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ON n-WIDTHS OF CLASSES OF HOLOMORPHIC
FUNCTIONS WITH REPRODUCING KERNELS

STEPHEN D. FISHER AND MICHAEL STESSIN

1. Introduction

Let A be a subset of a Banach space X. The Kolmogorov n-width of A in
X is defined by

d,,(A, X)= inf sup inf Ily- xll
Xn xA vex,,

where Xn varies over all subspaces of X of dimension n.
The Gel’land n-width is given by

dn( A, X) inf sup IIx
Yn xA Irl Yn

where Yn runs over all closed subspaces of X of codimension n.
The linear n-width is defined by

6,(A, X) inf sup IIx Znxll
Tn xA

where T runs over all linear operators of X into itself which have rank n or
less. There are evident inequalities among these quantities; namely,

and

6n(A,X) > dn(A,X), (1)

n( A, X) >_ dn( A, X). (2)

The concept of the n-width of a set was originally introduced by Kolmogorov
[6] in 1936. Widths are important in approximation theory since knowledge of
the exact or even the asymptotic value of the n-width can lead to best or near
best methods of approximation and interpolation, as well as to the estimation
of errors in these methods. Moreover, determination of an Optimal subspace
typically gives optimal methods of approximation, as well as fascinating
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interplay between approximation and the zeros of certain extremal functions.
A bibliography of work on n-widths is in [9].

In recent years, the exact value of the n-width of sets of analytic functions
has been the focus of attention. The first paper on this topic was Babenko [1].
The 1980 paper of Fisher and Micchelli [3] was the first to lay out general
results in this area; other general results are in the paper of Osipenko and
Stessin [8]. In [4] the present authors investigated the n-width of the unit ball
of the Hardy space Hp in the Lq metric on a compact subset E in the unit
disk of the complex plane. We were able to determine the precise value of
this width in the case when p > q; when p < q, the situation is far more
complicated and the answer is dependent, as well, on the "size" of the
compact set.

In the present paper, we consider the n-width of the unit ball of a
reproducing kernel Hilbert space of analytic functions in C(E), the space of
continuous complex-valued functions on a compact set E. We do this for
three specific types of compact sets: a circle; a finite point set; and a subset of
the open interval (-1, 1). Our results in these settings are set forth in
Sections
2, 3 and 4, respectively. The fifth and final section is devoted to investigations
of the "skeleton" effect for the Hardy space H2.

2. n-widths of the weighted Bergman space in the uniform metric
on a circle

Let A be the open unit disk on the complex plane, A {z C:lzl < 1},
and let a > -1 be a real number. The space H(A) is the set of holomor-
phic functions on A which satisfy

Ilfll 1 fa- If(z)12(x- Izl 2) dm(z) < o (3)

where dm is Lebesgue area measure on A. When a---0, corresponding
space is the Bergman space A2 in the disk and when a 1, H converges
to the Hardy space H2 in A. Let 0 < r < 1 and denote by F the circle of
radius r with center at the origin. In this section we determine the linear and
Gel’fand n-widths $n(Bn, C(Fr)) and d"(BH, C(Fr))where BH is the unit
ball of H in the norm (3). We shall need the following theorem from [4].

THEOREM 1. Let X be a Hilbert space of holomorphic functions defined on
the domain f c Cm with reproducing kernel K(z, w) and let E be a compact
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subset of f. Denote by BX the closed unit ball ofX. Then

,,,( d"(
n )

1/2

inf sup K(z,z) [qi(z)l2

{t1 qn} zE i=1

where {ql,..., (n} runs over all orthonornal sets in X with n elements.

This theorem was proved in [4] for the Hardy space H2 in the disk A but
the proof given there holds for an arbitrary domain in Cm and for an
arbitrary Hilbert space with reproducing kernel.

It is well known that H has the reproducing kernel

(1 Z)a+2.

Put

F(a+k+2)
ak= klF(a + 1)

kr

and let {bn}= o be the decreasing rearrangement of the sequence {an}= o.

THEOREM 2.

6n(BH’ C(Fr)) dn(BH’ C(Fr))
(1 r2) ’+2

n-1

Eb
k=0

To prove this theorem we need the following two lemmas.

