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THE LOOP SPACE OF THE Q-CONSTRUCTION

BY

HENRI GILLET AND DANIEL R. GRAYSON

The higher algebraic K-groups are defined as gi.//[ ’lri+ lQ’I rlQ’I
for an exact category J/. We present a simplicial set Gt’ with the property
that a’l is naturally homotopy equivalent to the loop space IQ’I, and
thus Kilt’ %1G’I. In this way we given an algebraic description of the loop
space, which a priori, has no such description.
The case where t’ is a category in which all the exact sequences split was

done by Quillen with his category S-iS. In fact, the definition of our space
G’ is a simple generalization of the definition of S-iS. Its vertices are all
pairs (M, N) of objects of J,t’, and its edges connecting (M, N) to (M’, N’)
are all pairs of exact sequences

Higher dimensional simplices are defined analogously. There is an isomor-
phism r0G’ --- KoJ/, with (M, N) corresponding to [M] [N].
The simplicial techniques (Section 1) used in the proof that G’I 10’l

are generalizations of Theorems A and B of Quillen [5]; they apply to
simplicial sets rather than just to categories. There is a canonical procedure
(subdivision) for converting simplicial sets to categories, but our techniques
are not based on this.
The main idea from Quillen’s proof of the statement S-iS IQ’I also

appears here, but in a more understandable guise. The motto might be "use
algebra to add, and topology to subtract". This can be explained briefly by
considering supermodules M N of an R-module N (i.e., injections from N
into another module). Using algebra, we may "add" them thus: M + M2

M1LINM2. We have the equation M + M M + (N 9 M/N), and it turns
out that by topology (i.e., in the homotopy groups) subtraction is allowed, and
yields the equation M N 9 M/N.

Research supported by the National Science Foundation.
Received January 27, 1986.

(C) 1987 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

574



THE LOOP SPACE OF THE -CONSTRUCTION 575

As an application of the ideas of the proof, we provide a simplification of
the original proof of Quillen (as presented by Grayson in [2]) of the homotopy
equivalence S- XS fllQ’l.
The first application of the result itself is an explicit representation, in

algebraic terms, for an arbitrary element of Kt’.
As our second application, we show how to use Gdg to give yet another

definition for products in K-theory. We avoid the phony multiplication
problem explained by Thomason in [6], in spite of the similarity between G’
and S-1S, by iterating G to get GG./g, as was done with Q by Waldhausen in
[8].

In a future paper we hope to use this construction to provide natural
definitions for the ,-operations on algebraic K-theory (coming from exterior
powers). This would provide A-operations on derived K-groups, such as
relative K-groups or K-groups with supports, where none exist at the moment.
For this purpose a construction such as G is essential, because 3 is not
additive on K0.Xt’, and thus cannot arise as a map Q’I O’l.

I. Simplicial homotopy theory

In [5], Quillen developed fundamental techniques for proving homotopy
theoretic facts about the geometric realizations of categories. In this section we
show that they work more generally for simplicial sets.
Some notation first. Let A / be the category of finite ordered sets, let A be

the category of nonempty finite ordered sets, and use A, B, C for typical
objects of these categories. For pN let [p].’=(0<l < <p) A.
The p-simplices X([ pl) of a simplicial set X will also be denoted by Xp.
We have full faithful functors A A+,--, (ordered sets) ’-, (partially

ordered sets) (categories) (simplicial sets), where N ="nerve of".
Consequently, we may identify everything in sight with its nerve, and will
never write N.
We use to denote "geometric realization of".
By Yoneda’s lemma, we may view a p-simplex of a simplicial set X as a

map [p] X.
A 0-simplex will be called a vertex or an object, and a 1-simplex will be

called an arrow or an edge.
If A A, we define Ap A as A with the reversed ordering. If X is a

simplicial set, we define Xp by XP(A) := X(AP). There is a natural homeo-
morphism Xl --- XPl. If X is a category then Xp is the usual opposite
category.

Given A, B A + let AB A+ denote the disjoint union ALIB ordered so
A<B.

Let A* denote the subcategory of A whose arrows are all those maps A ---, B
in A which send the top element of A to the top element of B. We have an
embedding A A* defined by adjoining a top element ,, e.g., A A {, }.
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LEMMA 1.1. If X*" A*P (sets) is a functor, then the map

X := (A X*(A ( )))
F

x+ (A X*(( )))

of simplicial sets induced by the inclusions ( } A ( ) is a homotopy equiv-
alence.

