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SIMPLE INFINITE DIMENSIONAL QUOTIENTS OF C*(G)
FOR DISCRETE 5-DIMENSIONAL NILPOTENT GROUPS G

PAUL MILNES AND SAMUEL WALTERS

Introduction

In each of 3 and 4 dimensions there is a unique (up to isomorphism) connected,
simply connected, nilpotent Lie group, which we call G3 and G4, respectively (fol-
lowing Nielsen 11 ]). In 10] we showed that the simple C*-algebras A04 arising from
Anzai flows (with irrational 0), which had been studied in [7], 12], and [20], are iso-
morphic to simple infinite dimensional quotients of C* (Ha), where H4 is the lattice
subgroup of G4, in the same way that the irrational rotation algebras A03 (as we call
them to conform with our other notation) are isomorphic to such quotients of C* (H3),
where H3 is the lattice subgroup of the Heisenberg group G3. Also determined in 10;
Theorem 2] were crossed product presentations of the A0a’s. The 5-dimensional case,
which is studied in the present paper, is immediately complicated by the existence
of 6 (non-isomorphic) connected and simply connected, nilpotent, Lie groups G5,i,
1 < < 6 (see 11]). Following the Preliminaries, a section is devoted to each of
these groups.

For each of the six Lie groups G5,i we identify a lattice subgroup H5,i (correspond-
ing to H3 C G3) in a natural way. This subgroup is obtained from some operator
equations (corresponding to UV .VU) that determine a faithful representation of
H5,i which generates a simple C*-algebra Jt with a unique tracial state (correspond-
ing to the irrational rotation algebra A03). These algebras are infinite dimensional
simple quotients of C* (H5,i). Each section concludes by identifying the other infinite
dimensional simple quotients of C* (H5,i) namely, those arising from a non-faithful
representation of H5,, and we present them as matrix algebras over an irrational
rotation algebra in most cases.

Analogues of the simple quotients arising from the non-faithful representations (as
described above) exist for C* (H4), but not for C* (H3); the irrational rotation algebras
A03 exhaust the infinite dimensional simple quotients of C* (H3). (This situation for
H3 also holds for the group Hs,; see Theorem 1.2.)

Here are some further comments about the structure of the paper. In the Prelimi-
naries, notation is established for C*-crossed products; also we give a brief summary
of the results we need about the irrational rotation algebras A03 and, more especially,
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3 6 PAUL MILNES AND SAMUEL WALTERS

their 4-dimensional analogues A04. Furthermore, in each Section i, < < 6, there
appears Theorem i. 1 establishing results about those C*-algebras 4 that arise from
a faithful representation. (The proofs of these results are discussed in some detail in
Section 1, the proofs in later sections being similar.) The infinite dimensional simple
quotients of C* (Hs,i) are listed in Theorem i.2.
We take this opportunity to thank the referee for pointing out that the matrix

presentations in the non-faithful situation would be possible, and for many other
helpful suggestions.

O. Preliminaries

Terminology is to be consistent throughout. Thus, for example, G3 is the con-
nected, simply connected, nilpotent, Lie group of dimension 3, G3 3 with multi-
plication

(x, y, z)(x’, y’, z’) (x + x’ + zy’, y + y’, z + z’);
this notation is as in Nielsen ]. Then H3 Z3 is the lattice subgroup of G3. Let
) e2i for an irrational 0 and let U and V be unitaries satisfying UV ZVU;
then the C*-algebra generated by U and V is A30, as is the C*-algebra generated by the
representation (k, m, n) - )kvmun of H3. From each of Nielsen’s connected Lie
groups G, we get analogously the lattice subgroup H, which is often a subgroup not
of G, but of an isomorphic group with similar multiplication. (See the discussion of
H4 near the end of the Introduction in 10].) Then the simple C*-algebras A studied
in this paper come from representations of the (various) H’s; see the remarks at the
beginning of the section on A’ Here, and throughout the paper, use is made of the
1-1 correspondence between (non-degenerate) representations of C* (H) and unitary
representations of H [3; 13.9.3].