LEMMA 1. Let k 1,... km be different natural numbers. If f BH and
the derivatives off of orders k 1,..., km at the origin are equal to zero, then

1_2. f:l f(rei) 12 dO _< max a
k4kl,..., k

Proof Let f* be the extremal function in the problem

(1 f2=lf(reiO)lsup -- "o
dO" 1,rr faIf(z) 12(1 ’z’2) din(z) < 1) (4)
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Write f* Ek=oCkZ
equivalent form

k for Izl < 1. The problem (4) can be written in the

sup Ickl2r 2k" a;21Ckl 2 1 (5)
k=O k =O

The Lagrange principle for (5) implies that there is a number A with

k!F(c + 1)
Ck r2k lk F( Ol -!- k + 2)

k 0,1, (6)

It follows from (6) that if two coefficients of f*, say m and Ck, are not zero,
then

r= ( k!F( + m + 2) )+ k + 2)

Hence, if we assume that r does not belong to the countable set

( ( k !F(m + + 2) ) l/2(k-m)l (7)m!F(k + a + 2) k,m=O,k>m

then f* must be a monomial. Note that if we add constraints f(*’)(0)=
0,..., f(kn)(O) 0, then for any extremal function k : kl,..., kn. Since the
supremum in (4) depends continuously on r, the result holds for all r. t3

LEMMA 2. /f 1,’’’, On is an orthonormal system in H, then

n n

min E[qi(z)l2< Eb/2
Izl=ri=l i=l

and equality holds if and only if span(q1,.. n) coincides with the span of the
corresponding monomials.

Proof. First we note that for any unitary transformation A of Cn, the
functions 1,.., 0n defined by 1 (A() ETlailtPl form an orthonormal
system in n2 and for every z A, ]in= [qi(z)[ ET_ [/i(Z)I 2. Note, too,
that for every system 11,..., n of linearly independent bounded complex-val-
ued functionals on H, there exists a unitary transformation A of Cn such
that corresponding system 1,..., I]n satisfies

Im(k) "-0, k > m.
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Indeed, let B IIli(qj)llin, j-----1. There exists a unitary matrix A such that
C A’BA is an upper-triangle matrix. Since C is the same transformation in
the basis q’i (Aq)i the system 4’1,..., On satisfies the required condition.
Now let k0,..., kn_l be numbers such that b0 ako,..., bn_l ak,,_ 1.

Put li(f) f(ki-’)(O), 1,..., n. If A is the unitary transformation de-
scribed above and q’l,..., q’n is the corresponding orthonormal system, then
from Lemma 1,

l f o dO<_( max ak)=aki2zr ii(re )12 2 2 b/2
kk ki_

and therefore

n n 1 2r
n n-1

min E I(i(z)l2
min E Ii(z)l2

_< fo E I’/(rei)12 dO <_ E b.
zCr i=1 zCr i= i--1 i=O

It is obvious that equality holds if and only if span(ql,..., q)=
span(zko,..., zkn-1). [-’l

Proof of Theorem 2. From Theorem 1 and Lemma 2 we have

t3n(Bn, C(1-’r) ) dn(Bn, C(Fr))

inf sup 2+
Pn zFr (1- Izl 2)

inf ./ 1

’ ’" V (1 r2)2+a

>- )2+ Eb2"
(1 r 2

i=1

n

E qi( z)l2

i--1

n

inf E I+i( Z)I2

zF i=

Further, equality is attained when

F(a + k + 2) zk i= 1 n. rq(i k!F(a + 1)

Remark 1. Theorem 2 is an extension of the result [8], but in [8] the
optimal n-dimensional space was the space of polynomials of degree at most
n- 1. Here the situation is different; the best space is also the span of n
monomials but degrees of these monomials depend on r.

Remark 2. It is easy to see that Theorem 2 can be extended to other
Hilbert spaces of analytic functions. For instance, if X is a Hilbert space of
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functions holomorphic in A with the norm

1 2Ilfll flf(z)l  (Izl) dm(z)

where q is an integrable positive function on the interval (0, 1), then the
same result holds. Namely, put

Cn= "- IZI Izl)dm(z) ([znl2x) -1

and

Kx( z, w) CnZnn.

The kernel Kx(z,w) is evidently correctly defined. Let ak krk and
{bk}= 0 be the decreasing rearrangement of the sequence {ak}. Then

tn(BS C(1-’r) ) dn(nx, C(Fr) ) Kx(r, r) _. b
i=0

3. Finite point sets

Let f be a domain in Cn, E a finite set of points {Zl,..., ZN} in and X
a Hilbert space of functions holomorphic in f with reproducing kernel
K(z, w). Put L(z1,... zN) span{K(z, zl),..., K(z, ZN)}; we consider
K(z, zi) as a function of its first argument.

PROPOSITION 1. For 0 <_ n < N- 1,

n( ns, C(E)) dn( BX, C(E))

inf sup 2 t#i(Zj)l 2
{ql N-n}EL(z1 ZN) I<j<N i=1

where {q)l,’’’, ON-n} varies over all orthonormal systems in L(Zl,... zN) of
length N- n.