Proof The retractions A ( } ( } provide a map G on the other way so
that FG 1.
We define a simplicial homotopy h: X [1] --) X from 1x to GF as follows,

the idea being to retract the elements of A onto one by one. Given a
p-simplex (a,/3): [p] --) X [1] we write [p] AB where A fl-l(0} and
B fl-l(1}. Let/: AB( } --) AB( } be the map.in A* which is the identity
on A and sends B to ,. We define h(a, fl) X*(fl)(a). When B q, we have
/ff 1 and h (a, fl) a; when A q) we have h (a, fl) GF(a). One checks
that h is a simplicial map, and thus is a simplicial homotopy of the type
desired. Q.E.D.

Remark. X+ is a discrete simplicial set (i.e., constant), so the lemma
provides a homotopy equivalence X-- %X. Moreover, the inverse map and
the homotopies are natural.
Given A, B A/, let [A[B]] denote the inclusion B ) AB. Let z denote

the category of all such inclusions where B is nonempty; the arrows are all
commutative squares

B "-) AB

B’ "--) A’B’.

PROPOSITION 1.2. If : Zp ---) (sets) is a functor, then the map

A, B X([A[BI])

A, B X([,/,[B ]1)

of bisimplicial sets induced by the inclusions q[B]] ’--) [A[B]] is a homotopy
equivalence.

Proof It is enough, by [7, Lemma 5.1], to show that this map is a
homotopy equivalence in each degree, i.e., that for each B A the map

A + 2([A[BI])

A ’([(/)[ B]])
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of simplicial sets is a homotopy equivalence. Define a functor G" A* --, z by
setting G(C),= (B CLI,B), where CLI,B denotes the quotient of CB
obtained by identifying the largest element of C with the smallest element of
B. Define X* XoG: A*p -, (sets). Since G(A(, })= [A[B]], we may
apply Lemma 1.1 to get the result. Q.E.D.

Define projections L, R: A A A by L(A, B) A and R(A, B) B. If
X is a simplicial set, then composition gives two bisimplicial sets XL and XR;
all three objects have homeomorphic geometric realizations.

If F: X ---) Y is a map of simplicial sets, then we define a bisimplicial set

YIF by setting

(YIF)(A, B) .’= lim $ V

Y(AB) Y(B)

The space YIF is an analogue of the path space [ylZ X[Y[ Sl.
We write Y[ Y for YIlr; notice that (Y] Y)(A, B) Y(AB), so Y] Y enjoys

some symmetry.

PROPOSITION 1.3.
alence.

The projection map r: YIF XR is a homotopy equiv-

Proof We define a functor (YIF)-" mop -) (sets) by

(YIF)- ([A[S]]):= lim $ F
Y(AB) Y(B)

Yes, the definition looks the same, but the domain of definition is different;
one must check the functodality again.
Apply 1.2, noticing that

(YIF)-([q)[Bl]) X(B) XR(A, B),
and

(YIF)- ([A[BI]) (YIF)(A, B). Q.E.D.

Suppose F: X Y is a map of simplicial sets, A A, and p Y(A). We
define a simplicial set # IF (called the "right fiber over p") by

(oIF)(B) ,= lim
$

Y(AB)->Y(B)

(0) "-) Y(A)
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It is a simplicial analogue of the homotopy fiber of FI over p. We write P Y
for p[1 r.

LEMMA 1.4. plY is contractible, and the contraction is natural.

Proof Define Z*: A*p --> (sets) by

Z*(B) := lim
(o)

Since Z*(( }) { p ) and Z*(C( )) (Pl Y)(CP), Lemma 1.1 yields con-
tractibility of (Pl y)op, so (Pl Y) is contractible, too. Q.E.D.

THEOREM A’. If F: X -> Y is a map of simplicial sets, and for all A A
and all p Y(A), p IF is contractible, then F is a homotopy equivalence.

Proof. We mimic the proof of theorem A in [5]. Consider the diagram of
projection maps

YL Y[ F ,XR

YL YIY ’YR.

The three arrows marked are homotopy equivalences by Lemma 1.3, or
rather, in the case of YI Y YL, by the mirror image of 1.3. It is enough to
show that YIF YL is a homotopy equivalence, and to do that it suffices to
fix an arbitrary A A and show that the simplicial map

B (YIF)(A, B)

B ,-) Y(A)

is a homotopy equivalence. Since the target of this map is discrete, it is enough
to show that for each p Y(A) the fiber is contractible; but that fiber is p IF,
which was assumed to be contractible. Q.E.D.

