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ON EXTREME INFINITE DOUBLY
STOCHASTIC MATRICES
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RYSZARD GRZ.LEWICZ

Introduction

Let (rt, r2,... ) and g (st, $2,’’" ) be sequences of non-negative reals.
A matrix P--(Pi), i, j 1,2,..., is called doubly substochastic with re-
spect to (, g) if pi > 0, Y’7__tp < r and E__lp < s for all i, j 1,2,
We denote by (< , < g) the set of all doubly substochastic matrices with
respect to (, g).

Let ._lr .j=lSj. We admit the case Y’.i_.lr Y’7__sj oo. We say that a
matrix P (pj.) is doubly stochastic with respect to (, g) if p > 0,

r and E,._tpj. sj, i, j 1,2, We denote by (, g) the set of all
matrices which are doubly stochastic with respect to (, g). The sets (,
and (< , < g) are convex.

Let ext (, g) (ext (< , < g)) denote the set of extreme points of
(, g) (( < , < g)). It is not difficult to.see that if

Pi rnin ri E Pik
k-1

then, P (pj.) (?, g) c (< ?, < g), hence (, g) and (< , < g)
are non-empty.

In 1946 Birkhoff [2] proved that if

1 for _< n n Nr s 0 for > n,

then the set ext (, g) coincides with the set of all permutation matrices.
Kendal [11] and Isbel [9] generalized this result to the case of infinite doubly
stochastic matrices (i.e., s r 1, i--" 1,2,...). Other characterization of
extreme points was discovered independently by Douglas [7] and by
Lindenstrauss [13]. We see that in the above mentioned cases extremality of
doubly stochastic matrices (measures with discrete supports) depends on their
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supports (graphs). Generally it is not true. Let pxx Pi, i+l P+, 1/2,
> 1, and Pij 0, otherwise. And let qll 1, qi, i+l qi+l,i l/i, > 1,

and qij 0, otherwise. The matrix P (pj) (Q (q)) is doubly stochastic
with respect to (P, g) where r s 1 (r s 1/i + 1/(i + 1)). Obviously
supports of P and Q are the same. But is to difficult to check that P is not
extreme and Q is extreme. Therefore, in the general case, to characterize
extreme doubly stochastic matrix measures with discrete coutable supports in
terms of their supports (graphs) we need more subtle description, e.g., e-sum-
ming families, e-bitrees (see Section 1 for the definitions).

Mirsky [14] showed that ext (< , < g) coincides with the set of subper-
mutation matrices for g with

1 fori_<n N.ri=si= 0 fori>n,
n

This result was generalized to the finite-dimensional case by Bmaldi [4] (i.e.,
when (r, r2,..., r,), (s, s2,..., Sin), n, m N, are arbitrary non-
negative vectors).
The purpose of this paper is to describe ext (, g) (Section 1) and

ext ( _< P, _< g) (Section 2) for arbitrary infinite non-negative vectors , g.
With each matrix P (Pii) (?, g) or (< , < g) is associated a graph

G(P) defined by the following formula. To the i-th row there corresponds a
(row) node x (i--1,2,...) and to the j-th column there corresponds a
(column) node yi. There is an edge joining x and yy if and only if Po > 0;
there are to be no other edges. Therefore to each edge xiy in G(P) there
corresponds a positive entry Pii. Note that the sum of all entries Pi which
correspond to edges joined with fixed node xi(yl) is equal ri(sj). For a matrix

P ((r, r2,..., rm)(S,S2,..., s,)),
P is extreme if and only if the connected components of G(P) are trees, i.e.,
the graph G(P) has no cycle (for example, see [4]). Note that this result was
extended by Bartoszek [1] to the case of infinite sequences { r ), (s) such that
Y’-ilr E=s < c (cf. Corollary 1). For other expositions of this result in
finite dimensional case see [10], [3] and [15]. The problem of description of
extreme doubly stochastic measures with the discrete coutable supports (or
equivalently infinite doubly stochastic matrices with given marginals) was also
considered by Letac [12], Denny [6] and Mukerjee [16].