Proof. If g is in X and g is orthogonal to K(z, zl),..., K(z, z), then
g(z1) g(zv) 0. Hence, if {q 1, v} is an orthonormal basis for
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L(z1’ ZN), then

N

i=1

for j= 1,..., N.

Thus, for every orthonormal system {(4)1,..., n} in L(Zl,..., ZN), we have

n N

g(zs, z) , Ii(zs)l== E Ii(zs)l,
i=1 i=n+l

In view of Theorem 1 the last equality implies

.(nx, c(e)) d"(nx, c(e))

inf sup E I#i(zi)12.
{qgl tPN-n}CL(Zl ZN) jN i=

Now the let {1,’’’, n} be any orthonormal system in X. There exist N n
functions qn+ ,"’, U L(ZI,..., ZN) such that {qx,..., qN} form an or-
thonormal system. Since at every point z A, K(z, z) >_ y:/N= l[qi(z)l 2 we
have

n

sup K(zy, zy) E Ii(z)l
<j<N i=l

N n

sup E I,(z)I E Ii(z) =
I<j<N i=1 i=1

N

sup E qi( zi)
<_j<N i=n+l

inf sup E I,(z)I
{ql qbv-n}cL(zl ZN) <j <N i=

Now the proposition follows from Theorem 1. rq

The equivalent statement of this proposition is the following.

PROPOSITION 1’. If E is a subset of A and X is some Hilbert space

of holomorphic functions with reproducing kernel K(z,w), then the best
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n-dimensional subspace for linear approximation ofBX belongs to the closure of

span{ K(z, w)" w E}.

THEOREM 3.
satisfy

Let 1 < n < N. Suppose that ’,..., qn* Z(Zl,’", ZN)

n n

t2N_n max E 1 7<z )l min max E =. (8)
l<i<N j=l (ql qn) l<i<N j=l

Then there are at least N- n + 1 points of E at which equality holds in (8).

Proof. Let E0 be those points of w E at which equality holds in (8).
For each w E0, the vector

,(w)

is non-zero. Hence, there is n n unitary matrix U such that Uv(w) does
not lie in the hyperplane

for all w E0. The functions ff..’= E__ 1U.mq*m are still orthonormal, the set
of points at which

n

is still E0, and, moreover, by the choice of U,

n

E ffj(w) : 0, w E0. (9)

Let q L(Zl,... ZN) be orthogonal to I1,... litn and have norm one. The
system

(1 + 82) 1/2’
j 1,...,n (10)
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is still orthonormal and on E0

n +

(1 + e 2) 1/2

1 {1 + e
r-, ( n ) }+ 2eRe (W) E @.(w) + e2n[q(w)[2 (11)

j=l

Assume now that E0 has p < N-n points. We shall show that the
right-hand side of (11) may be made strictly less than 82N_n on E0. Since

n

< V-n, zE\Eo

it follows that the left-hand side of (11) is strictly less than 8)_
sufficiently small e. Thus, the system (10) is orthonormal and

on E for

n

sup
E j=l (1 + 82) 1/2

a contradiction.
Let T be the linear operator from L(Zl,... ZN) to Cn+p defined by

( n )Tf {(f, I/.ti)}i=l {f(wj)}jL1

where we have written E0 {w1,... wp}, 13 < N n. If T is not one-to-one,
then there is an element q of L(Zl,..., Zv) of norm one for which Tq 0.
This q clearly makes the right-hand side of (11) less than 8_n. On the other
hand, if T is one-to-one (and so necessarily, p N n), then T is onto and
therefore there is a q L(z,..., Zv)with norm one and

and

n

E -p,
1=1

j= 1,...,N-n

where p is some positive number. Once again, it follows that the right-hand
side of (11) is less than 82 I’-IN-n
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DEFINITION. Let 1,..., n be an orthonormal system in X for which

n

sup E I+( z)l+ +-n"
E

The deficiency of {1,-.., (n} is the number of points z’ e E at which

n

E I+(z’) + < +-n.

From Theorem 3 we know that the deficiency of any orthonormal system of
n functions in L(zn,... zn) is never more than n- 1. This leads us to
define the n-th deficiency of E as the largest deficiency of any orthonormal
system of n elements.

PROPOSITION 2. Let r be the n-th deficiency ofE. Then there is a numbering
{Zl,..., zN} ofE and an orthonormal system bl,..., b in L(Zl,..., zN) such
that

n

sup E Ij(z)l /--n
zE j=l

and

y(z) =0, 1 <j < r, r+l<k<N.

Proof. By the definition of r there is a numbering {z1,..., ZN} of E and
an orthonormal system 1,..., . in L(Zl,... zN) such that

n

Z I(z)l < /-n, k 1,...,r

and

n

k=r+l,...,N.

