H y, Clx_ y

> -COlx Yl + e + Clx Yl t(lx y[)
> e + C(1 O)lx -yl -/(Ix y[)
>0

on Rv x Rv if C is large enough. Hence, for all e > 0, there exists a C > 0
such that

luR(x)-uR(y)l<e+Clx-y[, V(x, y) Rv

and thus u has a modulus of continuity uniform in R.
Next, we consider a maximum point of Ul(X) -lxl 2. We have, using

the uniform modulus,

Il _< u() u(0) < c(1 + I1)

for some c independent of R and thus Il c (where C will denote various
constants). Since u is a viscosity solution of (36),

+ _< 0

and we finally deduce

u(0) < ua() + C < -H(, ) + C < C.

Similarly one proves that uR(0) is bounded from below independently of R.
Therefore, ug (or a subsequence) converges uniformly on compact sets to

some y UC(RN) which is a viscosity solution of (SP) by the standard
stability properties of viscosity solutions.

Remark. In fact, the proof in Step 2 still works if we replace (33) by (U)
provided that (38)

(38) li- m(r)r-1 < 1.
r-0+

V. Existence of minimal solutions of the stationary problem

In this section we consider Hamiltonians H(x, p) C(Rs X Rv) which
satisfy

(39) H(x, p) H(x,O) ---> + oe as IP] uniformly for x bounded.
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THEOREM V.1. We assume (39) and that there exists a viscosity subsolution
u C(Rv) of (SP)o. Then there exists a viscosity solution u C(Rv) of (SP)o
satisfying u > u which is minimal in the sense that if v is another viscosity
solution of (SP)o satisfying v > u then v > u.

Remark. (i) In view of (39), any subsolution of (SP)0 is locally Lipschitz
on RN.

(ii) (SP)o may not have a viscosity subsolution as is shown by the
following example: let H(x, p)= (1/2)1pl9- + Ixl and assume that v is a
viscosity subsolution, that is

1
v + lDvl 2 _< -Ixl 2

in the viscosity sense. Since we clearly must have v < xl 2 it follows that for
large n we may choose points xn of least modulus so that v(xn) -n2 and
these points satisfy Ixl < n. It follows that v varies by at least -(n + 1)2 +
n 2 -2n 1 on the part of the ray through the origin and x+ which joins
x+ and the sphere xl n. Moreover, since xl n, for any > 0 we have
x+ 11 x < 1 + infinitely often and we assume that this is satisfied for
the n’s we deal with below. It follows that the least Lipschitz constant for u
on any part of the annulus A {x: Ixl < Ixl < Ix+l} containing the ray
mentioned above is at least (2n + 1)/(1 + ). Therefore the superdifferential
D/u of u has values of at least this modulus on this annulus (because a bound
on values of D/ is a Lipschitz constant [4]). Let y A and p D/u(y)
satisfy

Ipl (2n + 1)/(1 + ).

Since u is a subsolution we conclude that

-(n + 1)2 + ((2n + 1)/(1 + ))2< u(y) + IPl 2 _< -lYl 2 _< 0

which is impossible if < 1 (and is at our disposal) and n is large.
Using more refined arguments, we can give a sharper nonexistence analysis

for a class of examples of this sort. Consider the problem

1
u + -lDul m f(x)

where f(x) C(Rv), m > 1 and

limsupf(x)lxl-m’< --(m’) -(1 +m’)
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where m’ m/(m 1). We claim there exists no viscosity (sub) solution u of
this problem. Indeed, subtracting if necessary some large constant from u we
may assume that

on Rv with X > (m’)-(1 +,,3.

Then if there were to exist u, a viscosity subsolution of (SP)0, the equation
would yield u<f on Rv. Thus if f"BUC(Rv), f"<0, f-=f on
B--,, f" $ f on Rv and if u is the viscosity solution (in BUC(RV)) of

l
lDunlm + un fn inRrm

then we know (cf. P.L. Lions [18]) that u is given by

{fo ("(x) inf f"(X,) + 1 } }m--71tl m’ e-’dr: X CX([0, oo[, RN), x0 x

Choosing Ixl 1, x, xet/m’ if t < t. m’log n, x xt. or >_ t. we find

u"(x)<_ "-he’+ m---7 e’ e-tdt -tn h- m---7

and thus u" $ oo for Ixl 1. On the other hand since u" BUC, u < f
and thus u ---, -o as Ixl --’ oo, we have u < u" for Ixl large and by the
standard comparison results u < u n on Rv. The contradiction shows that there
is no subsolution.