1. Extreme infinite doubly stochastic matrices

A set {ekx, k kn: n N} of non-negative numbers is said to be an
e-summing family if

E _,klk knkn+ ,klk2 kn
kn+ ’Akx kn

nN
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and

k A

where A, Akl (k A), Akxk2 (k A, k2 Ak),... are disjoint subsets
of N.
We say that the graph G(P), P (, g), has an e-bitree, if there exists a

subgraph H of the graph G(P) which for certain e-summing families, .) satisfies the following conditions"
(at) The graph H includes an edge XoYo with 0 < e Poo"
(a2) The graph H includes edges YoX, i A with 0 < e Po and

edges xoy, j A’ with 0 < ej _< Po and io A, Jo A’. (Obviously

(a3) the graph H includes edges xiy:x, it A, j A with 0 < e:x s
Piajx and edges y:xx, jt A’, i Ajx with 0 < e)’x -< Pa :x and A’ Aj, A A ’_(Obviously_ E,a,e’ x’ e,,x E, ajxe’ax a)"

(a4) The graph H includes edges yjxx, j A, t2 Aj, it A with
0 < ej2 p2j and edges xxyj2, it Ax, J2 A, Jx A’ with 0 < e2
< Pa y and the sets A A< (jt A’), Aix (i A Jx Aix) are disjot and

Jl Jl
the sets A’, Agx (i A), A (Jl A’, At) are disjoint.

The graph H includes only edges described in (at), (a 2), (a 3),-.- (Fig. 1).
If in a graph G(P) there exists a subgraph H which is an e-bitree, it is not

difficult to see that there exists also an e-bitree H such that every node of H1
is joined with only a finite number of edges and Ht is a subgraph of H.

FIG. 1.
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LV.MM 1. If P (, g) has an e-bitree, then P ext (?, g).

Proof. Let H be a subgraph of G(P) such that H is an e-bitree. We define
a matrix T (tij) (using the notation from the definition of an e-bitree):

(bx) ioJo=e>O"
(b2) tiljo -eix - /I; tioj -ea Jx A’ (io q A, Jo A’)

e: A’, (The sets(b3) tixj eixjx A, Jx Aix tixj jix Jx ix Ajx.
(i0} A A: (Jx A’) are disjoint and the sets {j0} A’,A (iA) are

J1
disjoint.

(b4) ti2j -eij,_i, A, Jx All i9_ Aixj,_; tixj -e’j’xij,, Jl A’,
ix Aj,. J2 " hjxi: (The sets { 0 }, A, Aj’ (Jx A’), Aix j (ix A, Jx Ai)
are disjoint and the sets { Jo }, A’, Aix (i A), A;xix (Jx A’, ix A;x) are
disjoint.

If an edge xiyj is not in the graph H, then we let tij 0. It is easy to see
that Eitij Eyty 0 and p > Ityl. Thus P +/- T (, g), so P is not
extreme.

TI-IEORM 1. Let P (, g). Then P ext (, g) if and only if the graph
G(P) has no cycle and G(P) has no e-bitree.

Proof Suppose that the graph G(P) has a cycle. Let the sequence
xi, yjl, x, yj2,..., xn, YJn, x describe this cycle. We may and do assume that
our cycle is simple. We have Pixie’ Pij, Pi2jx’’’’’ Pij, Pixj > 0. Let

Obviously e > 0. Let us define a matrix T (tj) by

tij

if (i, j) (ikljk), k 1,2,..., n,

if (i, j) (ix, j,)
if (i, j) A), k-- 1,2,..., n 1,
otherwise.

It is easy to see that Pij -I- tij 0 for all i, j 1, 2,... and ,itij ,jtij O.
Thus P + T (, g).

