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ON EXTREME INFINITE DOUBLY
STOCHASTIC MATRICES
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Introduction

Let 7 = (r, ry,...) and § = (54, 5,,...) be sequences of non-negative reals.
A matrix P=(p;), i,j=12,..., is called doubly substochastic with re-
spect to (7, §) if p;; = 0, L%, p;; <r,and L2, p,; < s; forall i, j=1,2,....
We denote by 9(< 7, < §) the set of all doubly substochastic matrices with
respect to (7, §).

Let X2 ,7, = L% ;5;. We admit the case 2,7, = %2 ;5; = 0. We say that a
matrix P = (p,;) is doubly stochastic with respect to (7, 5) if p;; 2 0, X5, p;;
=r,and X2,p,; =5, i, j=12,.... We denote by 2(7, 5) the set of all
matrices which are doubly stochastic with respect to (7, §). The sets D(7, §)
and 2(< r, < §) are convex.

Let ext 2(7,5) (ext 2(< r, <§)) denote the set of extreme points of
D(7, 5) (D(< 1, <¥)). It is not difficult to see that if

j—=1 i—1
pu=min (ri— Zplk), (s.l.. Zpkj))
k=1 k=1

then, P = (p,;;) € 2(r,5) CD(< 7, <5), hence 9(7,5) and I(<7, <3)
are non-empty.
In 1946 Birkhoff [2] proved that if

n=28=

1 fori<n
{0 fori>n, nenN
then the set ext 2(7, 5) coincides with the set of all permutation matrices.
Kendal [11] and Isbel [9] generalized this result to the case of infinite doubly
stochastic matrices (i.e., s;,=r,=1, i =1,2,...). Other characterization of
extreme points was discovered independently by Douglas [7] and by
Lindenstrauss [13]. We see that in the above mentioned cases extremality of
doubly stochastic matrices (measures with discrete supports) depends on their
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530 RYSZARD GRZASLEWICZ

supports (graphs). Generally it is not true. Let p;; = p; ;.1 = piyq,;, = 1/2,
i>1, and p,; =0, otherwise. And let g;; =1, ¢; ;.1 =¢;11,;,=1/i, i =1,
and g;; = 0, otherwise. The matrix P = (p,;) (Q = (g;,)) is doubly stochastic
with respect to (7, 5) where r,= 5, = 1 (r,=s;, = 1/i + 1/(i + 1)). Obviously
supports of P and Q are the same. But is to difficult to check that P is not
extreme and Q is extreme. Therefore, in the general case, to characterize
extreme doubly stochastic matrix measures with discrete coutable supports in
terms of their supports (graphs) we need more subtle description, e.g., e-sum-
ming families, e-bitrees (see Section 1 for the definitions).

Mirsky [14] showed that ext (< 7, < §) coincides with the set of subper-
mutation matrices for 7 = § with

ri=si={1 fori<n N

0 fori>n,

This result was generalized to the finite-dimensional case by Brualdi [4] (i.e,,
when 7= (r,r,..., 1), §=(8,83...,5,), n,m€E N, are arbitrary non-
negative vectors).

The purpose of this paper is to describe ext 2(r, 5) (Section 1) and
ext 9(< F, < §) (Section 2) for arbitrary infinite non-negative vectors 7, 5.

With each matrix P = (p,;) € 2(7, 5) or 2(< F, < §) is associated a graph
G(P) defined by the following formula. To the i-th row there corresponds a
(row) node x; (i =1,2,...) and to the j-th column there corresponds a
(column) node y;. There is an edge joining x; and y; if and only if p;; > 0;
there are to be no other edges. Therefore to each edge x;y; in G(P) there
corresponds a positive entry p,;. Note that the sum of all entries p,; which
correspond to edges joined with fixed node x;(y;) is equal r,(s;). For a matrix

PeD((ry, 1y s 1)(815 5255 5,)),

P is extreme if and only if the connected components of G(P) are trees, i.e.,
the graph G(P) has no cycle (for example, see [4]). Note that this result was
extended by Bartoszek [1] to the case of infinite sequences {7;}, {s;} such that
L2 ;= X34s; < oo (cf. Corollary 1). For other expositions of this result in
finite dimensional case see [10], [3] and [15]. The problem of description of
extreme doubly stochastic measures with the discrete coutable supports (or
equivalently infinite doubly stochastic matrices with given marginals) was also
considered by Letac [12], Denny [6] and Mukerjee [16].

