ON EXTREME INFINITE DOUBLY STOCHASTIC MATRICES

BY

Ryszard Grząślewicz

Introduction

Let $\bar{r}=(r_1,r_2,\dots)$ and $\bar{s}=(s_1,s_2,\dots)$ be sequences of non-negative reals. A matrix $P=(p_{ij}),\ i,\ j=1,2,\dots$, is called doubly substochastic with respect to (\bar{r},\bar{s}) if $p_{ij}\geq 0, \sum_{j=1}^{\infty}p_{ij}\leq r_i$ and $\sum_{i=1}^{\infty}p_{ij}\leq s_j$ for all $i,\ j=1,2,\dots$. We denote by $\mathscr{D}(\leq \bar{r},\leq \bar{s})$ the set of all doubly substochastic matrices with respect to (\bar{r},\bar{s}) .

Let $\sum_{i=1}^{\infty} r_i = \sum_{j=1}^{\infty} s_j$. We admit the case $\sum_{i=1}^{\infty} r_i = \sum_{j=1}^{\infty} s_j = \infty$. We say that a matrix $P = (p_{ij})$ is doubly stochastic with respect to (\bar{r}, \bar{s}) if $p_{ij} \geq 0$, $\sum_{j=1}^{\infty} p_{ij} = r_i$ and $\sum_{i=1}^{\infty} p_{ij} = s_j$, $i, j = 1, 2, \ldots$. We denote by $\mathcal{D}(\bar{r}, \bar{s})$ the set of all matrices which are doubly stochastic with respect to (\bar{r}, \bar{s}) . The sets $\mathcal{D}(\bar{r}, \bar{s})$ and $\mathcal{D}(\leq \bar{r}, \leq \bar{s})$ are convex.

Let ext $\mathcal{D}(\bar{r}, \bar{s})$ (ext $\mathcal{D}(\leq \bar{r}, \leq \bar{s})$) denote the set of extreme points of $\mathcal{D}(\bar{r}, \bar{s})$ ($\mathcal{D}(\leq \bar{r}, \leq \bar{s})$). It is not difficult to see that if

$$p_{ij} = \min\left(\left(r_i - \sum_{k=1}^{j-1} p_{ik}\right), \left(s_j - \sum_{k=1}^{i-1} p_{kj}\right)\right)$$

then, $P=(p_{ij})\in \mathcal{D}(\bar{r},\bar{s})\subset \mathcal{D}(\leq \bar{r},\leq \bar{s})$, hence $\mathcal{D}(\bar{r},\bar{s})$ and $\mathcal{D}(\leq \bar{r},\leq \bar{s})$ are non-empty.

In 1946 Birkhoff [2] proved that if

$$r_i = s_i = \begin{cases} 1 & \text{for } i \le n \\ 0 & \text{for } i > n, \end{cases} \quad n \in N$$

then the set $\mathfrak{D}(\bar{r}, \bar{s})$ coincides with the set of all permutation matrices. Kendal [11] and Isbel [9] generalized this result to the case of infinite doubly stochastic matrices (i.e., $s_i = r_i = 1, i = 1, 2, \ldots$). Other characterization of extreme points was discovered independently by Douglas [7] and by Lindenstrauss [13]. We see that in the above mentioned cases extremality of doubly stochastic matrices (measures with discrete supports) depends on their

Received October 15, 1985.

^{© 1987} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

supports (graphs). Generally it is not true. Let $p_{11} = p_{i,i+1} = p_{i+1,i} = 1/2$, $i \ge 1$, and $p_{ij} = 0$, otherwise. And let $q_{11} = 1$, $q_{i,i+1} = q_{i+1,i} = 1/i$, $i \ge 1$, and $q_{ij} = 0$, otherwise. The matrix $P = (p_{ij})$ ($Q = (q_{ij})$) is doubly stochastic with respect to (\bar{r}, \bar{s}) where $r_i = s_i = 1$ ($r_i = s_i = 1/i + 1/(i + 1)$). Obviously supports of P and Q are the same. But is to difficult to check that P is not extreme and Q is extreme. Therefore, in the general case, to characterize extreme doubly stochastic matrix measures with discrete coutable supports in terms of their supports (graphs) we need more subtle description, e.g., ε -summing families, ε -bitrees (see Section 1 for the definitions).

Mirsky [14] showed that ext $\mathcal{D}(\leq \bar{r}, \leq \bar{s})$ coincides with the set of subpermutation matrices for $\bar{r} = \bar{s}$ with

$$r_i = s_i = \begin{cases} 1 & \text{for } i \le n \\ 0 & \text{for } i > n, \end{cases} \quad n \in N.$$

This result was generalized to the finite-dimensional case by Brualdi [4] (i.e., when $\bar{r} = (r_1, r_2, ..., r_n)$, $\bar{s} = (s_1, s_2, ..., s_m)$, $n, m \in N$, are arbitrary nonnegative vectors).

The purpose of this paper is to describe ext $\mathcal{D}(\bar{r}, \bar{s})$ (Section 1) and ext $\mathcal{D}(\leq \bar{r}, \leq \bar{s})$ (Section 2) for arbitrary infinite non-negative vectors \bar{r}, \bar{s} .