Suppose that the graph G(P) has an e-bitree. By Lemma 1, P is not
extreme. Therefore if P ext (, g), then the graph G(P) has no cycle and
no e-bitree.
Now suppose that P (, g) is not extreme. Then there exists a non-zero

matrix T= (tj) with P + T (, g). Obviously It:l-< Ps for all i, j
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1, 2,... Moreover, there exists (io, Jo) with too : 0. It is also easy to see that

Et Ej.t 0. Let ITI (It,ll). A graph G(ITI) is a subgraph of G(P). If
G(ITI) has a cycle, then G(P) has also a cycle. Now assume that G(ITI) has
no cycle. It is sufficient to show that there exist e-summing families

,} and a subgraph H of the graph G(] T]) which satisfy
the conditions (at),(a2),(aa), Let toj. : 0. Let e Itoo I. Now we
define a graph H as follows:

(c1) H includes the edge XioYo.
(c2) Let A (i : o" tj. : 0) and A’ (j :/: Jo: toj :, 0). H includes

edges YoXa, A, and edges XoY, j A’. We choose positive numbers
e( A, Jl A’ in such way that Eil.A,il e, Ejlh,el e and8i1 jl

0 < e _< Ito I, 0 < e<j _< Ito I. We are able to choose ex, ejx by the above
formula because

ta Jo
q- to Jo 0 and Y’ lio Jx + lio Jo 0.

iA Jt A’

H includes only edges described in (cl), (c2), Note that in the above
construction of the graph H the sets ( io }, A, A: (jt A’), are disjointJ1
and the sets (Jo), A, Ax (i A),... are disjoint, since G(I TI) has no cycle.
Therefore the graph H (H is a subgraph of G(ITI)) is an e-bitree. Since

Itil <- P,y i, j 1,2,..., the graph H is an e-bitree in the graph G(P). This
completes the proof.

Suppose that the graph G(P), P (?, g), has an e-bitree. Then E,p >

Eekk k
, i.e., Er Esj. Ep o. Therefore we can write the

following corollary. A similar result was presented by Bartoszek in [1] (cf. [12],
[61, [161).

COROLLARY 1. Let F=lri Fj% lSj < and let P .(, g). Then P
ext .(, g) if and only if the connected components of the graph G(P) are trees.

Example 1. Let

(19 + a,2,1,7,5,11,2,7,5,6,6,6,...)

and

g (5 + a,3,3,9,7,8,9,10,2,6,6,6,...).
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The matrix

2 3

6 8 5

3 5

0

1 2
2
7

3
3 3

3 3
3 3

0

has graph G(Pa) given by Fig. 2. If we let a 0, then in view of Theorem 1,
Pa is extreme. If we let a > 0 then the graph G(Pa) has a cycle, so Pa is not an
extreme doubly stochastic matrix.

Example 2. Let

and

The matrix

2
1

P=

0

1_
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FiG. 2.

has graph G(P) given by Fig. 3. Note that Fig. 3a and Fig. 3b presents
subgraphs of the graph G(P) which are e-bitree with e equal to and 1/4,
respectively.

Example 3. Let a doubly stochastic matrix P have the graph G(P) given
by Fig. 4. It is easy to see that G(P) has no cycle and G(P) has no e-bitree.
Thus P is extreme.

If for P, P’ (, g), the condition that G(P’) is a subgraph of G(P)
implies P P’, then we say that a matrix P (?, g) is uniquely determined
in (, g) by its graph. The elements of ext (, g) in the finite-dimensional
case can also be characterized as those matrices in (?, g) which are uniquely
determined in (, g) by their graph (see Brualdi [4], Theorem 2.1.). This
result can be extended. Indeed, if P ext (?, g) then P (P1 + P2)/2,
P1, P2 (?, g), P = P2- Obviously, G(P) is a subgraph of G(P), so P is
not uniquely determined in (, g) by its graph. Now assume that P, P’
(?, g) are distinct such that the graph G(P’) is a subgraph of G(P). Put
T P P’..Obviously Y’.itij Ejtij 0 and toJo 4= 0 for some (io, Jo). If
G(ITI) has a cycle then G(P) has also a cycle and P ext (, g). Suppose
now that IT has no cycle. We may and do assume that ioyo > 0. Define the
family of sets

A (i 4= io: tijo < 0},
A’= {j 4=jo: tioj < 0},

All { j 4= J0: til j > 0},
A: {i 4= io: > 0},j tij

Aiaj2 { 4= 1" tij < 0},

A1i2 (J 4= Jx: ti2j < 0},



536 RYSZARD GRZLEWICZ

FIG. 3.
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FIG. 4.