Let F1,..., Fg be an orthonormal basis for L(z1,... zN) chosen so that

Fk(zj) =0, 1 < k < j < N. (12)
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Each (1 has an expansion

N

E aljFj,
j=l

l= 1,...,n.

There is n n unitary matrix U such that

n

Ujqj, 1= 1,...,n

has the representation

n

1 E bilFi, 1,...,n. (13)
i=1

That is, the matrix B which represents /1,’’’, On in terms of F1,..., FN is
upper triangular:

bll bin
0

0 0 b,, bnN

We shall prove that

ltl(Zi) 0, 1 <1 < r, r + 1 <i < N, (14)

which is, of course, the desired conclusion.
Fix l, 1 < < r, and let lj (:1,..., 1) be a unit vector in C such that

j=l

=0, 1 <p<l- 1.

Define

4()(z) ti E F.(z) + (1 8)/1(z)

where t is the unique positive root of the quadratic

t2(1 -I/I 2) q- (t q- (1 -e))2 Iblll 2 "q- (1 -e)2(1 -Iblll 2) 1.
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This choice of gives ,/{) unit norm; note further that as e -+ O, goes to
zero and ,/ -+ O uniformly on A. By construction, the system

is orthonormal. Moreover, the sum

l-1 n

s(z) E I,(z)I + I,/.(z + E I,,()l
j=l j=l+l

is certainly strictly less than 5_ for e sufficiently small when k 1,..., r.
Further, S(zk) is also strictly less than 8-n for k r + 1,..., N unless

,,(>(,,) 0.

Since r is the deficiency of E, it is impossible to have S(zk) < 5i_ at any of
the points zk, r+ 1 <k<N. It follows that O/)(zk)=0 and so also
O(Zk)=0foreach k,r+ 1 <k<N. t

COROLLARY. The functions 01,’’’, Or described in Proposition 2 are ex-
actly F1,..., Fr, respectively.

Proof. We have

N

ll E bljFj,
j=l

l= 1,...,r.

However,

blNFN( ZN) I[II( ZN) 0

and so biN 0, 1,..., r. This implies

bI, N_IFN_I( ZN_I) 0

and so b.N_ 0, 1,..., r. Continuing we obtain
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However, for 1 < < rn < r, we also have

0 <ltl, ltm> bljbmj

and so blj 0 when 4: j. Finally,

1 Ilqt/ll--Ibu[ IlFll Iblll
and so we may assume that bll 1, 1,..., r. D

Remark. The functions ql,..., r of Proposition 2 lie in L(Zl,..., ZN)
and vanish at Zr+ 1," ZN. Hence, they lie in

L( Zl, ZN) L(z+,,..., ZN)

From Theorem 2 we then conclude that there are n orthonormal functions
fl,..., fn and points Zl,..., zm, rn > n + 1, in E such that

(a) t2=supe K(z,z)- E [fi(z)l 2

1--1
n

(b) ,2
n K(z, zk) _, If1( z)[, k 1,... rn (15)

j--1

(c) fl,’", fn e L( Zl,... Zm).

We now use (15) to establish a result similar to Theorem 3 for any compact
set E.

In Theorem 4 we shall assume that for each w 12 the kernel function
K(z, w) is analytic on an open set (depending on w)which contains the
closure of 12 and that [K(z, w)[ is bounded above by a constant depending
only on the distance from w to the boundary of fl. This conditions are
satisfied, for instance, if the boundary of 12 is analytic and X is the Bergman
space.

THEOREM 4. Let the above hypotheses on K(z,w) hold. Let E be a
compact set in f. Then there are orthonormal functions fl,..., fn in X such
that

sup K(z z) E Ifi(z)l2 2tn (16)
E j=l

and equality holds at n + 1 or more points of E.
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Proof We may assume that E has infinitely many points. Let {k}7= be a
countable dense set in E and let Eu {:1,..., SEN}, N 1, 2,..., We note
first that the numbers

6nN n width of the unit ball of X in C(EN)

increase with N and have as their limit the n-width of the unit ball of X is
C(E).
We apply (15) to EN" for each N, there are n orthonormal functions

fiN,.-., fnN and m m(N) >_ n + 1 points {ZN,..., ZmU} C Eu such that

n

N nN, Z EN

n

E

Furthermore, flN,..., fnN lie in L(ZlN,... ZmN). Each kernel function
K(z, w) is holomorphic in a neighborhood of the closure of f and bounded
there by a bound depending on the distance of w to 012. Hence, there is a
fixed open set U containing the closure of l and a constant M such that

[fiN(Z)[ <M, z U; j= 1,...,n, N= 1,2,

This implies that {f’g}v=l forms a normal family on a neighborhood of 1
and so a subsequence coverges uniformly as N --, oo on 12 and in the norm of
X to a function f.. This gives n functions fl,..., f, which are orthonormal
and for which

n

g(z z) EIf .(z)l= =n, Z eE. (17)

Moreover, equality holds in (17) for any point z’ which is the limit point of
a sequence drawn from {ZkN}. If this collection of points has n or fewer
elements, say {Wl,..., wp}, p < n, then

fl,’",fn eL(Wl,... ,wp).