With each matrix $P = (p_{ij}) \in \mathcal{D}(\bar{r}, \bar{s})$ or $\mathcal{D}(\leq \bar{r}, \leq \bar{s})$ is associated a graph G(P) defined by the following formula. To the *i*-th row there corresponds a (row) node x_i (i = 1, 2, ...) and to the *j*-th column there corresponds a (column) node y_j . There is an edge joining x_i and y_j if and only if $p_{ij} > 0$; there are to be no other edges. Therefore to each edge $x_i y_j$ in G(P) there corresponds a positive entry p_{ij} . Note that the sum of all entries p_{ij} which correspond to edges joined with fixed node $x_i(y_i)$ is equal $r_i(s_i)$. For a matrix

$$P \in \mathcal{D}((r_1, r_2, \ldots, r_m)(s_1, s_2, \ldots, s_n)),$$

P is extreme if and only if the connected components of G(P) are trees, i.e., the graph G(P) has no cycle (for example, see [4]). Note that this result was extended by Bartoszek [1] to the case of infinite sequences $\{r_i\}$, $\{s_j\}$ such that $\sum_{i=1}^{\infty} r_i = \sum_{j=1}^{\infty} s_j < \infty$ (cf. Corollary 1). For other expositions of this result in finite dimensional case see [10], [3] and [15]. The problem of description of extreme doubly stochastic measures with the discrete coutable supports (or equivalently infinite doubly stochastic matrices with given marginals) was also considered by Letac [12], Denny [6] and Mukerjee [16].

1. Extreme infinite doubly stochastic matrices

A set $\{\varepsilon_{k_1,\,k_2,\,\ldots,\,k_n}:\,n\in N\}$ of non-negative numbers is said to be an ε -summing family if

$$\sum_{k_{n+1} \in A_{k_1, \dots, k_n}} \varepsilon_{k_1 k_2 \dots k_n k_{n+1}} = \varepsilon_{k_1 k_2 \dots k_n}, \quad n \in \mathbb{N}$$

and

$$\sum_{k_1\in A}\varepsilon_{k_1}=\varepsilon>0,$$

where A, A_{k_1} $(k_1 \in A), A_{k_1k_2}$ $(k_1 \in A, k_2 \in A_{k_1}), \ldots$ are disjoint subsets of N.

We say that the graph G(P), $P \in \mathcal{D}(\bar{r}, \bar{s})$, has an ε -bitree, if there exists a subgraph H of the graph G(P) which for certain ϵ -summing families

subgraph H of the graph G(P) which for certain ε -summing families $\{\varepsilon_{k_1, k_2, \dots, k_n}\}, \{\varepsilon'_{k_1, k_2, \dots, k_n}\}$ satisfies the following conditions:

(a₁) The graph H includes an edge $x_{i_0}y_{j_0}$ with $0 < \varepsilon \le p_{i_0,j_0}$.

(a₂) The graph H includes edges $y_{j_0}x_{i_1}$, $i_1 \in A$ with $0 < \varepsilon_{i_1} \le p_{i_1,j_0}$ and edges $x_0y_{j_1}$, $j_1 \in A'$ with $0 < \varepsilon'_{j_1} \le p_{i_0,j_1}$ and $i_0 \notin A$, $j_0 \in A'$. (Obviously $\sum_{i_1 \in A}\varepsilon_{i_1} = \sum_{j_1 \in A'}\varepsilon_{j_1} = \varepsilon > 0$.)

(a₃) the graph H includes edges $x_{i_1}y_{j_1}$, $i_1 \in A$, $j_1 \in A_{i_1}$ with $0 < \varepsilon_{i_1,j_1} \le p_{i_1,j_1}$ and $a' \cap A'_{j_1} = \emptyset$, $a \cap A_{i_1} = \emptyset$. (Obviously $a \cap A'_{j_1} = \emptyset$, $a \cap A_{i_1} = \emptyset$. (Obviously $a \cap A'_{j_1} = \emptyset$).

(a₄) The graph $a \cap A'_{j_1} = \emptyset$ and edges $a \cap A'_{j_1} = \emptyset$, $a \cap A'_{j_1} = \emptyset$, $a \cap A'_{j_1} = \emptyset$. (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, $a \cap A'_{j_1} = \emptyset$. (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, $a \cap A'_{j_1} = \emptyset$. (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$, (Obviously $a \cap A'_{j_1} = \emptyset$), $a \cap A'_{j_1} = \emptyset$), (Obviously $a \cap A'_{j_1} = \emptyset$), (Obvious

 $0 < \varepsilon_{i_1,j_1i_2} \le p_{i_2,j_1} \text{ and edges } x_{i_1}y_{j_2}, \ i_1 \in A'_{j_1}, \ j_2 \in A'_{j_1i_1}, \ j_1 \in A' \text{ with } 0 < \varepsilon'_{j_1i_1j_2} \le p_{i_1,j_2} \text{ and the sets } A, A'_{j_1} \ (j_1 \in A'), \ A_{i_1,j_1} \ (i_1 \in A, \ j_1 \in A_{j_1}) \text{ are disjoint and the sets } A', \ A_{i_1} \ (i_1 \in A), \ A'_{j_1i_1} \ (j_1 \in A', \ i_1 \in A'_{j_1}) \text{ are disjoint.}$

The graph H includes only edges described in $(a_1), (a_2), (a_3), \ldots$ (Fig. 1). If in a graph G(P) there exists a subgraph H which is an ε -bitree, it is not difficult to see that there exists also an ε -bitree H_1 such that every node of H_1 is joined with only a finite number of edges and H_1 is a subgraph of H.

Fig. 1.

LEMMA 1. If $P \in \mathcal{D}(\bar{r}, \bar{s})$ has an ε -bitree, then $P \notin \text{ext } \mathcal{D}(\bar{r}, \bar{s})$.