It is not difficult to see that using the sets A, A’, Aix, AI, All j2,.., we can find
an e-bitree in G(P) (with e tioJo ), i.e., P ext (P, g). Thus we proved the
following fact.

PROPOSITION 1. The extreme points of (, ) are those matrices in (, g)
which are uniquely determined in (, ) by their graphs.

We recall that a point q0 in a convex set Q is exposed if there exists a
functional such that (q0) > (q) for all q Q \ (q0}-

PROPOSITION 2. The set of all extreme points of (, g) coincides with the
set of all exposed points of (, ).

Proof
that F.ia
by

Obviously each exposed point is extreme. Now let a > 0 be such
1. Let T (tj) ext (, g). We define a function on (, g)

(P) E E [2(sgn tij ) 1] aiPij/ri,
j

P (Pij) (?, g)- It is easy to see that (P)< 1 (T) for all P
(, g). Suppose that (P)= 1 for some P (, g). Because ti 0 for
fixed (i, j) implies that piy 0, the graph G(P) is a subgraph of G(T). By
Proposition 1, P T, i.e., T is exposed by .
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2. Extreme infinite doubly substochastic matrices

The extreme points of ( , g) were shown by Mirsky [14] to be the
n x n subpermutation matrices (i.e., matrices of O’s and l’s with at most one 1
in each row and column) when g (1,1,1,..., 1), n l’s.
We say that the i-th row sum (j-th column sum) of a matrix P (< ?,

< g) is unattained if Y’-jPij < ri(Y’.pj < s). Brualdi [4] generalized Mirsky’s
result" A matrix P (< , < g) is extreme if and only if the connected
components of the graph G(P) are trees and at most one node of each tree
corresponds to a row or a column of P whose sum in P is unattained [4,
Theorem 2.2]

Let (r1, r_,... ), g (sl, s2,... ) be arbitrary non-negative vectors. We
say that the graph G(P), P (p) (< , < g), has an infinite e-path if
there exist sequences ( k )o 1, ( Jk }-- with k =/= e, Jk =/= Je if k =/= e such that

inf( Pxx, P, P2, P3s,"" } > e > 0.

Let P (< F, < g). We say that the connected component H of the
graph G(P) is an extreme tree if H is a tree satisfying the following
conditions:

(,) H has no e-bitree.
(, ,) H has at most one node corresponding to a row or a column of P

whose,sum in P is unattained.
( ) If H has one node corresponding to a row or a column of P whose

sum in P is unattained, then H has no infinite e-path, or equivalently, if H
has an infinite e-path, then H has no node corresponding to a row or a
column of P whose sum in P is unattained.

TI-IEOREM 2. Let P (< , < g). Then P ext (< , < g) if and only
if the connected components of G(P) are extreme trees.

Proof Assume first that there exists a connected component H of the
graph G(P) such that H is not an extreme tree. Obviously if there is a cycle in
H then P is not extreme, so we may and do assume that H is a tree, but not
an extreme tree.

If H does not satisfy (,), i.e., H has an e-bitree, then by arguments similar
to those in the proof of Lemma I we obtain P ext (< , < g).