Hence, p n; but also any element of X which is orthogonal to L(w1,... wn)
must vanish at all of Wx,..., wn. This implies that

n

K(Wk,Wk) _, Ifi(Wk)l2
k= 1,...,n.

But then 6n 0, a contradiction.
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4. Compact subsets of the real axis

In this section we consider the case when compact set E lies in the interval
(-1, 1). We shall assume that the kernel K(z, w) satisfies

K( x, y) is strictly totally positive for 1 < x, y < 1. (18)

PROPOSITION 3. Let E be a finite set in (-1, 1) and suppose that (18)
holds. Then there is a solution {qT,..., q*} of (8) such that each q. is real on
the interval (- 1, 1).

Proof Let Xj, 1 < j < N, be the function in Z(Xl,... XN) with

Xj(x) (--1)’jk, l<j,k<N.

Let

Aij (Xi, l<i,j<N.

Then

Aij Dij/O

where

D detllK(xr, X)ll,= N and Dij detllK(xr, X)llri,.
The functions X are real on (- 1, 1). The matrix A is strictly totally positive;
see [5], formulas (0.10) and (9.1).

In terms of these numbers and the basis {Xi}, the width problem given in
(8) may be rephrased in this way:

min max ICykl 2 CAC* I
C l<k<N j=l

where C is an n N matrix, C* is its adjoint, and I is the n n identity
matrix.
We shall find it more convenient to solve the related extremal problem for

p<:

% min
C k=l

Icykl 2

j=l

CAC* I) (19)

and then pass to the limit as p/" . The details related to the limit argument
are not elaborate and we postpone them to later in the proof.



604 STEPHEN D. FISHER AND MICHAEL STESSIN

Suppose that C (jk) is a solution of (19). The numbers

n., [Clk[ 2 k 1 N

play an important role in what follows. If necessary, we may renumber the
points Xl,..., XN SO that

n

Icyl = >0 forl <k <R

and

n

Icyl =0 forR+ 1 <k<N.

Let AR be the R R block in the upper left corner of A. Then among all
n x R matrices B satisfying

BARB* I (20)

the n R matrix C (Cik k= R minimizes the functionalj=l,...,n

H( B) ., Ibikl
:

k=l i---1
(21)

The constraints in (20) may be rephrased as

Go(B) ,= .,AiiCli?.mi tlm O, 1 < < m < n. (22)
i,j

This allows us to use Lagrange multipliers to conclude that there are scalars
P’lm, 1 < < m < n, such that

(VH)(C) E Id’lm(Valm)(C) (23)
l<m

From (23)we obtain two sets of equations:

n )p/2-1 R

v;-*’ , Icyl 2 -’rs E ]’lrm E Asia’my (24)
j=l m>r j=l
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and

n )p/2-1 R

llp -p E tCjs [2 Crs E Idblr E AisCli"
j=l l<_r i=1

(25)

Set

ICsl 2 ).]=1

A1
A=

0

p/2-1

s= 1,...,R,

and for l, rn 1,..., n,

t-t lm

mlm [ml

Ixu + -u

if/<m

if/>m

if/-- m.

Then (24) and (25) may be combined to yield

CA MCA.

Since M is self-adjoint, there is unitary matrix U and a real diagonal matrix
D with M U-1DU. Since A > 0 for s 1,..., R, the matrix A is invert-
ible. Thus we obtain

UC DUCAA- 1.

Put C (UC)t, A (AA-1)t. Then

C --AICID.