Proof. Let H be a subgraph of G(P) such that H is an ε -bitree. We define a matrix $T = (t_{ij})$ (using the notation from the definition of an ε -bitree):

$$(b_1) \quad t_{i_0,j_0} = \varepsilon > 0.$$

(b₂)
$$t_{i_1,i_2}^{(i_3)} = -\varepsilon_{i_1}, i_1 \in A; t_{i_2,i_3} = -\varepsilon_{i_3}', j_1 \in A' (i_0 \notin A, j_0 \in A')$$

 $\begin{array}{ll} (b_2) & t_{i_1 j_0} = -\epsilon_{i_1}, \ i_1 \in A; \ t_{i_0 j_1} = -\epsilon'_{j_1}, \ j_1 \in A' \ (i_0 \notin A, \ j_0 \in A') \\ (b_3) & t_{i_1 j_1} = \epsilon_{i_1 j_1}, \ i_1 \in A, \ j_1 \in A_{i_1}; \ t_{i_1 j_1} = \epsilon'_{j_1 i_1} \ j_1 \in A', \ i_1 \in A'_{j_1}. \end{array}$ (The sets $\{i_0\}, A, A'_{j_1} \ (j_1 \in A')$ are disjoint and the sets $\{j_0\}, A', A_i \ (i_1 \in A)$ are disjoint.

(b₄) $t_{i_2,j_1} = -\varepsilon_{i_1,j_2i_2}, \ i_1 \in A, \ j_1 \in A_{i_1} \ i_2 \in A_{i_1,j_2}; \ t_{i_1,j_2} = -\varepsilon'_{j_1i_1,j_2}, \ j_1 \in A', \ i_1 \in A'_{j_1}, \ j_2 \in A'_{j_1i_1}.$ (The sets $\{i_0\}, A, A'_j \ (j_1 \in A'), \ A_{i_1,j_1} \ (i_1 \in A, \ j_1 \in A_{i_1})$ are disjoint and the sets $\{j_0\}, A', A_{i_1} \ (i_1 \in A), \ A'_{j_1i_1} \ (j_1 \in A', \ i_1 \in A'_{j_1})$ are disjoint.

If an edge $x_i y_j$ is not in the graph H, then we let $t_{ij} = 0$. It is easy to see that $\sum_i t_{ij} = \sum_j t_{ij} = 0$ and $p_{ij} \ge |t_{ij}|$. Thus $P \pm T \in \mathcal{D}(\bar{r}, \bar{s})$, so P is not extreme.

THEOREM 1. Let $P \in \mathcal{D}(\bar{r}, \bar{s})$. Then $P \in \text{ext } \mathcal{D}(\bar{r}, \bar{s})$ if and only if the graph G(P) has no cycle and G(P) has no ε -bitree.

Proof. Suppose that the graph G(P) has a cycle. Let the sequence $x_{i_1}, y_{j_1}, x_{i_2}, y_{j_2}, \dots, x_{i_n}, y_{j_n}, x_{i_1}$ describe this cycle. We may and do assume that our cycle is simple. We have $p_{i_1, j_1}, p_{i_2, j_1}, p_{i_2, j_1}, \dots, p_{i_n, j_n}, p_{i_1, j_n} > 0$. Let

$$\varepsilon = \min\{p_{i_1, i_1}, p_{i_2, i_2}, \ldots, p_{i_n, i_n}, p_{i_1, i_n}\}$$

Obviously $\varepsilon > 0$. Let us define a matrix $T = (t_{ij})$ by

$$t_{ij} = \begin{cases} \varepsilon & \text{if } (i, j) = (i_{k_1} j_k), \ k = 1, 2, \dots, n, \\ -\varepsilon & \text{if } (i, j) = (i_1, j_n) \\ -\varepsilon & \text{if } (i, j) = (i_{k+1}, j_k), \ k = 1, 2, \dots, n-1, \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that $p_{ij} \pm t_{ij} \ge 0$ for all i, j = 1, 2, ... and $\sum_i t_{ij} = \sum_j t_{ij} = 0$. Thus $P \pm T \in \mathcal{D}(\bar{r}, \bar{s})$.

Suppose that the graph G(P) has an ε -bitree. By Lemma 1, P is not extreme. Therefore if $P \in \text{ext } \mathcal{D}(\bar{r}, \bar{s})$, then the graph G(P) has no cycle and no ε -bitree.

Now suppose that $P \in \mathcal{D}(\bar{r}, \bar{s})$ is not extreme. Then there exists a non-zero matrix $T = (t_{ij})$ with $P \pm T \in \mathcal{D}(\bar{r}, \bar{s})$. Obviously $|t_{ij}| \le p_{ij}$ for all i, j =

1,2,... Moreover, there exists (i_0, j_0) with $t_{i_0,j_0} \neq 0$. It is also easy to see that $\sum_i t_{ij} = \sum_j t_{ij} = 0$. Let $|T| = (|t_{ij}|)$. A graph G(|T|) is a subgraph of G(P). If G(|T|) has a cycle, then G(P) has also a cycle. Now assume that G(|T|) has no cycle. It is sufficient to show that there exist ε -summing families $\{\varepsilon_{k_1,\ldots,k_n}\}, \{\varepsilon'_{k_1,\ldots,k_n}\}$ and a subgraph H of the graph G(|T|) which satisfy the conditions $(a_1), (a_2), (a_3), \ldots$. Let $t_{i_0,j_0} \neq 0$. Let $\varepsilon = |t_{i_0,j_0}|$. Now we define a graph H as follows:

(c₁) H includes the edge $x_{i_0}y_{j_0}$.