Suppose that H does not satisfy (, ,), i.e. there exist two (or more) nodes
each corresponding to a row or a column whose sum in P is unattained. Let
z1, z2 be two distinct nodes of H having this property. Then either these nodes
are both row nodes, or both column nodes, or one of them is a row node and
the other is a column node. We can and do assume that z x0 is a row node
and z2 YJ0 is a column node. In the remaining cases the reasoning is
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analogous. Since H is a tree and in a connected graph there is a path
Xio, Yi2, YJl,"’, xk, YJo between Xio and Yo in the graph H, the entries

Po, Px,’", Pdo of the matrix P are positive and 5".p0 < ro, Ep < s.o.
Let

We define T (tij) by setting tj 0 except for tojl tj2 e and
tixjx t2 e. Then P + T (< ?, < g), i.e., P is not extreme.
Now suppose that H does not satisfy ( ), i.e., H has a node correspond-

ing to a row or a column of P whose sum in P is unattained and H has an
infinite e-path. Let Xo be a row node of H with this property (analogously we
can consider a column node Y0)" Let the infinite e-path be determined by
sequences { ik ), (Jk }" Since H is a tree and a connected graph we can and do
assume that 0 x. We define T (tij) by

tij --e

0

if (i, j) (i, Jk), k 1,2,...,
if (i, j) (ik+ , Jk), k 1,2,...,
otherwise

where e inf( plj, p2j:, p:j2,...,(rx Ejpx)} > 0. It is easy to see that
P + T (< , < g), so P is not extreme. Therefore if P ext ( < ?, < g),
then the connected components of the graph G(P) are extreme trees.
Now let T (tj) be such that P +__ T (< , < g) and the connected

components of the graph G(P) are extreme trees. The graph G(ITI) is a
subgraph of G(P) and Itijl < pj Let H be a connected component of the
graph G(ITI). Since G(P) has no e-bitree, the graph H has no e-bitree.
We claim that at most one node z0 of the graph H has the property

,jtio j 0 if z0 x0 or Etj 0 if z0 YJo" Indeed, suppose that there exist
two distinct nodes z1, z2 with this property. For example, suppose zl Xl is a
row node and z2 y is a column node (analogously we can consider the case
when z, z2 are both row nodes or both column nodes). Since P + T (<, < g) we have

p, + t, <_ rx and p, + t,j <_ s2,
j j

so Epix < rx and Ep < sj:. Clearly nodes x, y2 belong to the same
connected component of the graph G(P), but this is impossible in view of
(. ). This contradiction proves our claim.
Now let us consider two possibilities:
(1) Y’.klkj .ktik 0 for all i, j corresponding to nodes in the graph H.

If some io Jo * O, then using arguments similar to those of the second part of
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the proof of Theorem 1 we conclude that H has an e-bitree. This contradic-
tion proves that o. 0 for all i, j.

(2) There is exactly one node zo in the graph H corresponding to a
non-zero row or column sum of the matrix (tij). Assume, that zo Xio is a
row node of H (analogously we can assume that z0 YJo is a column node).
We have Ektkj Ektik 0 for all :/: o and j corresponding to nodes in the
graph H and Ektok :/: O. Suppose tioo :/: 0. Now we define the sets

A (i :# 0" t. , 0}

Ai {Jl :#J0: tixj =/= 0}, A,

Aij {i2 :# i1: ti2j 0}, A, Jl Ai1,

AIj2 {J2 :/:Jl: ti,_j2 0}, A, jl aix 2 Ailjx

In view of the conditions ktik ,ktkj 0 the sets A, Aix, Aijx Aijxi2,...
are non-empty.
We claim that each of these sets has exactly one element. Indeed, suppose

that there are two distinct elements i’, i" in Aiji2 "’ijk for some k. Let
[t,jk > [ti,,jk[ > 0. Let --ti,,jk/ti,jk. We define s sij by

=t Jc+l ASi"jk+l i"jl+l jli"

Sik+lJk+ tik+tJk+ 1’ ik+l hi jl(i"j+l, Jk+l All jki’’’

and

Si’j, 6tij,+, Jk+l Ai,, ...,jki",

6ti+ ai, .,i", Jk+l Ai1, .,jk, i"Sik+lJk+l lJk+ 1’ ik+l Jk+l’

and for other i, j we set sj O.
We have Esij Ejsj 0. It is easy to see that the graph corresponding to

the matrix IS] contains an e-bitree, so the graph G(P) has also an e-bitree.
This contradicts the condition (,) and ends the proof of our claim.