To present the results and proofs of the paper, it seems best to establish notation
for C*-crossed products; the discussion which follows is condensed from 10], where
more detail is given. (Relevant references are [2 1, 22, 24].)

Zeller-Meier crossedproductformulation. Let G be a discrete group with identity
e and let A be a C*-algebra. Assume that s - ors, G -- Aut A, gives an action of G
on A and that there is a cocycle ot from G x G into the unitary group of the center of
A, so that the following equations (analogous to those for Schreier group extensions)
are satisfied:

tre(a) a and c(s, e) or(e, s) 1,

a(s, s’)a(ss’, s") (a(s’, s"))a(s, s’s")
for s, s’, s" G and a A. Then, for f and g in the Banach space e(G, A), the
convolution product f g and involution f* are defined by

f g(s’) f(s)trs(g(s-s’))ot(s,s-ls’)
sEG
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and f*(s) rs (f(s-)*) ct(s, s-l)*; with these definitions, el (G, A) becomes a Ba-
nach *-algebra. The C*-crossed product C* (A, G, ct) is defined to be the enveloping
C*-algebra of e(G, A); the notation is abbreviated to C* (A, G) when a is trivial,
and to C*(G, ct) when A C. For a A and s G, the functions as and ds in
el (G, A) C C*(A, G) are defined by as(s) a, as(s’) 0 otherwise, and ds(s)
(the identity of A), 8s (s’) 0 otherwise. (Thus as

Notation. Depending on the context, the symbol v denotes the function v v
in C(T) orthe function (to, v) - v in C(qI’9), and w denotes the function (w, v) - to

in C(ql’2).

We conclude this section with a discussion (from 10]) of the 4-dimensional case.
The connected nilpotent group G4 ]14 and its lattice subgroup H4 Z4 have the
multiplication formula

(j,k,m,n)(j’,k’,m’,n’) (j+j’+nk’+m’n(n-1)/2, k+k’+nm’,m+m’,n+n’).

Let unitaries U, V and subsidiary operator W satisfy

UV WVU, UW )WU and VW WV, (0.1)

and let Ao4 denote the C*-algebra generated by U and V. These operators give a
representation yr" (j, k, m, n) }- ZJ WkVmUn of H4 that also generates Ao4.

The reader should note that for these (and later) algebras, we have introduced the
subsidiary operator(s)only to control the notation. Thus W [U, V] UVU-1V-here, and saying

U, V and W satisfy (0.1)

is equivalent to saying

U and V satisfy [U, [U, V]] X and [V, [U, VII 1.

We will sometimes say (e.g., in the next theorem) merely that

U and V satisfy (0.1);

the reader must then recall that the first equation of (0.1) defines the subsidiary
operator W in terms of U and V.

0.1 THEOREM. [12, 7, 20, 10] The C*-algebra A is simple and is the unique
(up to isomorphism) C*-algebra generated by unitaries U and V satisfying (0.1).
Furthermore, A is a quotient ofC* (H4).

There are infinite dimensional simple quotients of C* (Ha) apart from the A’s.
They are given in the next result 10; Theorem 3].
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0.2 THEOREM. Let ), be a primitive qth root of unity (q > 1), let Zq be the
subgroup oft generated by ), and let lz e2ri# for an irrational . Define a flow
on Zq x T by f(w, v) (,w, lzwv), and denote the generated C*-crossed product
C*(C(Zq ), ) by qA#. Then qA# is simple and is the unique (up to isomorphism)
C*-algebra generated by unitaries U and V satisfying

UV IzWVU, UW )WU, VW WV and Wq 1. (0.2)

Furthermore, qA# is isomorphic to the matrix algebra Mq (A3v) and is a simple quo-
tient of C* (H4), where e2riy (-1)q+l/zq.