LEMMA 1.5. Suppose Z is a bisimplicial set, Y is a simplicial set, and F:
Z YL is a map. For A A and p Y(A) define a simplicial set Zo by

z(A,
Zo(B) lim ,I, F

(p) ’-) Y(A)
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Suppose, that for all A A, all p Y(A), and all f: A’
map Zo Z/. is a homotopy equivalence. Then the map

F

A in A, the natural

is a quasifibration, and the fiber over any point in the open simplex of lY[
corresponding to p is homeomorphic to Zol.

Proof
write it as

We may consider the simplicial space A B Z(A, B)I and

p Y(A)

Now one simply follows the proof of the lemma on p. 90 of [5], replacing the
category I by the simplicial set Y to get the result. Q.E.D.

LEMMA 1.6. Suppose

W --)W

:’
g

is a commutative square of spaces (each of which is a geometric realization of a
simplicial set), f and f’ are quasifibrations, and for all v V’ the map
f- l( v ) - f- l( g( v )) is a homotopy equivalence. Then the square is homotopy
cartesian.

Proof See [7, p. 167].

If F: X Y is a map of simplicial sets, A A, and p Y(A), then we
define a bisimplicial set p[ YIF by

(Pl YIF)( B, C) lim

x(c)

Y(ABC)-) Y(C)

(p) "--) Y(A)

We let p[ YI Y

LEMMA 1.7. If F: X ---) Y is a map ofsimplicial sets, A A, and p Y(A),
then the map p[ YIF ---) (pIF)R (provided by the inclusions AC "--) ABC) is a
homotopy equivalence.
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Proof. We define (p[ YIF)"" AP "--’ (sets) by

(pl 1)- ([[c]]) :=

x(c)

r(c) r(c)

(,) ,-, Y(A)

When B is nonempty, then (Pl YI F) ([B[C]]) (Pl YIF)(B, C), and when B
is empty, then (PlYIF) ([,[C]])= (plF)(C)= (plF)R(B, C). Proposition
1.2 gives the result. Q.E.D.

LEMMA 1.7’. If X is a simplicial set, A A, and O Y(A), then the map

pl YI Y - (pl Y)L

(provided by the inclusions AB ABC) is a homotopy equivalence.

Proof. We observe that pl YI Y (pl Y)I(Pl Y), and apply the mirror
image of 1.3. Q.E.D.

THEOREM B’. Suppose F" X Y is a map of simplicial sets. Suppose for
any A A, any p Y(A), and any f’A’ A that the map plFf*plF
(induced by f) is a homotopy equivalence. Then the square

plF----X

pl Y---’---

is homotopy cartesian.

COROLLARY 1.8. Assuming that the three spaces involved are nonempty, and
that basepoints are chosen appropriately, there is a long exact sequence of
homotopy groups

Proof
sets:

Consider the following maps of commutative squares of bisimplicial

pl YIF YIF OI YIF --, YIF (oIF)R -, XR
J, ,1, ,-- $ J, --, $ ,I,

(pl Y)L YL ol YI Y YI Y (pl Y)R YR.
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The horizontal maps are all homotopy equivalences, by Lemma 1.3, 1.7, or
1.7’. By [3, Note 3.13.1] the left square is homotopy cartesian if and only if the
fight one is. Since the geometric realization of the right hand square is
homeomorphic to the one in our statement, it suffices to show the left hand
square is homotopy cartesian.
Given B A and z Y(B), we see that (YIF) z IF, and thus 1.5 holds

for the map YIF YL.
Given B A and z (Pl Y)(B) c Y(AB), we see that (Pl YIF) zl F, so

Lemma 1.5 holds for the map Pl YIF (P[ Y)L.
Finally, given B A and (p[ Y)(B) c Y(AB), let f denote the inclu-

sion B AB, so that f*z is the image of z in Y(B). Then the map

(Pl YIF), (YIF),

is isomorphic to the base-change map z lF f*lF, and is thus a homotopy
equivalence. Thus Lemma 1.6 applies to the left hand square, and shows it is
homotopy cartesian. Q.E.D.

If X is a bisimplicial set, then (thinking of the second variable as the
extraneous one) we define the following simplicial sets:

The maps

provide maps

o6 x: - x(a,[0])
arrX: A X(A,[I])

0

[0] [11

arr X obj X,

(s "source", "target"). We say that X supports natural transformations if
there is a simplicial homotopy H from s to t. If Y is a simplicial set, and

f
Y obj X

g

are maps, then a natural transformation from f to g will be a map h Y arr X
such that s h f and h g; if X supports natural transformations, then
the composite H o(h idtll) is a simplicial homotopy from f to g. We say
natural transformations on X aie left-stable if the homotopy H satisfies the
following property: given A, B A and o (arr X)(AB) with i*t an identity
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arrow (where i: A AB is the inclusion), we have H(o, f)= t(o) if f:
AB [1] is the map sending A to 0 and B to 1.
We will usually apply this terminology in the case where the case where for

each A A, the simplicial set Xa: B X(A, B) is a groupoid; call such an
X a simplicial groupoid. If Z obj X, then we use the notation ZIs to refer to
X.