Equivalently, if w1,... Wn are the columns of C and Y1,..., n are the
diagonal entries of D, we have

Wk ")tkA1Wk, k 1,..., n. (26)

Since Yk and A are real, the equation (26) implies that both Re(wk) and
Im(wk) are eigenvectors for A with the same eigenvalue. However, A is
strictly totally positive and so its eigen-values have multiplicity one. Equiva-
lently, Wk is scalar multiple of a real vector. That is, up to a unitary
transformation, the rows of C are real.
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We now show how to pass to the limit as p . For p < 0%

lC.kl 2 max ]Icxkl 2

k=l j=l l<k<N j=l

1/2

and hence

Vp < inf max Ickl 2 N-n"
C l<k<n j=l

Now let tjkt"(P)X,, 1 _< j < n, 1 < k < N, be a solution of (19) with the property
that

N

()P) E "jk Ak
k=l

l<j<n,

is real-valued on the interval (-1, 1). A compactness argument shows that
there is a sequence Pi o and numbers {Cjk} such that

c(p) --> as p Pi --> oo
jk Cjk

Since

C(P)A(C(p)) * I

we have

CAC* I.

Moreover,

"jk - max
k=l j=l l<kN

1/2

lCjkl 2 >- N-n"
j=l

It follows that the functions

N

E CykXk
k=l

are real-valued on (-1, 1), orthonormal in X, and solve (8). We are done.
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For a Hilbert space X of analytic functions with strictly totally positive
kernel K(z,w) we let XR {f X: Im f(x) 0 for x real}. When we
defined n-widths we did not specify over what field, or C, we considered
the dimensions of subspaces. Normally when considering classes of holomor-
phic functions we mean the complex-dimension but for the following theorem
we separate these two cases and use the notation 8nn, d or 8nc, d, respec-
tively.

THEOREM 5. Let X be a Hilbert space of analytic functions on A with a
strictly totally positive reproducing kernel and let E be a compact subset of the
interval (- 1, 1). Then

C(e)) C e)) C e))

Proof Let 1,..., n be an orthonormal system in XR. It is well-known
in optimal recovery theory (see [7]) that the linear operator

A: BX spanc{ ql,. n}

that minimizes supf Bx Ill- Zfllc is defined by

n

Af E < f i > Oi
i=1

and the worst function is

K( z, x) "7= li(x) i(z)
CK(x, x) 27=11 qi(x)]2

for some x E. Since the same operator and the same function are the best
operator and the worst function for the problem of approximation BXu by
spanu{ql,..., qn}, we have 8C(BX, C(E)) < 8(BX, C(E)). On the other
hand we know from Lemma 3 that for any finite set {x1,..., XN} C E, the
Gel’land n-width dz(BX, C({Xl,..., XN})) is attained on the subspace
spanned by the orthonormal system from X. Since

d( BX, C(E)) sup
{X XN}

dc(BX, C({ Xl,... XN} ),

we have

d:( BX, C(E) ) > d(BXR, C(E) ).

The theorem now follows from (1) and Theorem 1. D
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THEOREM 6. Let X be a Hilbert space of holomorphic functions on the unit
disk A with a strictly totally positive kernel K(x, w) and E be a compact set in

*}cEthe interval ( 1, 1). Then for every n there exists a finite subset x, x
and n functions q,..., * which form an orthonormal system in
span{K(z, x),. K(z, x*)} that span{q,..., *} is the best linear sub-
space; that is

max sup f(x) (f, q’)q’(x)
xE fBX

n

,max K(x,x) E Iq(x)l
x{xl X’r} i=1

Proof Consider the extremal problem

sup
X1, XNCE

n(BX, C({x1,...,XN}))

Let {1,’’’, ’’N be an extremal set of points in this problem and let

AN AN
01 0n L(xI,... XN)

be the corresponding orthonormal system, that is

nN n(ox, C({)1,"’, N})
n

max K(xi, Xi) E IfC(Xi)12.
l<i<N 1=1

In accordance with Lemma 3, we may assume that all the functions q3v, ^v

are real on the real axis. Let ; be {q3,..., q3N} points of (8). It is
easy to check that q31N,. ^Nil, .., Xim

qn L(.2ie..., 2im)" Since q3v are real on the
real axis, we have

n

K(N im) E ((/N(.,.N)2 )2im, lm ) (ff (27/
/=1

The functions {q3v,..., q3N} converge uniformly on compact subsets to a
system {qT,..-, q*} and all these functions are real on the real axis. For any

^Noopoint x E that is the limit point for some sequence {Xim}’N=n+ 1, we have

n

K(x,x) _, (q’(x))2= ((n) 2

1=1
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where 6n limN__,= 6 8,,(BX, C(E)). Now it follows immediately from
the uniqueness theorem that the number of such limit points is finite because
otherwise we would have that

n

K(z,2) E (q’(z))2 + (6.) 2 (28)
/=1

for all z A. But q?(z) is bounded in A and K(x, x) is unbounded when
x 1, x (-1, 1). (We assume that dim X .) So (28) is impossible.