1. Extreme infinite doubly stochastic matrices

A set {e , ' n€N} of non-negative numbers is said to be an
e-summing famuly if

Y gk = Sy ky NEN
knt1€Ak,, .k,
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and

Y g, =€e>0,
k€4

where 4, A, (k, € 4), Ay, (ky €A, ky € 4,),... are disjoint subsets
of N.

We say that the graph G(P), P € 2(r, 5), has an e-bitree, if there exists a
subgraph H of the graph G(P) which for certain e-summing families
(& ks ke, }o L€k ks, , } Satisfies the following conditions:

(a;) The graph H includes an edge x, y; with0 <e<p, ..

(a,) The graph H includes edges y; x;, i; € 4 with 0 <¢; <p, ; and
edges x,y;,, j1 €A’ with 0 <e} <p,; ; and i, & 4, j, € A’. (Obviously
EileAeil = EjleA/Sjl =g > 0.)

(a;) the graph H includes edges x; y;, iy €4, j; €4; with0<g , <
Pi j, and edges y;x;, j; €A’, iy € Aj with0<e};, <p, , and A’ N4} =
Z,ANA, = 2. (Obv;ously Yie 4,8, = & Die 4,80 = &)- .

(a,) The graph H includes edges y;x;, j, €4,, i, € 4, ;, i; € A with
0< Ei iz S Piyjy and edges Xiyjy i € AJ’]’ h€ A.;lil’ hed Witl.l 0 < sll'liu‘z
< p, ;, and the sets 4, 4; (j, € 4’), 4, ; (i, € 4, j, € 4,) are disjoint and
the sets 4’, 4, (i, € 4), 4}; (j, € 4, i € A4}) are disjoint.

The graph H includes only edges described in (a,), (a,),(a3),... (Fig. 1).

If in a graph G(P) there exists a subgraph H which is an e-bitree, it is not
difficult to see that there exists also an e-bitree H; such that every node of H,
is joined with only a finite number of edges and H, is a subgraph of H.

hehy

€A
2 i1s3 1

Fi1G. 1.
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LEMMA 1. If P € 9(#,5) has an e-bitree, then P & ext D(7, §).

Proof. Let H be a subgraph of G(P) such that H is an e-bitree. We define
a matrix T = (7;;) (using the notation from the definition of an e-bitree):

(b)) 1, Jo = =g> 0

b)) t, = , i € 4; t,ol1 —¢, L €A (i€ 4, joeA)

(b;) t, 7 zz,.1 jl’ hE€A, €A ; =¢, 1 €A, i €A (The sets
{io}, 4, 4} (j, € 4’) are disjoint and the sets {jo}, 4’, 4; (i, € 4) are
disjoint.

(bs) tizjl = & jip h€d, hHEA4, 12 € A'l! ’ 11.12 = _811'1!2’ hE4,
iy €A}, j, €A4j;. (The sets {ig}, A,A (hL€4'), A4, (i1€A, j€A,)
are disjoint and ‘the sets {Jo}, 4, 4, (i1 € A), 4}, (j €4’ iy € 4)) are
disjoint.

If an edge x,y; is not in the graph H, then we let 7,; = 0. It is easy to see
that ¥z, =X ;t,,=0 and p;; > |t;;]. Thus P + T € 9(,5), so P is not

itij jtij
extreme.

THEOREM 1. Let P € 9(7,5). Then P € ext 2(7, 5) if and only if the graph
G(P) has no cycle and G(P) has no e-bitree.

Proof. Suppose that the graph G(P) has a cycle. Let the sequence
Xiss Vipp Xipp Vi vvs Xis Vjoo Xi) describe this cycle. We may and do assume that
our cycle is simple. We have p; ;, p;, i, Pi, j»---» Pi, j» Pi,j, > 0 Let

€= min{piljl’ Piyjis--+s Pi,j» piljn}
Obviously & > 0. Let us define a matrix T = (¢,;) by

e if(i,)) = (igde) k=1,2,...,n
t.. = —€ if(i’j)=(i1’ Jn)
— & if(i,j)=(ik+1,jk),k=1,2,...,n—1,
0 otherwise.

It is easy to see that p;; + ¢;,;> 0 foralli, j=1,2,... and X;t;; =L t;; =
Thus P + T € (7, 5).

Suppose that the graph G(P) has an e-bitree. By Lemma 1, P is not
extreme. Therefore if P € ext 2(F, 5), then the graph G(P) has no cycle and
no e-bitree.