(c₂) Let $A = \{i \neq i_0: t_{i_0} \neq 0\}$ and $A' = \{j \neq j_0: t_{i_0 j} \neq 0\}$. H includes edges $y_{j_0}x_{i_1}$, $i_1 \in A$, and edges $x_{i_0}y_{j_1}$, $j_1 \in A'$. We choose positive numbers $\varepsilon_{i_1}, \varepsilon'_{j_1}, i_1 \in A$, $j_1 \in A'$ in such way that $\sum_{i_1 \in A} \varepsilon_{i_1} = \varepsilon, \sum_{j_1 \in A'} \varepsilon'_{j_1} = \varepsilon$ and $0 < \varepsilon_{i_1} \leq |t_{i_1 j_0}|, 0 < \varepsilon'_{j_1} \leq |t_{i_0 j_1}|$. We are able to choose $\varepsilon_{i_1}, \varepsilon'_{j_1}$ by the above formula because

$$\sum_{i_1 \in A} t_{i_1 j_0} + t_{i_0 j_0} = 0 \quad \text{and} \quad \sum_{j_1 \in A'} t_{i_0 j_1} + t_{i_0 j_0} = 0.$$

:

H includes only edges described in $(c_1), (c_2), \ldots$. Note that in the above construction of the graph H the sets $\{i_0\}, A, A'_{j_1}$ $(j_1 \in A'), \ldots$ are disjoint and the sets $\{j_0\}, A, A_{i_1}$ $(i_1 \in A), \ldots$ are disjoint, since G(|T|) has no cycle. Therefore the graph H (H is a subgraph of G(|T|)) is an ε -bitree. Since $|t_{i_j}| \leq p_{i_j}$ $i, j = 1, 2, \ldots$, the graph H is an ε -bitree in the graph G(P). This completes the proof.

Suppose that the graph G(P), $P \in \mathcal{D}(\bar{r}, \bar{s})$, has an ε -bitree. Then $\sum_{i,j} p_{ij} \ge \sum_{k_1 k_2, \ldots, k_n} = \infty$, i.e., $\sum_i r_i = \sum_j s_j = \sum_{ij} p_{ij} = \infty$. Therefore we can write the following corollary. A similar result was presented by Bartoszek in [1] (cf. [12], [6], [16]).

COROLLARY 1. Let $\sum_{i=1}^{\infty} r_i = \sum_{j=1}^{\infty} s_j < \infty$ and let $P \in \mathcal{D}(\bar{r}, \bar{s})$. Then $P \in \text{ext } \mathcal{D}(\bar{r}, \bar{s})$ if and only if the connected components of the graph G(P) are trees.

Example 1. Let

$$\bar{r} = (19 + a, 2, 1, 7, 5, 11, 2, 7, 5, 6, 6, 6, \dots)$$

and

$$\bar{s} = (5 + a, 3, 3, 9, 7, 8, 9, 10, 2, 6, 6, 6, \dots).$$

The matrix

has graph $G(P_a)$ given by Fig. 2. If we let a=0, then in view of Theorem 1, P_a is extreme. If we let a>0 then the graph $G(P_a)$ has a cycle, so P_a is not an extreme doubly stochastic matrix.

Example 2. Let

$$\bar{r} = \left(2\frac{5}{6}, 2, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, 1, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \dots\right)$$

and

$$\bar{s} = (3,1,1,1,\frac{5}{6},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},1,1,\dots).$$

The matrix

FIG. 2.

has graph G(P) given by Fig. 3. Note that Fig. 3a and Fig. 3b presents subgraphs of the graph G(P) which are ε -bitree with ε equal to $\frac{5}{6}$ and $\frac{1}{4}$, respectively.

Example 3. Let a doubly stochastic matrix P have the graph G(P) given by Fig. 4. It is easy to see that G(P) has no cycle and G(P) has no ε -bitree. Thus P is extreme.

If for $P, P' \in \mathcal{D}(\bar{r}, \bar{s})$, the condition that G(P') is a subgraph of G(P) implies P = P', then we say that a matrix $P \in \mathcal{D}(\bar{r}, \bar{s})$ is uniquely determined in $\mathcal{D}(\bar{r}, \bar{s})$ by its graph. The elements of ext $\mathcal{D}(\bar{r}, \bar{s})$ in the finite-dimensional case can also be characterized as those matrices in $\mathcal{D}(\bar{r}, \bar{s})$ which are uniquely determined in $\mathcal{D}(\bar{r}, \bar{s})$ by their graph (see Brualdi [4], Theorem 2.1.). This result can be extended. Indeed, if $P \notin \text{ext } \mathcal{D}(\bar{r}, \bar{s})$ then $P = (P_1 + P_2)/2$, $P_1, P_2 \in \mathcal{D}(\bar{r}, \bar{s})$, $P_1 \neq P_2$. Obviously, $G(P_1)$ is a subgraph of G(P), so P is not uniquely determined in $\mathcal{D}(\bar{r}, \bar{s})$ by its graph. Now assume that $P, P' \in \mathcal{D}(\bar{r}, \bar{s})$ are distinct such that the graph G(P') is a subgraph of G(P). Put T = P - P'. Obviously $\sum_i t_{ij} = \sum_j t_{ij} = 0$ and $t_{i_0, j_0} \neq 0$ for some (i_0, j_0) . If G(|T|) has a cycle then G(P) has also a cycle and $P \notin \text{ext } \mathcal{D}(\bar{r}, \bar{s})$. Suppose now that |T| has no cycle. We may and do assume that $t_{i_0, j_0} > 0$. Define the family of sets

$$\begin{split} A &= \big\{ i \neq i_0 \colon t_{ij_0} < 0 \big\}, \\ A' &= \big\{ j \neq j_0 \colon t_{i_0 \, j} < 0 \big\}, \\ A_{i_1} &= \big\{ j \neq j_0 \colon t_{i_1 \, j} > 0 \big\}, \quad i_1 \in A, \\ A'_{j_1} &= \big\{ i \neq i_0 \colon t_{ij_1} > 0 \big\}, \quad j_1 \in A', \\ A_{i_1 \, j_2} &= \big\{ i \neq i_1 \colon t_{ij_1} < 0 \big\}, \quad i_1 \in A, \, j_2 \in A_{i_1}, \\ A'_{hi_2} &= \big\{ j \neq j_1 \colon t_{i_2 \, j} < 0 \big\}, \quad j_1 \in A', \, i_2 \in A'_{hi_2}, \end{split}$$

FIG. 4.