Denote this finite number of limit points by x’, X*r. Then q’,..., qn* is
evidently an orthonormal system in L(x,..., x
Remark. If r n + 1 this theorem is a classical "skeleton" theorem. In

the general case we have the "extended skeleton" property. Theorem 2 from
Section 2 shows that when the compact set does not lie in the real axis, this
"extended skeleton" property may not hold, even in the case of the simplest
compact set like a circle.

5. Skeleton effect in H2

Let Xl,... x be points from the interval (-1, 1) and qx*l xm(Z) be the
solution of the extremal problem

inf max If(x,) 1.
f.L(xl Xm), IlfllHz= <i <m

* x(X)l, for all 1 < i,It follows from Theorem 3 that Iqx* xm(Xi)l Iqx
j < m and from Lemma 3 we know that q* Xm is real on the real axis.

THEOREM 7. Let X "< X2 <_ <_ Xm; then

Xl Xm(Xi) --Xl xm(Xi+l), fori 1,...,m- 1. (29)

Proof. Fix some Xm+ > Xm and consider the extremal problem

sup{[ f(Xm+l)l" f L(x1,... Xm) If(xi) 1, 1,..., m}. (30)

We shall show that the extremal function, qS, of this problem satisfies
(xi) -(xi+ 1). Suppose that for some i, (xi) (xi+ ). Without loss of
generality, we may assume that qS(xi) qS(xi + 1) 1. Put

1 1-I 1 x x" (31)Xi(X) 1 xix j=l, j4i
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Note that ,)(i(Xi),,i+l(Xi+l) < 0 and that Xi(x) > 0 for x > xm. Therefore,
one of the numbers Xi(xi), Xi+l(Xi+ 1) has the opposite sign of qS(Xm+l). Let
it be Xi(xi). Put

(sign(q3( Xm+ 1)),’i (Xi)

and consider the function

(x) (x) + A(sign((Xm+l))Xi(X).

Then q3 L(Xl,. Xm), q3(Xj) (Xj) for j 1,..., m, j #: i, q3(xi) 1
and

I(Xm+l) (Xm+l)

(Xm+l) q-

(Xm+l)l"

2Xi(Xm+l)
Xi(Xi)

2X/( Xm+ i) sign(q3( Xm )

This contradiction proves our assertion.
To prove the theorem, first, we note that

l)X X

qx xm(Xl)

is the extremal function for the problem

sup{IIflIH=" f L(x1,... Xm) f(x,)l 1, 1,..., m} (32)

Put

_/1
V +/- --Xi ]- X--X

i= 1 m.@i-- 1-xix .t 1--XiX’j_i

These functions form an orthonormal basis of L(xl,..., Xm) and any f
L(Xl,..., Xm) can be represented as f Eim= xid/i Thus the equivalent form
of (32) is

(m m

sup E l[il2" f( xi) 1, 1,..., m, f E [ili
i=1 i=l

(33)
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Now we prove the theorem by induction. The case m 1 is obvious. Suppose
we have already proved (29) for m and let us prove it for m + 1. Consider
the extremal function q5 for the problem (30). In accordance with the
induction hypothesis, q5 is also the extremal function for the problem
(33) and, therefore, for every f L(Xl,...,Xm) f--Er.l[3ii such that
If(xi)l 1, 1,..., m, we have

m m m

E Ii] 2 - E I/I 2, where q3 E/ii.
i=1 i=1 i=1

Since ff has m 1 zeros in the interval (x 1, xm) it does not change sign in
the interval (x,, x,+ 1)-Let

(Xm+l) + sign(q3(Xm+l) )
Iftm+l( Xm+l)

Then the function q q5 -/n/ Sm + is obviously the extremal function for
(32) and 6(Xm+ l) --(Xm) --6(Xm+ l)" t2

Example 1.

dl(BH, C(-r, r)) V/1 r 4

Consider the two-point set {-r, r}. The function

zV/1 r 4

1 r2z 2

satisfies

IIll.==l, qL(-r,r), q(-r)=-q(r).

We conclude from Theorem 7 that

dl(BH2,C({ -r, r})) Iq(r)l

and therefore

dl(BH:z, C(-r, r)) >_
V/1 r 4



612 STEPHEN D. FISHER AND MICHAEL STESSIN

The upper estimate follows from Theorem 1 and the following. Note that

V/1 r 4
q ( z )

1 r2z 2

satisfies IIn 1 and for x (- 1, 1),

K(x,x) (x)l
41 1-r

1 x 2
(1 r2x2)2

E (1 (1 r4)r2n(n + 1))x 2n. (34)

Since

(n + 1)(1 ra)r2n_<(n+l) 1 n+2 n+2 <1,

all coefficients of the series (34) are positive and, hence

max K(x x) -Iq +/- (x)lz <_K(r,r)-lq (r)lz

-r<x<r v/1 r 4

DEFINITION. Let E be a compact set and X1,... Xn+ - E. We say that
{Xl,..., xn+ 1} forms an "n-skeleton" of E if

an(nil2, C(E)) dn(nn2,C({Xl,..., Xn+l})).