1. The simple quotients AS0 of C* (Hs,

Let ) e2riO for an irrational 0, let unitaries U, V, W and X satisfy

UV ZVU, WX ZXW, UW WU,
UX XU, VW WV and VX XV, (1.1)

and let AS0 denote the C*-algebra generated by U, V, W and X.
A "discrete group construction" in 10] shows how to construct a group from some

unitaries satisfying equations like (1.1); the essential property of the group is that it
has a representation whose generated C*-algebra is just the C*-algebra generated by
the unitaries. The result here is a group Hs, (= Z5 as a set) with multiplication

(h, j, k, m, n)(h’, j’, k’, m’, n’) (h + h’ +nm’ + kj’, j + j’, k + k’, m + m’, n + n’),
(1.2)

and inverse (h, j, k, m, n)-1 (-h + nm + kj,-j,-k,-m,-n); it is the lattice
subgroup of Nielsen’s Gs,1 5 with multiplication (1.2) I11]. The representation
of H,I is given by r" (h, j, k, m, n) - .hxJwkvmun, and obviously generates
A05,1.

The next theorem asserts that the C*-algebra A’ is simple and has a unique tracial
state, and Theorem i.1 has the same conclusion for the C*-algebras in Section i,
2 _< _< 6. The existence of the unique tracial state is easy to verify directly in all
these results (and can also be proved by citing results from the literature). The proof
of simplicity can be achieved in a number of ways depending on which presentation
as a C*-crossed product one uses for the algebra.

Discussion ofthe proofofsimplicity in Theoremi.1, _< _< 6. The C*-algebras
4i in Theorem i.1, 1, 2, 3, 5 (as well as the ’other’ quotients at the end of
Sections 2, 3 and 5) have minimal flow presentations analogous to C* (C(T), Z) for

A03 and C* (C(T2), Z) for A04. This situation is appealing because of its connection
with geometry and topology; it yields the most attractive concrete representations
of the algebras. (These representations are analogous ,to the representation of the
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irrational rotation algebra A03 on L2(q).) A classic result of Effros and Hahn [4;
Corollary 5.16] asserts the simplicity of such C*-algebras. (For 2, 5, where the
flow is generated by a single homeomorphism, the special case of the Effros-Hahn
result as proved by Power 18] can be used.)

The C’algebras Jh and .A2 can also be proved to be simple with results of Slawny
[23], Poguntke [17], or Baggett and Packer [2], while the simplicity of ,A4 and A6
follows from results of Pimsner-Voiculescu 16] and Kishimoto [8]. The simplicity
of all of the C*-algebras 4i, 1 <_ _< 6, can be established with Packer [13], or (as
the referee suggests) Packer and Raeburn 15].

1.1 THEOREM. Let . e2riO for an irrational O.

(1) There is a unique (up to isomorphism) simple C*-algebra AS0’ generated by

unitaries U, V, W and X satisfying (1.1). Let Z2 act on C(T2) by (k, n): f -f o o , where the commuting homeomorphisms bl and 2 are given by
tl (1/), U) (1/3, 1)) and tE(tO, 13) (tO, 13); then

AS0, C*(C(’’2), Z2).

(2) Let r’ be a representation of Hs, such that re rr’ (as scalars) on the
center (Z, 0, 0, 0, 0) of Hs,1, and let A be the C*-algebra generated by
Then A A5o’ via a unique isomorphism o9 such that thefollowing diagram
commutes.

Hs, ----> A .1

A

(3) The C*-algebra ASo’l has a unique tracial state.

Proof. (1) Note that the flow (Z2, ,2) with action given by

(k, n)" (w, v) b2k o b (w, v) (Xk w, Xn v)

is minimal and effective; so C*(C(’]2), 7Z2) is simple, by Effros and Hahn [4; Corol-
lary 5.16].