It is not difficult to see that using the sets $A, A', A_{i_1}, A'_{j_1}, A_{i_1 j_2}, \ldots$ we can find an ε -bitree in G(P) (with $\varepsilon = t_{i_0 j_0}$), i.e., $P \notin \operatorname{ext} \mathscr{D}(\bar{r}, \bar{s})$. Thus we proved the following fact.

PROPOSITION 1. The extreme points of $\mathcal{D}(\bar{r}, \bar{s})$ are those matrices in $\mathcal{D}(\bar{r}, \bar{s})$ which are uniquely determined in $\mathcal{D}(\bar{r}, \bar{s})$ by their graphs.

We recall that a point q_0 in a convex set Q is exposed if there exists a functional ξ such that $\xi(q_0) \ge \xi(q)$ for all $q \in Q \setminus \{q_0\}$.

PROPOSITION 2. The set of all extreme points of $\mathcal{D}(\bar{r}, \bar{s})$ coincides with the set of all exposed points of $\mathcal{D}(\bar{r}, \bar{s})$.

Proof. Obviously each exposed point is extreme. Now let $\alpha_i > 0$ be such that $\sum_i \alpha_i = 1$. Let $T = (t_{ij}) \in \text{ext } \mathcal{D}(\bar{r}, \bar{s})$. We define a function ξ on $\mathcal{D}(\bar{r}, \bar{s})$ by

$$\xi(P) = \sum_{i} \sum_{j} \left[2(\operatorname{sgn} t_{ij}) - 1 \right] \alpha_{i} p_{ij} / r_{i},$$

 $P=(p_{ij})\in \mathcal{D}(\bar{r},\bar{s}).$ It is easy to see that $\xi(P)\leq 1=\xi(T)$ for all $P\in \mathcal{D}(\bar{r},\bar{s}).$ Suppose that $\xi(P)=1$ for some $P\in \mathcal{D}(\bar{r},\bar{s}).$ Because $t_{ij}=0$ for fixed (i,j) implies that $p_{ij}=0$, the graph G(P) is a subgraph of G(T). By Proposition 1, P=T, i.e., T is exposed by ξ .

2. Extreme infinite doubly substochastic matrices

The extreme points of $\mathcal{D}(\leq \bar{r}, \leq \bar{s})$ were shown by Mirsky [14] to be the $n \times n$ subpermutation matrices (i.e., matrices of 0's and 1's with at most one 1 in each row and column) when $\bar{r} = \bar{s} = (1, 1, 1, ..., 1), n$ 1's.

We say that the *i*-th row sum (*j*-th column sum) of a matrix $P \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$ is unattained if $\sum_j p_{ij} < r_i(\sum_i p_{ij} < s_j)$. Brualdi [4] generalized Mirsky's result: A matrix $P \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$ is extreme if and only if the connected components of the graph G(P) are trees and at most one node of each tree corresponds to a row or a column of P whose sum in P is unattained [4, Theorem 2.2]

Let $\bar{r}=(r_1,r_2,\ldots)$, $\bar{s}=(s_1,s_2,\ldots)$ be arbitrary non-negative vectors. We say that the graph G(P), $P=(p_{ij})\in \mathscr{D}(\leq \bar{r},\leq \bar{s})$, has an infinite ε -path if there exist sequences $\{i_k\}_{k=1}^{\infty}, \{j_k\}_{k=1}^{\infty}$ with $i_k\neq i_e,\ j_k\neq j_e$ if $k\neq e$ such that

$$\inf\{p_{i_1,j_1},p_{i_2,j_1},p_{i_2,j_2},p_{i_3j_2},\dots\} \geq \varepsilon > 0.$$

Let $P \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$. We say that the connected component H of the graph G(P) is an extreme tree if H is a tree satisfying the following conditions:

- (*) H has no ε -bitree.
- (**) H has at most one node corresponding to a row or a column of P whose, sum in P is unattained.
- (***) If H has one node corresponding to a row or a column of P whose sum in P is unattained, then H has no infinite ε -path, or equivalently, if H has an infinite ε -path, then H has no node corresponding to a row or a column of P whose sum in P is unattained.

THEOREM 2. Let $P \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$. Then $P \in \text{ext } \mathcal{D}(\leq \bar{r}, \leq \bar{s})$ if and only if the connected components of G(P) are extreme trees.

Proof. Assume first that there exists a connected component H of the graph G(P) such that H is not an extreme tree. Obviously if there is a cycle in H then P is not extreme, so we may and do assume that H is a tree, but not an extreme tree.

If H does not satisfy (*), i.e., H has an ε -bitree, then by arguments similar to those in the proof of Lemma 1 we obtain $P \notin \text{ext } \mathcal{D}(\leq \bar{r}, \leq \bar{s})$.