Example 1 shows that the couple {- r, r} forms a "l-skeleton" of the interval
(- r, r). Note that this problem is not conformally invariant and the end-points
do not necessarily form a "l-skeleton" for an interval [a, b] in (- 1, 1).

LEMMA 3. The (n + 1)-tuple {X 1,... Xn+ 1} foyms an "n-skeleton" of the
compact set E c (- 1, 1) if and only if

max
xE

(nxl Xn+l(X))2)x2
(q*xl Xn+l(Xl))

2
(dn(BH2,C({Xl,...,Xn+l})))2

(35)

where Bxl x,+l
is Blaschke product with zeros at xl,... Xn+ 1"
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Proof
that

Suppose that XI,... Xn+ form an "n-skeleton" of E. It implies

where x is an arbitrary point of E.
Let q’, q L((xa,...,Xn+a,X) be the extremal pair of orthonormal

functions in the sense of minl., maxz tx Xn+O([x(Z)l 2 + 2(Z)12). We
may assume that L(x,..., Xn+i) and, herefore,

max [( z)l2
min max I( z)[

Z{X Xn+ 1} L(Xl Xn+ 1) z{x Xn+ 1}

dn(BH2, C(E)). (36)
It follows from Theorem 3 that if equality holds in (36), then

]7(xi)l d"(BH2,C(E)), i= 1,...,n + 1

and, hence,

which implies that

Thus

=0, i= 1,...,n+ 1,

V/1 x 2

((Z) BX1 Xn+l(Z) 1 xz

(((X))2
-[’- (((X))2 ((X X l(x))

2
* +

1 --X 2

Conversely, suppose that (35) holds. It implies that for every x E,

dn(BH2,C({Xl,...,Xn+l})) dn(BH2,C({Xl,...,xn+l,x})). (37)
Let us show that this condition is sufficient for the (n + 1)-tuple {xl,..., xn+ 1}
to form an "n-skeleton." Suppose that

dn(Bn2, C(E)) > dn(nH2, C{ Xl,... xn + 1} )
and let ql,..., (n be the orthonormal basis of the orthogonal complement of

in L({Xl,.. Xn/l). Then(#X l, Xn

max K(x,x)- E
xE i----1

> max K(x,x) E I/(x)l2 (*, Xn+l(X))2
x{xi xn+ 1} i’=l

The last inequality contradicts (37).
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Remark. It immediately follows from the lemma that the (n + 1)-tuple
{Xl,..., Xn/l}, which satisfies (35), is the extremal (n + 1)-tuple, i.e.,

d"(BHz, C({x1,..., Xn+l})) max
{Z Zn+l}CE

d"(BH2 C(( z1,... Zn+ 1} ))"

Example 2. Let r0 be the root of the equation 3r 6 4r4 4r 2 + 4 0
which lies between 0 and 1. If r < r0, then

d2(BHe,C(-r,r)) r 2

4- 3r4

and the points {-r, 0, r} form a "2-skeleton" of the interval (-r, r).

Proof The function q* L(-r, 0, r)which has norm 1 and equioscil-
lates at the points {-r, 0, r} is

(2- r4)z2- r 2

4 3r 3 (1 r2z 2)

Let us check (35). We have

B(z) z
r2 Z2

1 z2r2

(O(x))2 [(2- r4)x 2 r2]2
(x) (*(x))2 +

1 -x2
(4- 3r4)(1 r2x2)2

x2(r 2 x2)2

(1 r2x2)2(1 x2)
x6(r4 r 8) + x4(r8 + 4r 6 4r4r 4r 2 + 4) + x2(-3r8 + 2r6 + 3r4 4r2) + r4

(4 3r4)(1 r2x2)2(1 x2)

(X) (q*(O))2 (X)
4r

2X

(4 3r4)(1 r2x2)(1 X 2) "P(x),

where P(x) r4x 4 + x2(2r6 4r4 4r 2 + 4) (3r 8 4r 6 4r 4 + 4r2).
P(x) is a quadratic polynomial in x 2 which has only two real roots, at

x r and x -r (since 3r 8 4r6 4r4 + 4r 2 rZ(3r6 4r 4 4r 2 / 4)
> 0 if x < r0) and, therefore P(x) < 0 for x (-r, r).
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Problem.
for every n?

Is it true that there is an "n-skeleton" for the interval (-r, r)
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