Once the simplicity of C* (C(2), Z2) is established, it is straightforward to show
that any C*-algebra A generated by 4 unitaries U, V, W and X satisfying the equa-
tions (1.1) is isomorphic to C*(C(q2), Z2). Since X and V commute, there is a
-homomorphism or: C(T2) A such that rr(w) X and or(v) V; in fact,

rr(f) f(X, V). Define a homomorphism p: Z2 --> A by p(k, n) wkun, noting
that rr(f o 2k o 4)]’) p(k, n)rr(f)p(k, n)* holds for f w or v, and hence for all
f 6 C(’Ip2). By the universal mapping property of C* (C(’II’2), Z2) [24], the covariant
pair (rr, p) yields a homomorphism of C*(C(’I[’2), Z2) onto A mapping w(o,o), v(o,o),
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,0) and 80,), respectively, to X, V, W and U; since C*((’2), 7/,2) is simple, the
homomorphism is an isomorphism.

(2) The hypotheses imply that (1.1) is satisfied by the unitaries X’, W’, V’ and U’
given by zr’(h, j,k,m,n) ,hx’Jw’kv’mutn. Part and its proof now yield the
result.

Note. The normal subgroup N (Z, 0, 0, 0, 0) C Hs, with H5,1/N 7/.4 gives
rise to a presentation of Ao5’1 that uses a cocycle Ix" Z4 x Z4 - C defined by

Ix((j, k, m, n), (j’ k’ m’ n’)) ,nm’+kj’.

namely AS0’ C* (Z4, ix).
This presentation makes it possible to view the algebra AS0’ as generated by a

representation of canonical commutation relations (CCR) over (Z4, b), where b is
a bicharacter on Z4 (terminology as in Slawny [23]). Of course, b is just the co-
cycle ix in the presentation above. The representation W of CCR over (Z4, b), or
b-representation of Z4, is given by

W(j, k, m, n) Xj WkVmUn,
U, V, W and X satisfying (1.1), so that

W(s)W(s’) b(s, s’)W(s + s’), s, s E Z4.

Much as above, A50’,2o (in the next section) is generated by a b-representation of
CCR over Z3.

Other infinite dimensional simple quotients of C*(H5,1). When ) e2riO for
irrational 0, As0’1 is an infinite dimensional simple quotient of C*(Hs, I); all such
quotients are of this form and the homomorphism

(h, j, k, m, n) t> hxjWkVmUn, Hs,1 _> AS0,1
(as at the beginning of the section) is l-1, in complete analogy with the situation
for the Aoa’s and H3. To see this, note that any other simple quotient A of C* (Hs, 1)
has a faithful irreducible representation with (1, 0, 0, 0, 0) E Hs,1, the generator of
the center of H5,1, mapping to a primitive qth (say) root . of unity. When q > l,
one can modify the presentation C*(C(q[’2), Z2) of A05’1 (in Theorem 1.1) and obtain

2 2 acting on itself by left translation) afrom the minimal flow (Zq2, Zq) (the group Zq
2presentation of A as C* (C(Zq2), Zq), and so A is finite dimensional. (The symbol Zq

denotes the cyclic group with q elements; as used in C* (tT(ZEq), ZEq), think of it first
as the subgroup {,,r 0 r < q of qI’, and then as Z/qZ {r 0 < r < q }, so that

2 (Zq2) by ((k, n)f)(w, v) f()kw, )nv), just like thethe action of Zq on t7 is given
action ofZ2 on C(ql"2) in Theorem 1.1.) When q 1, A is generated by an irreducible
representation of Hs, that factors through Hs,/(Z, 0, 0, 0, 0) - Z4, and so comes
from a character of Z4.
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1.2 THEOREM. A C*-algebra A is isomorphic to a simple infinite dimensional
quotient ofC* (Hs, 1) if, and only if, A - ASo’1 for some irrational O.

2. The simple quotients A’, of C* (H5,2)

Let unitaries U, V and W satisfy

UV I,VU, UW lxWU and VW WV, (2.1)

where # e2ni and . e2niO are linearly independent, i.e., )r/xr’ 1 for r, r’ 6 Z
unless r 0 r’; let A’, denote the C*-algebra generated by U, V and W.