Suppose that H does not satisfy (**), i.e. there exist two (or more) nodes each corresponding to a row or a column whose sum in P is unattained. Let z_1 , z_2 be two distinct nodes of H having this property. Then either these nodes are both row nodes, or both column nodes, or one of them is a row node and the other is a column node. We can and do assume that $z_1 = x_{i_0}$ is a row node and $z_2 = y_{i_0}$ is a column node. In the remaining cases the reasoning is

analogous. Since H is a tree and in a connected graph there is a path $x_{i_0}, y_{i_2}, y_{j_1}, \ldots, x_{i_k}, y_{j_0}$ between x_{i_0} and y_{j_0} in the graph H, the entries $p_{i_0,j_1}, p_{i_1,j_1}, \ldots, p_{i_k,j_0}$ of the matrix P are positive and $\sum_j p_{i_0,j} < r_{i_0}, \sum_i p_{i_j,0} < s_{j_0}$. Let

$$\varepsilon = \min \left\{ p_{i_0 j_1}, \ldots, p_{i_k j_0}, \left(r_{i_0} - \sum_j p_{i_0 j} \right), \left(s_j - \sum_i p_{i j_0} \right) \right\}.$$

We define $T=(t_{ij})$ by setting $t_{ij}=0$ except for $t_{i_0j_1}=t_{i_1j_2}=\cdots=\epsilon$ and $t_{i_1j_1}=t_{i_2j_2}=\cdots=-\epsilon$. Then $P\pm T\in \mathscr{D}(\leq \bar{r},\leq \bar{s})$, i.e., P is not extreme. Now suppose that H does not satisfy (***), i.e., H has a node corresponding to a row or a column of P whose sum in P is unattained and H has an infinite ϵ -path. Let x_{i_0} be a row node of H with this property (analogously we can consider a column node y_{j_0}). Let the infinite ϵ -path be determined by sequences $\{i_k\},\{j_k\}$. Since H is a tree and a connected graph we can and do assume that $i_0=i_1$. We define $T=(t_{ij})$ by

$$t_{ij} = \begin{cases} \varepsilon & \text{if } (i, j) = (i_k, j_k), \ k = 1, 2, \dots, \\ -\varepsilon & \text{if } (i, j) = (i_{k+1}, j_k), \ k = 1, 2, \dots, \\ 0 & \text{otherwise} \end{cases}$$

where $\varepsilon = \inf\{p_{i_1,j_1}, p_{i_2,j_2}, p_{i_2,j_2}, \dots, (r_{i_1} - \sum_j p_{i_1,j})\} > 0$. It is easy to see that $P \pm T \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$, so P is not extreme. Therefore if $P \in \text{ext } \mathcal{D}(\leq \bar{r}, \leq \bar{s})$, then the connected components of the graph G(P) are extreme trees.

Now let $T = (t_{ij})$ be such that $P \pm T \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$ and the connected components of the graph G(P) are extreme trees. The graph G(|T|) is a subgraph of G(P) and $|t_{ij}| \leq p_{ij}$ Let H be a connected component of the graph G(|T|). Since G(P) has no ε -bitree, the graph H has no ε -bitree.

We claim that at most one node z_0 of the graph H has the property $\sum_j t_{i_0,j} \neq 0$ if $z_0 = x_{i_0}$ or $\sum_i t_{ij_0} \neq 0$ if $z_0 = y_{j_0}$. Indeed, suppose that there exist two distinct nodes z_1, z_2 with this property. For example, suppose $z_1 = x_{i_1}$ is a row node and $z_2 = y_{j_2}$ is a column node (analogously we can consider the case when z_1, z_2 are both row nodes or both column nodes). Since $P \pm T \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$ we have

$$\sum_{j} p_{i_1 j} \pm \sum_{j} t_{i_1 j} \le r_{i_1}$$
 and $\sum_{i} p_{i j_2} \pm \sum_{i} t_{i j_2} \le s_{j_2}$,

so $\sum_{j} p_{i_1 j} < r_{i_1}$ and $\sum_{i} p_{i j_2} < s_{j_2}$. Clearly nodes x_{i_1}, y_{j_2} belong to the same connected component of the graph G(P), but this is impossible in view of (**). This contradiction proves our claim.

Now let us consider two possibilities:

(10) $\sum_k t_{kj} = \sum_k t_{ik} = 0$ for all i, j corresponding to nodes in the graph H. If some $t_{i_0,j_0} \neq 0$, then using arguments similar to those of the second part of

the proof of Theorem 1 we conclude that H has an ε -bitree. This contradiction proves that $t_{ij} = 0$ for all i, j.

 (2^0) There is exactly one node z_0 in the graph H corresponding to a non-zero row or column sum of the matrix (t_{ij}) . Assume, that $z_0 = x_{i_0}$ is a row node of H (analogously we can assume that $z_0 = y_{j_0}$ is a column node). We have $\sum_k t_{kj} = \sum_k t_{ik} = 0$ for all $i \neq i_0$ and j corresponding to nodes in the graph H and $\sum_k t_{i_0k} \neq 0$. Suppose $t_{i_0,j_0} \neq 0$. Now we define the sets

$$\begin{split} A &= \big\{ i_1 \neq i_0 \colon t_{i_1 j_0} \neq 0 \big\} \\ A_{i_1} &= \big\{ j_1 \neq j_0 \colon t_{i_1 j_1} \neq 0 \big\}, \quad i_1 \in A, \\ A_{i_1 j_1} &= \big\{ i_2 \neq i_1 \colon t_{i_2 j_1} \neq 0 \big\}, \quad i_1 \in A, \ j_1 \in A_{i_1}, \\ A_{i_1 j_1 i_2} &= \big\{ j_2 \neq j_1 \colon t_{i_2 j_2} \neq 0 \big\}, \quad i_1 \in A, \ j_1 \in A_{i_1}, \ i_2 \in A_{i_1 j_1}, \\ &\vdots \end{split}$$

In view of the conditions $\sum_k t_{ik} = \sum_k t_{kj} = 0$ the sets $A, A_{i_1}, A_{i_1 j_1}, A_{i_1 j_1 i_2}, \dots$ are non-empty.