Therefore A (il}, Ai {Jl}, Aixj {i9_}, Thus tioJo- tijo--- tiljx
-tiy Since G(P) has no infinite e-path (condition (...)) and

Itjl < py we obtain (toyo < inf{Poo, Pixjo’’’" } "---O. Thus tiy 0 for all
i, j. By (1) and (2) it follows that P + T E (< ?, < g) implies T 0, i.e.,
P E ext ( < , < g), and the proof of the theorem is completed.
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COROLLARY 2. Let Y’.iri < o or Ejsj < o and let P ( <_ , < g). Then
P ext ( < , _< g) if and only if the connected components of the graph G(P)
are trees and at most one node of each of those trees corresponds to a row or a
column of P whose sum in P is unattained.

Proof. E(,)p _< Er; and E(,)pj. < Es. Thus E(,j.)pg < o. In such a
case P has no e-bitree. P has no infinite e-path, because F(i,j.)p;j >_ F,pi

e + e + e + e o, where (ik ), (jk } are sequences from the defini-
tion of an infinite e-path. Now, we use Theorem 2 and the proof is complete.

3. The facial structure in the finite-dimensional case

Let ? (r1, r2,..., rm) and g (sl, $2,... Sn), We define the dimension of
the face generated by P in ( < ?, < g) by

dim4( _< r, <s) dim lin ( R" P +/- R (?, g) }.

Obviously P is extreme if and only if dimension of the face generated by P is
equal to 0. Brualdi and Gibson [5] have given the dimension of the face of
(, ) (see also [8], Property 2),

dim(r,s)P o(P) n m + ko

where P (p/j), o(P)= E..E=lsign Pij and ko denotes the number of
connected components of the graph G(P). In this section we present analo-
gous result for (< r, < s). We say that a matrix P is elementary if the
graph G(P) is connected. Let the graph G(P) have ko connected components.
Then we can represent P as the direct sum of ko elementary matrices Pk- In
such case dim( _<, _<)P E%ldim(, )Pk.

PROPOSITION 3. Let (r, r2,..., r,,) and (s, $2,... Sn) (!" > O,
< m, sj > O, j < n, rn and n finite). For an elementary matrix P (Pij)
( < , < ), if all nodes of G(P) correspond to rows and columns whose sum in
is attained (P (, )),

dim(, )= o(P) m- n + 1.

Otherwise

dim(, )= o(P) mo n o

where mo card{ i: Y’7m_ Pij ri }, no card(j: Y’.’_ iPij sj }.
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Proof. We define functionals

n

j=l

i<_m,

m

j((tij)) ., tij, j < n.
i=1

In [8, pp. 685-686] it is proved that

dimlin({qi’i<m} u {j" j<n}) =m+n- 1.

Moreover we have E’=1% E=lj. Let

F= {qi" iA} t3 {6j" jB}

where

(m }B= j" Pij sj
i=1

(card A m o, card B n o)- Thus

dimlinF= [n+m-l’
mo + n o,

if m + n mo + no,
otherwise.

We have

dim_<, _<)P dim{ T X: pi(T) q,,j(T) O, A, j B },

where

X ( T (t j)" ij 0 for all (i, j) such that Pij 0}

(dim X o(P) mn z, z denotes the number of zero entries of P). Hence
dim< _< , _< ) P is equal to dim X minus the number of linearly independent
in the set F.

THEOREM 3. Let ? (r1, r2,..., rm) and g (Sl, sg_,..., s,) (n, m are
finite). For P (Pij) 0@( < , < g) we have

dim<, )P o(P) mo n o + ko
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where

o(P) signpi,
i=1 j=l

no =card j: Piy= sy > O
i-1

ko is the number of connected components of the graph G(P) all of whose nodes
correspond to rows or columns of P whose sum in P is attained.
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