Now suppose that P € 2(7, §) is not extreme. Then there exists a non-zero
matrix T = (¢;;) with P £ T € 9(r, 5). Obviously |¢,;| < p;; for all i, j =
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1,2,... Moreover, there exists (io, jo) With 7, ; # 0. It is also easy to see that
Tit;;=1L;t;=0.Let |T| = (|¢;]). A graph G(|T|) is a subgraph of G(P). If
G(T|) has a cycle, then G(P) has also a cycle. Now assume that G(|T|) has
no cycle. It is sufficient to show that there exist e-summing families
{ec,...,k,}>{€k, .. x,) and a subgraph H of the graph G(|T|) which satisfy
the conditions (a,),(a,),(as),.... Let ¢, ; #0. Let e= |z, Now we
define a graph H as follows:

(c,) H includes the edge x; y;.

(c;) Let A= {i#iy t; #0}and 4’ = {j#j,: t, ;+ 0}. H includes
edges y, x;, i; € 4, and edges x; y;, j, € A’. We choose positive numbers
&,€, h €A, jy€A in such way that ¥, o e, =¢, ¥, . 8} =¢ and
O <e < |t ;|,0<e < |t ;|. We are able to choose ¢, , €/ by the above
formula because

io jol-

Yt tt,;,=0 and ) 1+ = 0.

'o Jo
€A HLEA

H includes only edges described in (c;), (c,),... . Note that in the above
construction of the graph H the sets {iy}, 4, 4} (j, € 4’),... are disjoint
and the sets { j,}, 4, 4, (i; € 4),... are disjoint, since G(|T|) has no cycle.
Therefore the graph H (H is a subgraph of G(|T|)) is an e-bitree. Since
It ) <p;; i, j= 1,2,..., the graph H is an e-bitree in the graph G(P). This
completes the proof.

Suppose that the graph G(P), P € 9(7, §), has an e-bitree. Then ¥; jPij >
Yerk,,. . k, = 0, ie, Liry=X;s; =X, p;;= oo. Therefore we can write the
followmg corollary A similar result was presented by Bartoszek in [1] (cf. [12],
(6, [16D.

COROLLARY 1. Let 2,1, =X%.;s; < co and let P € 9(7,5). Then P €
ext D(F, 5) if and only if the connected components of the graph G(P) are trees.

Example 1. Let
F=(19 + a,2,1,7,5,11,2,7,5,6,6,6,...)
and

§=(5+a,3,3,9,7,8,9,10,2,6,6,6,...).
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The matrix
a 68 5 |
2
1
3 4 0
23
3 512
P, = 2
7
2 3
33
33
33
0
L J

has graph G(P,) given by Fig. 2. If we let a = 0, then in view of Theorem 1,
P, is extreme. If we let a > 0 then the graph G(P,) has a cycle, so P, is not an
extreme doubly stochastic matrix.

Example 2. Let

= 1 1 1 1 1
r_(2%,21597’%77,1,la§a%’§a )
and
T = 11111111
S“(3a191’19%a3,397$Z,?’?’?,3’191,'--)°
The matrix
1 1
2 . 703
13 3
; b
1
3 bod 0
1 1 1
4 8 8
1 11
4 8 8 1
- :
P= 2 3
1
16
1
16
1
16
1
16
1
16
0 1
16
| _
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Fi1G. 2.

has graph G(P) given by Fig. 3. Note that Fig. 3a and Fig. 3b presents
subgraphs of the graph G(P) which are e-bitree with e equal to 2 and %,
respectively.

Example 3. Let a doubly stochastic matrix P have the graph G(P) given

by Fig. 4. It is easy to see that G(P) has no cycle and G(P) has no e-bitree.
Thus P is extreme.

If for P, P’ € 9(r, §), the condition that G(P’) is a subgraph of G(P)
implies P = P’, then we say that a matrix P € 9(7, §) is uniquely determined
in 2(F, §) by its graph. The elements of ext 2(7, §) in the finite-dimensional
case can also be characterized as those matrices in (7, §) which are uniquely
determined in 2(r, 5) by their graph (see Brualdi [4], Theorem 2.1.). This
result can be extended. Indeed, if P & ext 2(7,5) then P = (P, + P,)/2,
P, P, € 9(7,5), P, # P,. Obviously, G(P,) is a subgraph of G(P), so P is
not uniquely determined in 2(7, §) by its graph. Now assume that P, P’ €
9(r, 5) are distinct such that the graph G(P’) is a subgraph of G(P). Put
T=P— P’ Obviously L;t;;=X;t;; =0 and ¢, ; # 0 for some (i, jo). If
G(|T)) has a cycle then G(P) has also a cycle and P & ext 9(r, §). Suppose
now that |T'| has no cycle. We may and do assume that 7, , > 0. Define the
family of sets