We claim that each of these sets has exactly one element. Indeed, suppose that there are two distinct elements i', i'' in $A_{i_1, j_1 i_2 \cdots i_k j_k}$ for some k. Let $|t_{i''j_k}| \ge |t_{i''j_k}| > 0$. Let $\delta = -t_{i''j_k}/t_{i'j_k}$. We define $s = s_{ij}$ by

$$\begin{split} s_{i''j_{k+1}} &= t_{i''j_{k+1}}, \quad j_{k+1} \in A_{i_1, \dots, j_k i''}, \\ s_{i_{k+1}j_{k+1}} &= t_{i_{k+1}j_{k+1}}, \quad i_{k+1} \in A_{i_1, \dots, j_k i''j_{k+1}}, \ j_{k+1} \in A_{i_1, \dots, j_k i''}, \\ &\vdots \end{split}$$

and

$$\begin{split} s_{i'j_{k+1}} &= \delta t_{ij_{k+1}}, \quad j_{k+1} \in A_{i_1, \dots, j_k i''}, \\ s_{i_{k+1}j_{k+1}} &= \delta t_{i_{k+1}j_{k+1}}, \quad i_{k+1} \in A_{i_1, \dots, i'', j_{k+1}}, \ j_{k+1} \in A_{i_1, \dots, j_k, i'}. \\ &\vdots \end{split}$$

and for other i, j we set $s_{ij} = 0$.

We have $\sum_i s_{ij} = \sum_j s_{ij} = 0$. It is easy to see that the graph corresponding to the matrix |S| contains an ε -bitree, so the graph G(P) has also an ε -bitree. This contradicts the condition (*) and ends the proof of our claim.

Therefore $A=\{i_1\},\ A_{i_1}=\{j_1\},\ A_{i_1\,j_1}=\{i_2\},\ldots$. Thus $t_{i_0\,j_0}-t_{i_1\,j_0}=t_{i_1\,j_1}=-t_{i_2\,j_1}=\cdots$. Since G(P) has no infinite ε -path (condition (***)) and $|t_{ij}|\leq p_{ij}$ we obtain $(t_{i_0\,j_0}|\leq\inf\{p_{i_0\,j_0},p_{i_1\,j_0},\ldots\}=0$. Thus $t_{ij}=0$ for all i,j. By (1^0) and (2^0) it follows that $P\pm T\in \mathscr{D}(\leq\bar{r},\leq\bar{s})$ implies T=0, i.e., $P\in \mathrm{ext}\ \mathscr{D}(\leq\bar{r},\leq\bar{s})$, and the proof of the theorem is completed.

COROLLARY 2. Let $\sum_i r_i < \infty$ or $\sum_j s_j < \infty$ and let $P \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$. Then $P \in \text{ext } \mathcal{D}(\leq \bar{r}, \leq \bar{s})$ if and only if the connected components of the graph G(P) are trees and at most one node of each of those trees corresponds to a row or a column of P whose sum in P is unattained.

Proof. $\sum_{(i,j)} p_{ij} \leq \sum_i r_i$ and $\sum_{(i,j)} p_{ij} \leq \sum_j s_j$. Thus $\sum_{(i,j)} p_{ij} < \infty$. In such a case P has no ε -bitree. P has no infinite ε -path, because $\sum_{(i,j)} p_{ij} \geq \sum_k p_{i_k j_k} = \varepsilon + \varepsilon + \varepsilon + \varepsilon \cdots = \infty$, where $\{i_k\}, \{j_k\}$ are sequences from the definition of an infinite ε -path. Now, we use Theorem 2 and the proof is complete.

3. The facial structure in the finite-dimensional case

Let $\bar{r} = (r_1, r_2, \dots, r_m)$ and $\bar{s} = (s_1, s_2, \dots, s_n)$. We define the dimension of the face generated by P in $\mathcal{D}(\leq \bar{r}, \leq \bar{s})$ by

$$\dim_{\mathscr{D}(\leq r, \leq s)} = \dim \inf \{ R \colon P \pm R \in \mathscr{D}(\bar{r}, \bar{s}) \}.$$

Obviously P is extreme if and only if dimension of the face generated by P is equal to 0. Brualdi and Gibson [5] have given the dimension of the face of $\mathcal{D}(\bar{r}, \bar{s})$ (see also [8], Property 2),

$$\dim_{\mathcal{D}(r,s)} P = \sigma(P) - n - m + k_0$$

where $P=(p_{ij}),\ \sigma(P)=\sum_{i=1}^m\sum_{j=1}^n\mathrm{sign}\ p_{ij}$ and k_0 denotes the number of connected components of the graph G(P). In this section we present analogous result for $\mathscr{D}(\leq r, \leq s)$. We say that a matrix P is elementary if the graph G(P) is connected. Let the graph G(P) have k_0 connected components. Then we can represent P as the direct sum of k_0 elementary matrices P_k . In such case $\dim_{\mathscr{D}(\leq \bar{r}, \leq \bar{s})} P = \sum_{k=1}^{k_0} \dim_{\mathscr{D}(\leq \bar{r}, \leq \bar{s})} P_k$.