Suppose X and Y are bisimplicial sets which support natural transforma-
tions. A map F: X Ypreserves natural transformations if the square

arr X x[1] obj X

arr Y x[l] obj Y

commutes.
If F: X Y is a map of bisimplicial sets, and p X(A, [0]), we define a

bisimplicial set p lF by

(01F)(B, C) lim
F

( p } -- Y(A, [0]) -- Y(A, C)

LEMMA 1.9. Suppose F: X Y is a map of bisimplicial sets. Then:
(a) obj(0lF) olobj F,
(b) The map r: olobj F obj X of (1.3) arises as obj( ) of the obvious

projection map o IF X.
(c) If X and Y are simplicial groupoids, so is oIF.
(d) If X and Y support natural transformations, and Fpreserves them, and

natural transformations on Y are left-stable, then 01F supports natural transfor-
mations, and o[F X preserves them. If, moreover, natural transformations
on X are left-stable, then they are left-stable on #IF, too.

Proof Parts (a)-(c) are clear. We prove (d).
Let c: A [1] be the constant map to 0. Since any map B [1] extends

uniquely to a map AB [1] which sends all dements of A to 0, one can check
that r" clidtx [1] is an isomorphism. This yields an isomorphism

(arrplF) [1] arr((plF) [1]L) arr((p[F) (clidttlz))
arr((p, c)IF idtllZ;)

From which a suitable homotopy (arrplF) x [1] objplF can easily be
derived. Q.E.D.
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2. Loop spaces

Suppose X is any simplicial set, with a base point 0 X0. A simple type of
simplicial loop at 0 in X looks like

f

when X is a category, and a simple type of homotopy of such loops looks like

0 x---y

g’

where the two triangles commute. This suggests defining a simplicial set fX
by setting

( {O) X([O]) .---X([O]A) )X(A) := lim
X([O]A)---.X(A)

for A A. The loops described above form the set fX([0]), and the homo-
topies form fX([1]). Forgetting one or the other of the components X([0]A) in
the definition provides maps

nX z, 0IX,

and we have a commutative square

fX OlX

OIX --’ X.

Since 0IX is contractible, this square gives a map from KZxI to the homotopy
fiber product of 101Xl ’-- Xl --’ 101Sl, which is a homotopy equivalence if
and only if the square is homotopy cartesian. Since 0IX is naturally contract-
ible, the homotopy fiber product is naturally homotopy equivalent to the loop
space flXl. Thus we have a natural map fxl -" lXl.

Consider the map P: 0IX X. The fiber 01P is easily seen to be fX, so it
is natural to try to use Theorem B’ in this situation. Accordingly, given A A
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and 0 X(A) we define 0, p X to be the simplicial set pl P, so that fX
0,01X. For any B A we have

(0,plX)(B) lim

{o)

x([OIB)-,X([O])

{o)  X(A)

LEMMA 2.1. Suppose X is a simplicial set, and for all maps f: A’ A in A
and all O X(A) the natural map O, oIX O, f*olX is a homotopy equiv-
alence. Then the map IfIX] f] IX] is a homotopy equivalence.

Proof Apply theorem B’. Q.E.D.

Remark The involution of fX which interchanges the two X([0]A) com-
ponents amounts to reversal of loops in lXI. Therefore, when the lemma
applies, the involution is multiplication by -1 on the H-space ISl.

3. The loop space of the Q-construction

Let ’ be an exact category with a zero object called 0, and recall the
simplicial set S’ defined by Waldhausen [8, 1.3]; in his notation, it is
s.’--see [8, 1.4]; it is naturally homotopy equivalent to Q’ via edgewise
subdivision [8, 1.9], and is defined as follows. Let Ar[n] denote the category of
arrows in In ], and (j/i) denote the arrow from to j in [n], for < j. We call
a sequence of the form (j/i) (k/i) (k/j) in Ar[n] exact. We define
Sn’ S’([n ]) as the set of exact functors M: Ar[n] ’, by which we
mean that

(a) For all i, M(i/i) 0, and
(b) For all/< j < k the complex 0 M(j/i) M(k/i) M(k/j) 0

is an exact sequence of .//t’.
We think of an element of S,t’ as a sequence of admissible monomor-

phisms 0 M0 M M, together with choices M(j/i) for all
quotients Mj/Mi, j >i> O. The face and degeneracy maps amount to
forgetting or duplicating an Mi, except that if M0 is forgotten, then we also
factor out by M1.
We define G’ fS/t’.
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THEOREM 3.1. There is a homotopy equivalence IGOr lSJtl. It is
natural in , i.e., if Jt [’ is an exact functor, then the square

commutes. Direct sum makes G/t’] into an H-space, and the involution of Gd/l
which interchanges the two filtrations is an additive inverse map for this H-space
structure.