—{ta&to ti, <0},
= {J #Jo: ti,; <0}
“{J*Jot >0}, i €4,
Al = {i#igt,; >0}, j€4A,
A, ={i#izt; <0}, i, €4, j,€4,
Ay ={J# 0 1,;< 0}, €A, i, €4,
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1A P

LY

(Y Y]

1/2 1/2
Y2 ¥
e % 16

FiG. 3.
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FiG. 4.

It is not difficult to see that using the sets A, A/, 4 ip A Ay jp -~ WeCan find
an e-bitree in G(P) (with e = ¢, , ), i.e., P & ext D(F, 5). Thus we proved the
following fact.

PROPOSITION 1. The extreme points of 2(r, §5) are those matrices in 2(r, 5)
which are uniquely determined in 9 (7, 5) by their graphs.

We recall that a point g, in a convex set Q is exposed if there exists a
functional £ such that £(q,) = £§(q) for all g € O\ {q,}.

PROPOSITION 2. The set of all extreme points of 2(r, 5) coincides with the
set of all exposed points of D(r, §).

Proof. Obviously each exposed point is extreme. Now let a; > 0 be such
that ¥;a; = 1. Let T = (¢;;) € ext (7, 5). We define a function § on 2(7, 5)
by

§(P) = 22[2(3811 tij) - 1]“:1’;‘;/’}’

P =(p;;) € D(7,5). It is easy to see that §(P) <1 =§(T) for all P €
9(r, 5). Suppose that §(P) =1 for some P € 9(r,5). Because ¢,; = 0 for
fixed (i, j) implies that p,; = 0, the graph G(P) is a subgraph of G(T'). By
Proposition 1, P = T, i.e., T is exposed by §.
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2. Extreme infinite doubly substochastic matrices

The extreme points of 9(< 7, < §) were shown by Mirsky [14] to be the
n X n subpermutation matrices (i.e., matrices of 0’s and 1’s with at most one 1
in each row and column) when 7 =§ = (1,1,1,...,1), n I’s.

We say that the i-th row sum (j-th column sum) of a matrix P € 2(< 7,
< §) is unattained if X;p,; < r,(X,; p;; < 5,). Brualdi [4] generalized Mirsky’s
result: A matrix P € (< 7, < §) is extreme if and only if the connected
components of the graph G(P) are trees and at most one node of each tree
corresponds to a row or a column of P whose sum in P is unattained [4,
Theorem 2.2]

Let ¥ = (r, ry,...), § =(8y, 55,...) be arbitrary non-negative vectors. We
say that the graph G(P), P = (p;;) € D(< 7, < §), has an infinite e-path if
there exist sequences {i, }%_1, { Jx }¥=1 With iy # i_, j, # j, if kK # e such that

lnf{ Pi, ji> Piyji> Piy jp> Pinjp> - -+ } 2e>0.

Let P € (<7, <5). We say that the connected component H of the

graph G(P) is an extreme tree if H is a tree satisfying the following
conditions:

(*) H has no e-bitree.

(**) H has at most one node corresponding to a row or a column of P
whose,sum in P is unattained.

(* * x) If H has one node corresponding to a row or a column of P whose
sum in P is unattained, then H has no infinite e-path, or equivalently, if H
has an infinite e-path, then H has no node corresponding to a row or a
column of P whose sum in P is unattained.

THEOREM 2. Let P € D(<F, <5). Then P € ext D(< r, < 5) if and only
if the connected components of G(P) are extreme trees.

Proof. Assume first that there exists a connected component H of the
graph G(P) such that H is not an extreme tree. Obviously if there is a cycle in
H then P is not extreme, so we may and do assume that H is a tree, but not
an extreme tree.

If H does not satisfy (*), i.e., H has an e-bitree, then by arguments similar
to those in the proof of Lemma 1 we obtain P & ext 2(< F, < 5).