Proof of Theorem V.1. We first consider the problem

(40) H(x, Du) + u 0 in B, u _u on aB
for R < oo. Clearly, u is a viscosity subsolution of (40) and since H satisfies
(39), we may apply the existence result of P.L. Lions [19] (see also G. Bades
[2]) to deduce the existence of a vis__cosity solution us of (40): in addition us is
Lipschitz continuous, uR > u on BR, and thus Us(X) increases with R. Then,
for any fixed R o and R > R0, we deduce from (39) and (40)

us < -inf{ H(x, p)" Ixl R0, P Rv } on

Therefore us is uniformly bounded in R on bounded sets of RN. Using once
more (39), (40) we deduce that us is bounded in Wl,(Bso) for any fixed
R o < o. Therefore us converges to a limit u uniformly on bounded sets and
u is a viscosity solution of (SP). Finally, if o is any viscosity supersolution of
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(SP) 0 above u, it is in particular a viscosity supersolution of (40) and v > u on
OBs. Therefore, v > us on Bs and letting R go to + oo, we deduce v > u in
RV; that is, u is the minimal solution above u.

VI. The Cauchy problem without conditions at infinity

We now consider the Cauchy problem (CP). Our main result is the

THEOREM VI.1. Let H satisfy (5).

Uniqueness. Let H satisfy (LU) and let u, v C(Rv [0, T]) be, respec-
tively, a viscosity subsolution of

(41) ut + H(x, t, Du) =0 in RV x(O, T]

and a viscosity supersolution of

(41)’ vt + H(x, t, Dxv ) + f(x, t) =0 in RV(O, T].

Then for all e. [0, T] we have

(42) sup(u(., t) v(., t)) +
RN

< sup(u(.,0) v(.,0)) /
RV

+ supI(’,s) /
ds.

Existence. Let H satisfy (LU). If p e. C(RV), then there exists a unique
viscosity solution u C(Rv [0, T]) of (CP).

Remark. We could replace 1 + Ixl in (5) by (Ixl) where is continu-
ous, positive, increasing and foo ds/dP(s) o.

Sketch ofproof. Since most of the proof of Theorem VI.1 is a straightfor-
ward adaptation of proofs presented in the first three sections, we will only
prove the uniqueness part for f--- 0. The main point is the following lemma:

LEMMA VI.1. With the notations and the assumptions ofpart (1) of Theorem
VI.1, iff O. Then for all x RN, [0, T] and e > O, we have

(43) (u-v)+(x,t)
< sup{(u v) + (y, 0)" lYl -< (1 + Ixl)eq’ 1 } + 2et

where C is a constant large enough such that /(r) < e + Cr.
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Proof. To prove Lemma VI.1, we fix x0 RN, o (0, T] and we are
going to prove (43) with x x0, o. To this end, we set R Log(1 +
Ixol) / Cdo and we consider

(1 }w,(x, t)= exp [Log(1 + Ixl) + Ct- R]

where 8 > 0. One checks easily that w is a viscosity solution of

0w, C(1 + Ixl)lOw, 0 inWV]0 oo[tgt

and w, >_ 0. Furthermore, if Ah {(x, t) Rs (0, T), 1 + xl < exp(R +
h C,t)} for h >_ 0, we observe that w, + o on OAh f3 (Rv [0, T)) as- 0 +. Next, using (5), we deduce from the usual comparison argument
that for any fixed h and for all small enough

(u- v)(x, t) 2et- w,(x, t) < sup((u- o) + (y,0)" lYl < e+h-- 1}

for all (x, t) Ah. Then, remarking that w,(x, t) --, 0 as 8 --, 0 + if (x, t)
A o, we deduce that

(u-v)(x,t) <2et+sup((u-v) +(y,0)’lyl <e-l), V(x,t)0.

We conclude by observing that (Xo, to) Ao and
Ixol)ec,t 1.

Rthat e -1=(1+

Vll. Remarks on the Cauchy Problem

We wish to present in this section the analogues of the results given in
Sections III, IV. We begin with the results corresponding to Section IV.

THEOREM VII.1. Let H satisfy (U) and let p UC(RN). Then there exists a
viscosity solution u of (CP) which is uniformly continuous on Rv, uniformly for

[0, T].
Remarks. (i) If H(x, t, 0) is bounded on R2v [0, T l, then we may choose

u so that it is also bounded.
(ii) If (U) is strengthened to

H(y, t, h(x y)) H(x, t, ,(x y)) < Chlx yl 2 + Clx yl

for some C > 0, a (0,1] and tp C"(Wv) then we may choose the solution
u so that it is HiSlder continuous in x of exponent a, uniformly in t [0, T].
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Proof. We follow the approximation procedure introduced in the proof of
Theorem IV.1 in Section IV and it will suffice to explain how to obtain enough
a priori estimates which depend only on m in (U). First of all, we claim that
one may obtain an estimate on the modulus of continuity of u(., t) uniform in
t, which depends only on m. Indeed, following the proof in [8], we just have to
exhibit convenient supersolutions of

wt+H(x,t,Dxw)-H(y,t,-Dyw) =0 onRvx (0, T[.

Given e > 0 choose 8 > 0, C > 1 and C8 such that m(8) < e,

[q(x) p(y) e + Clx -Yl,

and m(r) < Csr for r > a. Put K max(2C,, 1) and

w(x, y) e(1 + t) + C, lx -yle r’.