Proof. By Lemma 2.1, we must show that for any f: A’ A in A and any
M Sg(A) that the base-change map f*: O,MIS/[ O,f*MIS/[ is a
homotopy equivalence.
We will use the following diagram to represent a typical element of

(O, MIS/f)(B), thinking of A as [p] and B as [q]:

I 0 >Ko >->gq

0MI>-> MpLo Lq

Row 1 represents a simplex from St’([0]B), and row 2 represents a simplex
from S.Mt(AB). We don’t write the choices for all the quotients. The equality
of the faces of these two simplices in S./I[(B) is represented by the double
line; that equality amounts to giving compatible isomorphisms K./K L./Li
for all 0 < <j < q.

Let S.//’Is be the simplicial groupoid whose objects are St’, and which is
defined by letting St’Is(A, B) be the set of functors Ar(A) B --, .//g such
that:

(a) For all A, and all b - B, M((i/i), b) O.
(b) For all < j < k A and all b B the complex 0 M((j/i), b) ---,

M((k/i), b) ---, M((k/j), b) -.-, 0 is an exact sequence of t’.
(c) For all (j/i) Ar(A) and all b < b’ B the map M((j/i), b) ---,

M((j/i), b’) is an isomorphism.

Since the family of exact sequences in t’ is closed under isomorphism, we
deduce:

(b’) For all i<j<kA and all b<c<dB the complex 0
M((j/i), b) M((k/i), c) M((k/j), d) 0 is an exact sequence of t’.
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LEMMA 3.1.1 (a) Sgts supports natural transformations, and on it they are

left-stable.
(b) Similarly for (0[S)TM, (0, M[S’)Is, and fSgs (which are all

defined by virtue of 1.9(c)).

Proof. By (1.9) it is enough to prove (a). We follow Waldhausen [8, proof
of Lemma 1.4.1] and define

(arrSt’Is [11)(,4) (obj S4’Is)(A)
to be

(M, f) -- ((j/i) M((j/i)f(j))).

Checking naturality and the desired properties is easy. (Remark: we could not
have used f(i) instead of f(j) above, for it would have destroyed the
left-stability.) Q.E.D.

Now let (0,MIS’)’ be the simplicial set obtained from (0, MISg) by
forgetting the choices of those quotients which involve any M, 0 < < p, and
let

F: O, M[ SAc (0, M[ SAt)’

be the forgetful map. A map F’ the other way can be defined by first choosing
quotients for all the admissible monomorphisms in ’; we remark that these
two choices are related by a unique isomorphism. We have F F’ 1, and a
natural transformation 1 - F’ F, showing that F is a homotopy equivalence.

Suppose we consider now the case where the map f above is the inclusion
(0, p } [p], with p > 1. Then the base change map f* is the one which
forgets M... Mp_ and all the choices of quotients involving these. There is a
commutative square

O,.MIS ,O,f*MISg

(0,MI St, ), ’* (O,f*MlSg)’

where f’* forgets M1,... Mp_ (the prime indicating that the choice of
quotients has already been forgotten). It is clear now that f’* is a bijection (its
inverse simply re-inserts Mx... M;_), so f* is a homotopy equivalence.
Now we claim that it is enough to check that the base-change map f* is

homotopy equivalence when f is one of the two maps [0] [1]. For, if that is
done, the case where #A > 2 and #A’ > 2 (# is cardinality) follows from the
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diagram

{0,3} -- {0} --,{0,1} - {1} {1,2}

1 / A’A A’-

Here g sends 0, 3 to the extreme elements of A, and g’ sends 1,2 to the
extreme elements of A’. That g* and g’* are homotopy equivalences was
proved above, and the maps in the top row are all isomorphic to one of the
two maps [0]---, [1]. Thus f* is a homotopy equivalence. The cases where
#A 1 or #A’ 1 follow even more easily.
So now we may assume p 1, and set N M1. Define f, g: [0] --, [1] by

f(0) 0 and g(0) 1. We must show that the base-change maps

/*, g*" O, M S./[I ---,

are homotopy equivalences. The map f* forgets N and the choices of
quotients involving it, and the map g* factors out by N and forgets all the
original objects.
Now, for ’, we fix a direct sum operation by choosing, for each pair of

objects M and M’ in ’, a representative M M’ for their direct sum.
We use direct sum with N to define a map H: G./[ O, MIS.//, namely