Suppose that H does not satisfy (* *), i.e. there exist two (or more) nodes
each corresponding to a row or a column whose sum in P is unattained. Let
z,, z, be two distinct nodes of H having this property. Then either these nodes
are both row nodes, or both column nodes, or one of them is a row node and
the other is a column node. We can and do assume that z;, = x, is a row node
and z, =y, is a column node. In the remaining cases the reasoning is
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analogous. Since H is a tree and in a connected graph there is a path
Xio Vip Vip+++s X0 Vo between X, and Vi in the graph H, the entries
Pi, jp Pi jys-++» Pij, Of the matrix P are positive and X;p; ; <7, X;p;; < ;.
Let

€= min{ Pigjr+++> Piyjor (’io - Zpioj),(sj - Z,Pijo)}-
J 1

We deﬁne T = (¢;;) by setting ¢,; = 0 except for ¢, t; ., = - =¢and

tj =ty;, = -+ = —& Then P tTeP(<r, ;l), 1e”jD is not extreme.

Now suppose that H does not satisfy (* * *), i.e., H has a node correspond-
ing to a row or a column of P whose sum in P is unattained and H has an
infinite e-path. Let x; be a row node of H with this property (analogously we
can consider a column node y, ). Let the infinite e-path be determined by
sequences {i,}, { j, }. Since H is a tree and a connected graph we can and do
assume that i, = i;. We define T = (¢,;) by

e if (i, j) = (ig, Ji), k=1,2
ty=\—e if(i, j) = (ixer, ) k=1,2,...,
0 otherwise

where ¢ = inf{ p, ;, p; ;» Py, j---» (i, — X;p; ;)} > 0. It is easy to see that
P+ TePD(<F <5),s0 P is not extreme. Therefore if P € ext (< 7, < §),
then the connected components of the graph G(P) are extreme trees.

Now let T = (¢,;) be such that P + T € (< F, < 5) and the connected
components of the graph G(P) are extreme trees. The graph G(|T]) is a
subgraph of G(P) and |7;;| < p;; Let H be a connected component of the
graph G(|T|). Since G(P) has no e-bitree, the graph H has no e-bitree.

We claim that at most one node z, of the graph H has the property
L, ;#0if zg=x, or L;t;; # 0if z, =y, . Indeed, suppose that there exist
two distinct nodes z;, z, with this property. For example, suppose z; = x; is a
row node and z, = y, is a column node (analogously we can consider the case
when z,, z, are both row nodes or both column nodes). Since P + T € 9(<
7, < §) we have

ZP,” + Et, J =< r and Zpijz * Ztijz = sz’
i i

so Xp;;<r, and ¥;p,; <s;. Clearly nodes x,, y, belong to the same
connected component of the graph G(P), but this is impossible in view of
(* *). This contradiction proves our claim.

Now let us consider two possibilities:

1% i, = ;= Xyt = 0 for all i, j corresponding to nodes in the graph H.
If some ¢, ; + 0, then using arguments similar to those of the second part of
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the proof of Theorem 1 we conclude that H has an e-bitree. This contradic-
tion proves that #;; = 0 for all i, j.

(2°) There is cxactly one node z, in the graph H corresponding to a
non-zero row or column sum of the matrix (¢,;). Assume, that z, = x, is a
row node of H (analogously we can assume that zy =y, is a column node)
We have ¢, = L4t = 0 for all i # iy and j correspondmg to nodes in the
graph H and X,¢t, , # 0. Suppose ¢, ; # 0. Now we define the sets

= {i; # iy Lo, * 0}
;,={j1*j03 L, *0}, i €A,
A, = {i, # i Ly #0}, i,E€A4, €4,

WY

Ay ={h#hit,;, #0}, €4, j1€4,,i, €4,

In view of the conditions X, = X#,; =0 the sets 4, 4,, 4; ;, A; ji»---
are non-empty.

We claim that each of these sets has exactly one element. Indeed, suppose
that there are two distinct elements i’,i” in 4, ;; ..., ; for some k. Let

[ti; | = |ty | > 0. Let § = —t,., /t;,,. We define s = 5, by

Sivjry = birjur Je+1 € A - Jki’?

Sipariknr tik+Lik+1’ Lee1 € Ailr"~vjki,ljk+l’ Je+1 € Ail ~~~~~ Jid"?
and

Sitjesr = 8tifk+1’ Jev1 € Ai1, o Jid"?

S ts1 8tik”jk+1’ 1 € Ai1 ..... i jesr Je+1 € Ail,...,jk,i"

and for other i, j we set s;; = 0.