By the same process as for the equations (1.1) in the previous section, the equations
(2.1) yield a group with a representation whose generated C*-algebra 5.2s Ao’,. The

group is H5,2 (= Z5 as a set) with multiplication

(h, j, k, m, n)(h’ "’ n +n’),j k’, m’, n’) (h + h’ + nk’ j + j’ +nm’, k +k’ m +m’,
(2.2)

and inverse (h, j, k, m, n)-1 (-h + nk,-j + nm,-k,-m,-n); it is the lattice
subgroup of Nielsen’s G5,2 5 with multiplication (2.2). The representation of
Hs,z is given by re" (h, j, k, m, n) -> lzhMwt’vmu", and obviously generates A50’,2o.

2.1 THEOREM. Let lz e2ni and ) e2niO be linearly independent.
(1) There is a unique (up to isomorphism) simple C*-algebra A50’,2o generated by

unitaries U, V and W satisfying (2.1). Let Z act on C(q[,2) by n: f - f o qbn, where
cp is the homeomorphism offf2 given by (w, v) (/zw,)v); then

Ao’,2o C*(C(’I[’2), Z).

(2) Let rr’ be a representation ofHs,2 such that zr zr’ (as scalars) on the center

(Z, Z, 0, 0, 0) ofHs,2, and let g be the C*-algebra generated by rr’. Then g A50’,20
via a unique isomorphism to such that thefollowing diagram commutes:

n 5,2H5,2 Ao,o

A

(3) The C*-algebra A5o:2o has a unique tracial state.

Proof. As in Section 1, we note that the flow (Z, T2) with action given by

n: (w, v) Cn(w, v) (lznw, ,knv)

is minimal and effective; so C*(C(2), Z) is simple [4], [18]. The rest of the proof is
similar to that of Theorem 1.1. El
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It seems that the AS0’.2,o’s are among the simple C*-algebras on which the 3-torus ,]3
can act ergodically, as in Albeverio and HCegh-Krohn [1; p.16]; however, we have
not checked the details.

Other infinite dimensional simple quotients ofC* (H5,2). When . and/x are lin-
early independent (zr/xr’ for any r, r’ Z unless r 0 r’), A50’,20 is an infinite
dimensional simple quotient of C* (H5,2) and the homomorphism

zr" (h, j,k,m,n) -+ lzhjJwkvmun, H5,2 -+ A’2

(as at the beginning of the section) is 1-1. But there are other infinite dimensional
simple quotients of C* (H5,2); for them the homomorphism is not 1-1. (Comments
analogous to these hold in Sections 3-6.)

1. Suppose that just one of k and/z is a root of unity; e.g., suppose that ;k is
a primitive qth root of unity, and suppose that A is a quotient of C*(H5,2) that is
irreducibly represented and generated by unitaries U, V and W satisfying

(2.1) UV ,kVU, UW IzWU and VW WV.

From (2.1) it follows thatVq commutes with U and W, and so by irreducibility equals
O’I, a multiple of the identity. Since V is a generator of A, the substitution V r/V,
where Oq ’, gives V I, while (2.1) still holds with Vl replacing V. Now we

can modify the presentation C* (C(ql"2) Z) of A5’2 (in Theorem 2.1) and present A
as C* (C(q x Zq), Z) with the action of Z on C(qI’ x Zq) generated by the minimal
homeomorphism p: (w, v) - (/zw, v) ofql" x Zq; thus C*(C(ql" x Zq), Z) is simple,
and A is isomorphic to it.