One easily justifies the following computation in the viscosity sense:

w + H(x, t, Dxw ) H(y, t,-Dyw) > e + KC,Ix yle rt

-m((1 + CeK’)lx Yl).
Furthermore the right-hand side is nonnegative if Ix- yl(1 + Cert) < a
since e >_ m(a) and it is nonnegative if Ix- yl(1 + Cert) >_ a since in this
case

m((1 + C,er’)l x y[) < C,(1 + C,ert)lx Yl < 2C,C,emlx Yl
<- KC,ertlx Yl.

We conclude that the (approximations of) u satisfy

lu(x, t) u(y, t)l e(1 + T) + C,er’lx Yl

where K and C, depend only on e and m as in (U). This yields the modulus of
continuity with respect to x uniform in as claimed.
To obtain a modulus of continuity in for x bounded, we may argue as

follows: Fix x BR and e > 0 and set

m,(t) max (u(y, t)- -IY-xl2)yR

Since u is uniformly continuous in the space variables, m, is well defined and
continuous on [0, T]. We next claim that there is a C (depending on R and e)



UNBOUNDED VISCOSITY SOLUTIONS 685

such that

(44) m’e<C on(0, T)

in the viscosity (and, by linearity, distribution--see [4]) sense. Thus

(45) me(t + s) < me(t ) + Cs for0<t<t+s< T.

Indeed, if ff Ct((0, T)) and m
choose which maximizes

has a maximum at i (0, T), we

and then we have

u(’, t) (1/2e)1 xl 2

( 1 o.(46) ’() + H , ,
However, the uniform continuity in x already proved provides the estimate

1
21 xl 2 < u(, t) u(x, t) < C(1 + xl)

SO I X C,1/2 with (another) constant C independent of t, x, R, e. Since
H is bounded on bounded sets, (46) implies (44). In particular, choosing e 1
we deduce that

u(x,t) < Ca + mt(O) < Ca+
for [0, T] and x BR, where CR denotes various constants depending on
R. A lower bound is obtained in the same way.

Next, we see that for x Bs and 0 < < t + s < T and X a modulus in x
uniform in t

(47) u(x, t + s) Ce,s + me(t )
< C,,,s + u(x, t) + sup(x(X) h2/2e)

where Ce, R denotes various constants depending on e and R. Choosing e and
then s small shows that (u(x, + s)- u(x, t))/ is small for s > 0 small. A
lower bound is obtainable in a similar way, establishing the continuity in t.
Our next and final result concerns the analogue of the results of Section III.

We will assume that for some rn > 1 H satisfies

(48) IH(x, t, p) H(x, t, q)[ C0(1 + Ipl m-i + Iqlm-x)lp q]

for all x, p,q Rr, [0, T].
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We will also consider viscosity sub and supersolutions u, v C(Rv [0, T])
of the equation

u, + H(x, t, Du) 0

which are locally Lipschitz continuous on Rv (0, T] and satisfy

(49) IDul < C(1 + Ixl)m’-t-’, IDvl < C(1 + Ixl)’’-t-’,
for some0<<m’-l.

THEOREM VII.2. Let H satisfy (LU) and (48). Let u, o satisfy the preceding
conditions. Then we have

sup (u- v) += sup(u(.,0) (.,0)) +

RNx[0, T] RN

Remark. If H(x, t, p) IPlm/m and if q0 C(Rv) satisfies

(50) lim q(x)lxl -m’-- 0,
Ixl--’ oo

then, using the Lax-Oleinik formula (see P.L. Lions [18]), we see that

u(x,t)= inf (q(y)+ ml---Tlx -ylm’tl-m’)
yRN

defines a viscosity solution of (CP) in C(Rv [0, T]) for all T < o. Further-
more u is locally Lipschitz in Rv (0, o) and

IDu(x, t){ < Cr(1 + Ixl)’’-t-/, VT < oo a.e. in Rv (0, T)

for all T < oo. Similar existence results for more general Hamiltonians may be
obtained using the regularizing effects proved in P.L. Lions [21].

Sketch of proof. Since we have already sketched many similar proofs, we
just outline the arguments. We first observe that combining (48) and (49) we
get

In(x, t, p) H(x, t, q) < C(1 + Ixl)t-alp ql

for p D+u(x, t), q D-v(y, t) and Ix Yl < 1 where 0 < 0 < 1. Next,
we consider for 8 > 0, R > 0,

(1(w(x,t) =exp g Logl
C x-- R))+ (111= + 1)1/2)+ 2(1 -0)
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and we check that w, is a viscosity solution of

,
-02---C(1+ Ixl)t IDw, >0 inR (0, oo).

Let QR be the region in which a Log(w,) < 1. Studying maxima of func-
tions of the form

u(x t) v(y, t) Ix yl 2

w,(x, t) at

over the set (x, t), (y, t) QR, we find in the usual way that there is a 6(R)
with (0 + ) 0 such that

u(x, t) v(x, t) < sup(u(.,0) v(’,O))* + w,()(x, t)

for (x, t) Q. Let R ---, c, to complete the proof.
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