0 Ko >’*Kq

OLo >-’Zq

O Ko Kql
0 NN Lo N

where we choose the quotients in the obvious natural way, namely,

N L
:=

L N L
N L2 - and N

:= L

We see that g*o H
Notice that f*o H: Gt’ ---, Gt’ is the map which adds N to every term in

the second filtration; we claim that it is a homotopy equivalence. To see this,
let G: G’---, Gt’ be the map which adds N to the every term in the first
filtration. Then

F:=Go(f*oH)=(f*oH)oG
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is the map which adds N to both filtrations, as pictured here:

O Ko ,-.> >"> Kq lO Lo >’-> Lq

ON Ko>"> N Kq

O >-’> N $ Lo >--> N $ Lq

There is a simplicial homotopy from I to F, defined as a map Gt’ [1] Gt’
as follows. Given a simplex (a, fl): [q] G,At’ x [1], we choose i, 1 < < q,
so that fl(0) [i) 0 and fl(i + 1) fl(q) 1. If

O Ko >-.> >-’> Kq lO Lo >-’> Lq
then we define

0 >-->Ko >--> Ki >->N Ki+ >-’> >-’> N Kq
’"’ I’O Lo >-’> Li >’-> N Li+ >-> >’-> N Lq

using the natural and obvious choices for all the quotients which are needed to
make a simplex of G’. One checks that h is a simplicial map, and thus
f*o H is a homotopy equivalence.
We claim it is enough now to show that J .’= H o g* is homotopic to the

identity. For, assuming that done, since g* H 1, we see that g* and H are
homctopy equivalences. Since f* H is a homotopy equivalence, so is f*, and
we are done.
We set Y 0,MIS.,. The map J is the map Y Y described by

OKo >-’>KqlO N >-’> Lo >"> Lq

O Ko >-’> Kql
Z0 Zq IO N N --ff N --ff
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For all pairs L K >--> M of admissible monomorphisms in ,//t’ we choose a
pushout object LIIKM. When K 0, we specify that LLIIM L M.
We make Y into an H-space using pushout over N; i.e., the addition map

+
YXYY

is described as follows:

O >-> N >-> Lo >--> >---> Lq O >--> N >--> L’o >--> >-> Lq

0 >--> Ko K >-> Kq Kq

"tl0 >--> N LoLIvL’o Zq NLq

The natural isomorphisms

Lil 2vL L L
N --"’-" and LiLIvL L L

provide the choices and identifications required for that to make sense. There
are natural transformations (coming from the associativity of direct sums and
pushouts up to natural isomorphism) which show that Y is a homotopy
associative and homotopy commutative H-space. The 0-simplex

serves as the additive identity.
The natural isomorphism

( Li)Lil NLi Lil v N

yields an natural isomorphism I + 1 -= 1 + J of maps from Y to Y, and thus a
homotopy 1 + 1- 1 + J. We will be done if we can find a map -1"
YI --’ YI and a homotopy 1 + Ill 0, where 0 denotes the constant map
to the additive identity. For then we may use associativity to get

Ill--" -1 + !11 + Ill- -1 + Ill + IJI- IJI.

For this the following lemma is useful.
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LEMMA 3.2. Suppose X is a homotopy associative H-space such that the
monoid %X is actually a group. Then there is a map -1: X X and a
homotopy 1 + (-1) 0.

Proof This was proved in [2] when X is connected. Let X0 be the
connected component of the additive identity 0 X; it is a connected associa-
tive H-space, so we have a map -1 for it. Letting -x denote (-1)(x), we
extend this map to all of X as follows.
For each %X choose a point x in the component Xi. For all x X we

define -x := x_ + (-(x + x_i)). Now we have the following homotopies of
maps X X_:

-(x+x_i))
(x + x_i) + -(x + x_i) -O. Q.E.D.