PROPOSITION 3. Let $\bar{r} = (r_1, r_2, ..., r_m)$ and $\bar{s} = (s_1, s_2, ..., s_n)$ $(r_i > 0, i \le m, s_j > 0, j \le n, m$ and n finite). For an elementary matrix $P = (p_{ij}) \in \mathcal{D}(\le \bar{r}, \le \bar{s})$, if all nodes of G(P) correspond to rows and columns whose sum in P is attained $(P \in \mathcal{D}(\bar{r}, \bar{s}))$,

$$\dim_{\mathscr{D}(\leq \bar{r}, \leq \bar{s})} = \sigma(P) - m - n + 1.$$

Otherwise

$$\dim_{\mathscr{D}(\leq \bar{r}, \leq \bar{s})} = \sigma(P) - m_0 - n_0$$

where $m_0 = \text{card}\{i: \sum_{i=1}^m p_{ii} = r_i\}, n_0 = \text{card}\{j: \sum_{i=1}^m p_{ii} = s_i\}.$

Proof. We define functionals

$$\varphi_i((t_{ij})) = \sum_{j=1}^n t_{ij}, \quad i \leq m,$$

$$\psi_j((t_{ij})) = \sum_{i=1}^m t_{ij}, \quad j \leq n.$$

In [8, pp. 685-686] it is proved that

$$\dim \lim \left(\left\{\varphi_i\colon i\leq m\right\}\cup \left\{\psi_j\colon j\leq n\right\}\right)=m+n-1.$$

Moreover we have $\sum_{i=1}^{m} \varphi_i = \sum_{j=1}^{n} \psi_j$. Let

$$F = \{ \varphi_i \colon i \in A \} \cup \{ \psi_i \colon j \in B \}$$

where

$$A = \left\{i \colon \sum_{j=1}^{n} p_{ij} = r_i\right\}, \quad B = \left\{j \colon \sum_{i=1}^{m} p_{ij} = s_j\right\}.$$

(card $A = m_0$, card $B = n_0$). Thus

$$\dim \lim F = \begin{cases} n+m-1, & \text{if } m+n=m_0+n_0, \\ m_0+n_0, & \text{otherwise.} \end{cases}$$

We have

$$\dim_{\mathscr{D}(\leq \bar{r}, \leq \bar{s})} P = \dim \left\{ T \in X : \varphi_i(T) = \psi_j(T) = 0, \ i \in A, \ j \in B \right\},\,$$

where

$$X = \left\{ T = \left(t_{ii} \right) : t_{ii} = 0 \text{ for all } (i, j) \text{ such that } p_{ii} = 0 \right\}$$

(dim $X = \sigma(P) = mn - z$, z denotes the number of zero entries of P). Hence $\dim_{\mathscr{D}(\leq \bar{r}, \leq \bar{s})} P$ is equal to dim X minus the number of linearly independent in the set F.

THEOREM 3. Let $\bar{r} = (r_1, r_2, \dots, r_m)$ and $\bar{s} = (s_1, s_2, \dots, s_n)$ (n, m are finite). For $P = (p_{ij}) \in \mathcal{D}(\leq \bar{r}, \leq \bar{s})$ we have

$$\dim_{\mathscr{D}(\leq \bar{r}, \leq \bar{s})} P = \sigma(P) - m_0 - n_0 + k_0$$

where

$$\sigma(P) = \sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{sign} p_{ij},$$

$$m_0 = \operatorname{card} \left\{ i \colon \sum_{j=1}^{n} p_{ij} = r_i > 0 \right\}, \quad n_0 = \operatorname{card} \left\{ j \colon \sum_{i=1}^{m} p_{ij} = s_j > 0 \right\},$$

 k_0 is the number of connected components of the graph G(P) all of whose nodes correspond to rows or columns of P whose sum in P is attained.

REFERENCES

- W. BARTOSZEK, Geometric properties of stochastic operators, Master Thesis, Technical University, Wrocław, 1979 (in Polish).
- G.D. Birkhoff, Tres obsercaviones sobre el algebra lineal, Univ. Nac. Tucumán Rev. Ser. A, vol. 5 (1946), pp. 147-151;
- 3. R.A. Brualdi, Convex sets of non-negative matrices, Canadian J. Math., vol. 20 (1968), pp. 144-157.
- 4. ______, Combinatorical properties of symmetric non-negative matrices, Colloquio Internazionale sulle Theorie Combinatorie Roma, 3-15 settembre 1973, Tomo II, Roma, Accademia Nazionale Dei Lincei, 1976, pp. 99-120;
- 5. R.A. BRUALDI and P.M. GIBSON, Convex polyhedra of doubly stochastic matrices I: Applications of the permanent function, J. Combinatorial Theory, vol. 22 (1977), pp. 194–230.
- 6. J.L. DENNY, The support of discrete measures with given marginals, Michigan Math. J., vol. 27 (1980), pp. 59-64.
- R.G. DOUGLAS, On extremal measures and subspace density, Michigan Math. J., vol. 11 (1964), pp. 243-246.
- R. GRZĄŚLEWICZ, Extreme positive contractions on finite dimensional l^p-spaces, Canadian J. Math., vol. 37 (1985), pp. 682-699.
- 9. J.R. ISBEL, Infinite doubly stochastic matrices, Canadian Math. Bull., vol. 5 (1962), pp. 1-4.
- W.B. JURKAT and H.J. RYSER, Term ranks and permanents of non-negative matrices, J. Algebra, vol. 5 (1967), pp. 342-357.
- M.G. KENDAL, On infinite doubly stochastic matrices and Birkhoff's problem 111, J. London Math. Soc., vol. 35 (1960), pp. 81–84.
- G. LETAC, Reprèsentation des measures de probabilité sur le produit de deux espaces dènomberables, de marges donnèes, Illinois J. Math., vol. 10 (1966), pp. 497-507.
- J. LINDENSTRAUSS, A remark on extreme doubly stochastic matrix measures, Amer. Math. Monthly, vol. 72 (1965), pp. 379-382.
- 14. L. MIRSKY, On a convex set of matrices, Arch. math., vol. 10 (1959), pp. 88-92.
- Results and problems in the theory of doubly stochastic matrices, Z. Wahrscheinlichkeitstheorie, vol. 1 (1963), pp. 319-334.
- H.G. MUKERJEE, Supports of extremal measures with given marginals, Illinois J. Math., vol. 29 (1985), pp. 248-260.

TECHNICAL UNIVERSITY OF WROCLAW WROCLAW, POLAND.