We have L;s;, = L5, = 0 It is easy to see that the graph corresponding to
the matrix |S| contains an e-bitree, so the graph G(P) has also an e-bitree.
This contradicts the condition (*) and ends the proof of our claim.

Therefore 4 = (i1}, 4, = {1}, 4;,;, = {ix},... . Thus ¢, , — 1, . =1t 11
=—t,; = . Since G(P) has no infinite e-path (condition (* * *)) and
|t,j| <pU we obtam (t, | =inf{p; ;, Py j»---} =0. Thus ¢;, =0 for all
i, j. By (1°) and (2°) it follows that P +T€P(<F, <3) 1mp11es T=0,ie.,
P € ext (< 7, <5), and the proof of the theorem is completed.
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COROLLARY 2. Let X;r;< o0 or X;s;<ooandletP € D(<r, <5). Then
P € ext (< F, <5) if and only if the connected components of the graph G(P)
are trees and at most one node of each of those trees corresponds to a row or a
column of P whose sum in P is unattained.

Proof. L jpi;sXTir;andX; ;p;;<X;s;. Thus¥; ,p;; < oo.Insucha
case P has no e-bitree. P has no infinite e-path because L; P, = Ly P;,j,
=eg+e+e+e--- = o0, where {i,},{j,} are sequences from the defini-
tion of an infinite e-path. Now, we use Theorem 2 and the proof is complete.

3. The facial structure in the finite-dimensional case

Let r = (r, rp,..., 1) and § = (54, §3,..., 5,). We define the dimension of
the face generated by P in (< 7, < §) by

dimg ., ., =dimlin{R: P + R € 9(7,5)}.

Obviously P is extreme if and only if dimension of the face generated by P is
equal to 0. Brualdi and Gibson [5] have given the dimension of the face of
2(r, §) (see also [8], Property 2),

dim$(r‘s)P = U(P) -n—m+ ko

where P = (p;;), o(P) =L X} sign p;; and k, denotes the number of
connected components of the graph G(P). In this section we present analo-
gous result for 2(< r, <s). We say that a matrix P is elementary if the
graph G(P) is connected. Let the graph G(P) have k, connected components.
Then we can represent P as the direct sum of k, elementary matrices P,. In
such case dimg, _; 5P = Z{o,dimg _; 5P

PROPOSITION 3. Let F=(ry,ry,...,1,) and § = (s, 8y,...,5,) (r,>0,
i<m,s; >0, j<n, mandn finite). For an elementary matrix P = (p;;) €
D(<F, <5%), if all nodes of G(P) correspond to rows and columns whose sum in
P is attained (P € 9(r, §)),

dimg _; .5=0(P)-m—-n+1
Otherwise

dlm.@(sr <5 ~ O(P) —mgy— ng

where my = card{i: X7_,p;; = r;}, no = card{ j: XiL,p;; = s;}.
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Proof. We define functionals

(pi((tij)) = i tij, i<m,

Jj=1

‘l’j((tij)) = f‘. L, J<n.

i=1
In [8, pp. 685-686] it is proved that

dimlin({g: i<m} U {y;: j<n})=m+n-1.
Moreover we have L1 p, = X%_;¢,. Let

F={g:i€A4}U {{;: j€ B}
where
n m
A={i: Zpij=r,-}, B={j: ZPU:sj}-
j=1 i=1

(card A = m, card B = n,). Thus

nt+tm-—1, ifm+n=my+n,,

dimlin F = .
{mo + ng, otherwise.

We have
dimg _; ;P = dim{T € X: ¢,(T) =¢,(T)=0,i€ 4, j € B},
where
X ={T=(t;): t,,=Oforall (i, j) such that p,; = 0}

(dim X = 6(P) = mn — z, z denotes the number of zero entries of P). Hence

dimg _; .5 P is equal to dim X minus the number of linearly independent
in the set F.

THEOREM 3. Let r=(r,ry,...,1,) and s =(sy,8,5,...,58,) (n,m are
finite). For P = (p;;) € D(< ¥, < §) we have

dim_@(s;’sf)P = O(P) - mO— no + ko
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where
m n
o(P) = X X signpy,
i=1j=1
n m
m0=card{i: Zp,»j=r,~>0}, n0=card{j: Zpij=sj>0}’
j=1 i=1

k is the number of connected components of the graph G(P) all of whose nodes
correspond to rows or columns of P whose sum in P is attained.

11.

12.

13.

14,
15.

16.
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