Continue the proof of the theorem. The preceding lemma tells us it is
enough to show that the monoid %Y is actually a group. Suppose then that

ONLo

is a vertex of Y. We claim that its connected component is inverse to the
connected component of

O NNKo

The sum of these two vertices is isomorphic to

0 Lo/N

ON Lo
and therefore is connected to it. The 1-simplex

( O O Lo/N K)0 N N Lo K0

whose definition uses the isomorphism

Lo Ko = L0
N -*K’

connects that vertex to the identity.
This finishes the proof of Theorem 3.1. Q.E.D.
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Remark. If we have an exact sequence 0 -o M -o N P -o 0 in vg, then
we are tempted to write P --- N/M. Within a single exact category’ one may
choose a quotient N/M for every admissible monomorphism M N, but it
is not possible to do this simultaneously for all exact categories in such a way
that all exact functors will respect these choices. Nevertheless, the choice of
cokernel N/M is unique up to a unique isomorphism. Thus it is possible to
specify an isomorphism

N/M N’/M’

without having previously specified choices for N/M and N’/M’.
If we omit the choices of the quotients from the definition of Gt’, we get a

homotopy equivalent set G’’. A q-simplex of G’vg can be described as a pair

Ko Kq, Lo Zq

of admissible filtrations in vg, together with isomorphisms Kj/K --- Lj/L for
< j, such that whenever < i’ < j’ > j, the square

Kj,IK,, Lj,/L,,

commutes. Both these concepts make sense without actually choosing the
quotients. The relationship of G’v/’ with Sv/t’ can be described by saying that
there are natural homotopy equivalences

A choice of quotients in ’ gives a homotopy inverse map G’’I G’I
which is unique up to a unique natural isomorphism, but this construction can
not be made natural in the variable ’.

4. A simplification of another proof

For this section, we assume that t’ is an exact category in which all exact
sequences split, and S is the category whose arrows are the isomorphisms

In [2] it was proved that S-S is homotopy equivalent to 1Qv/t’l, and here
we sketch a simplification for that proof. It consists of removing the last
paragraph on p. 222 of [2], and all of p. 223 and p. 227. On p. 228 we modify
the proof of the first theorem as follows. We must show that the map

s-xf: s-xs s-xe 
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is a homotopy equivalence. Here S-if is given by

We define

by

Then S-i* S-Xf 1, so it is enough to find a homotopy 1 S-if S-i*.
We make S-XEc into an H-space using pullback, setting

(e,0 --, a - s - c - 0) + (e’,0 - a’ - s’ - c’ -, 0)
=(PP’,OA A’Bc B’ CO).

The natural isomorphism B c B B c (C A) gives a homotopy

1 + 1 1 + (s-lfo S-i’).

As in Section 3, it is enough to show that an additive inverse map

1" S-Ec S-IEc
exists, and by 3.2 it suffices to show that the monoid %S-Ec is a group. We
claim that the connected component of

(P,0 A BCO)

is inverse to the connected component of

(A,0PPC C0).

Adding these two objects gives

(P,A,O--}A PBPCO),

which is isomorphic to

(A P,OAPAPCCO),

and therefore connected by an arrow to the additive identity

(0, 0 --, 0 --, C C 0).
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Notice that even though we are switching A P to P @ A, we don’t run
into Thomason’s phony multiplication problem. That problem was a failure of
naturality, but here we are just describing objects and arrows for our %
computation, and not trying to make a functor.

5. Generators for KJ/

Suppose z Kt.’ (= ,qlG’[). By means of the simplicial approximation
theorem we can prove that z is represented by a loop formed combinatorially
from 1-simplices of Gt’. Drawing 1,simplices as arrows, we may represent z
by a loop like

Consider one of the configurations

(K, L) (K", L")

(K’,L’)

in the loop. Form the pushouts P K’IIrK" and Q L’IIL". Since

P/K K’/K K"/K and Q/L L’/L L"/L,

we have isomorphisms of exact sequences:

0 K’/K P/K P/K’ --. 0

O L’/L Q/L Q/ L’ 0

and

0 K"/K P/K P/K" 0

0 L"/L Q/L Q/L" 0

Thus we have two 2-simplices in Gt’,

and

OLL"
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which fill in the triangles in the diagram

Using many simplices like these, we deform the path so it looks as follows:

(0,0) ---(K1, Li) - ...-- (gq_i, Lq_l)
$ $

(K, Z) (gq_l, Zq_l) ---> (K,L)

Such a loop is described completely by the following data:
(1) objects K and L in t’;
(2) admissible filtrations

0 Ko >--> K >-> >--> Kq K,

0 KK >-> >->gq K,

0 Lo LI >--> Lq L,

o Z’q

(3) isomorphisms Ki/Ki_ --- Li/Li_ and K’/K’i. i-x i/T’/L’i-.
Our result is that every element of Kl/t’ can be represented by such data.

The case q I corresponds to the usual element of Kt’ associated to an
automorphism of an object of ’.

Notice that such data give two proofs that [K] [L] in K0’.

6. Products in K-theory

Let ’ be an exact category. For each A A define a category

r(A) ,= Ar lim

[0]A

We get thus a functor I’: A - (categories). Say that a functor F(A) ---> t’ is
exact if its restriction to each copy of Ar([0]A) in I’(A) is exact. With this
terminology we see that G/t’(A) can be identified with the set Exact(F(A), .//’ )
of exact functors F(A) t’, and the identification is natural in A. Define
Exact(F(A), .[) (or fCC’(A) for short) to be the full subcategory of the
category of functors F(A) Whose objects are the exact functors. Define a
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sequence 0 - M’ M M" --, 0 in fgt’(A) to be exact if evaluation on
each object of F(A) yields an exact sequence of ’; this makes fgC’(A) into
an exact category (as can be checked). Thus we get a simplicial exact category
,At’. The definition (Gfgg)(A, B) (G(fg(B))(A) (for A, B A) yields a
bisimplicial set Glt’. We define fG,AI(A, B) Gfg(B, A).

LEMMA 6.1. The bisimplicial sets fGg and Gfgg are isomorphic.

Proof.

G’(A, B ) Exact(r(), Exact(r(A), ))
Biexact(F(B) x F(A), t’)--- Biexact(I’(A) F(B), ’)
’(A, ).

Here biexact functors are those which are exact in each variable separately.
Q.E.D.

Using the lemma as justification, we define GGg Gfgg --- fgGg.LEMMA 6.2. Suppose X is a bisimplicial set, and let X,,, denote the
simplicial set m Xn, m" Assume that n Xn, , is given a product operation
in each degree which makes it into a simplicial H-space such that roX,, is a
group for all n. Then there is a spectral sequence

E,q ’,([.] rq(X,,,.)) = r,+qlX

(All the terms are groups,
convergence is as usual.)

all the maps are group homeomorphisms, and

Proof We use theorem B.5 and its proof in [1]. To see that X satisfies the
r,-Kan condition we use [1, B.3.1] and the fact that

’?/’7(X)free qTto ( X) )< ) ( X) Q.E.D.

We have an exact functor - ff0t --t’ g defined by M (M, 0).
Writing ’c for the constant simplicial exact category B ’, we get a map
’c t’. Now applying G in each degree gives a map
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there is a similar map

LEMMA 6.3. The maps f and g are homotopy equioalences.

Proof. It is enough to show this for f. We apply the previous lemma to the
map X G(gc) ---, Y GGg, obtaining

G q(x) {/Gx’0, p,o.Po,
The exact functor &n t’ n + 2 defined by

M (M(O/O’), M(O/O"), M(1/0),..., M(n/n 1))

induces an isomorphism on K-groups by the additivity theorem, showing that
rq(Y,,n) gqdgn+2. The simplicial set [n] ,rq(Y,,,) is thus the groupoid
Kqdg >( Kqdg//Kq,/g, whose objects are pairs (a, fl) Kqdg X Kq,/g, and
whose arrows are triples (a, fl,/J): (a, fl) --, (a + , fl +/J), with Kqdg.
Thus

Kq./f/[ X Kq,/g/Kq,/[G (r) 0,

and the map Ep2q(X)--+ E2q(y) is the evident isomorphism induced by the
first inclusion. Thus f induces an isomorphism on the abutments also, whence
the result. Q.E.D.

Now using f allows us to identify ,riGGg with Ki’. The proof above
shows that the use of g instead would change the sign of the identification. It
is necessary to choose f, however, because we want to identify %Gt’ with

K0’ via the map (M, N) [M]-[N], and we know already how products
are to be defined on K0.

We can now define the product on K-theory using the G-construction.
Suppose that ’, , and cg are exact categories and : z cg is a
biexact functor. The pairing

G1,s Gqzd Exact(F,, z’) Exact( Fq, ) ---, Exact( Fp I’q, cg) G,GqCg,
N).

gives a map Gap" G ^ GI -’ G and thus a pairing Kizg(R) Ky --,

K+y’.
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Note that on 0-skeleta, this pairing may be described as follows. A vertex of
G is a pair (A1, A2) of objects in , a vertex of is a pair (B1, BE), and a
vertex .of GG is a quadruple

With this notation,

al)Gt/,’((A1, A2), (B1, B2)) (A2 B1)

This is analogous to the fact that the tensor product of two complexes (here of
length one) is a double complex.

It is an easy exercise to see that this pairing is compatible with the pairing
Oa’l ^ QI --’ QQI described by Waldhausen [7].
To check associativity and commutatitivity is a much easier exercise now

than it was in [4, appendix].
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