2. If neither nor/x is a root of unity, but .r/zr’ for some r, r’ 6 Z with
r # 0 r’, then lzpq ,kp’q, where (p, p’) 1, i.e., sp + s’p’ for some
s, s’ Z. Thus we are starting with a C*-algebra A generated by unitaries U, V
and W satisfying (2.1), and set L izP-p’, tz1 s’,s, gl WPV-p’ and
W Ws’ Vs. Then .1 is a primitive qth root of unity and/Zl is not a root of unity,
since

lZ sp+s’p’ (izp)slzs’p’ (Xl,P’)Slzs’p’ .Sl(XSlzs’)p’

also U VI . Vl U, UWl /. Wl U and VW WV, so U, V and W
generate a C*-algebra isomorphic to a C*(C(q x Zq), Z), as in comment above.

p’ -s’, C*Since W W V and V WV this -algebra is A.
3. If both ,k and /z are roots of unity, it follows from (2.1) that there is an

N 6 I such that Us, Vu and Wu are scalars (since A is still assumed to be ir-
reducibly represented); thus the C*-algebra A consists of finite linear combinations
of {Wk Vm U" 0 <_ k, m, n <_ N} and so is finite dimensional.

The preceding comments are summarized in the next theorem.
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2.2 THEOREM. A C*-algebra A is isomorphic to a simple infinite dimensional
quotient of C* (H5,2) if, and only if, A is isomorphic to Ao5’,2 for some linearly inde-
pendent and/x, or to C* (t7( x Zq), Z) (as in case 1 above)for some , a primitive
qth root ofunity, and lz not a root ofunity.

We thank the referee for pointing out that results of Rieffel and Green 19], [6]
imply that the algebras C* (tT(T x Zq), Z) have matrix presentations. However, our
approach here, and in later sections, has been to give explicit matrix presentations of
the other quotients, as in 10; Theorem 3].

2.3 THEOREM. Let be a primitive qth root ofunity and suppose that lz e2ri

is not a root of unity. Then the C*-crossed product C*(C (ql" x Zq), Z) (as above) is
isomorphic to Mq 3(Aqo).

Proof. Let unitaries Uo and Wo satisfy UoWo [zqWoUo, so that U0 and Wo
3 Then define the following 3 unitaries in Mq (Aqo)3 (all unspecifiedgenerate Aqo.

entries being 0).
U’ has Uo in the upper fight hand comer and l’s on the subdiagonal.
W’ has Wo, Wo, 2Wo -ffq-lWo on the diagonal.
V’ has 1, , 2, q-- on the diagonal.
Then U’, V’ and W’ satisfy the equations (2.1)and generate Mq 3(Aqo). [l

3. The simple quotients A5o’3 of C* (H5,3)

Let . e2riO for an irrational 0, let unitaries U, V, W and subsidiary operator X
satisfy

UV XVU, UW-- WU, UX LXU,
(3.1)VW .WV, VX XV and WX XW,

and let AS0’3 denote the C*-algebra generated by U, V and W.
The equations (3.1) yield a group with a representation whose generated C*-algebra

is A05’3. The group is H5,3 (-- Z5 as a set) with multiplication

(h, j, k, m, n)(h’, j’, k’, m’, n’) (h + h’ + mk’ + nj’ + m’n(n 1)/2, (3.2)
j + j’ +nm’, k +k’, m +m’, n +n’),

and inverse

(h, j, k, m, n)-l (-h + mk + nj mn(n + 1)/2, -j + nm, -k, -m, -n);

we think of it as the lattice subgroup of Nielsen’s G5,3 5 with multiplication
(3.2) [11] (although, in fact, Nielsen’s group has a slightly different, but isomor-
phic, multiplication). The representation of H5,3 is given by zr" (h, j, k, m, n) -.hxJWkVmUn, and obviously generates AS0’3.
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It seems worth pointing out that the equation WX XW follows from the other
equations of (3.1). For WX W(UVU-V-) (U -V U- ZV)W XW.
An analogous remark holds for the 5th equation in each of (5.1) and (6.1) ahead. We
also point out that Z5 is not a subgroup of Nielsen’s G5,3, and that it is not obvious
how to pick a lattice subgroup of G5,3 that is analogous to H3 C G3; the simplest
isomorphism we have been able to devise of our H5,3 into Nielsen’s G5,3 is

(h, j,k,m,n) > (h + j/2, j,k,m,n).

3.1 THEOREM. Let . e2riO for an irrational O.
(1) There is a unique (up to isomorphism) simple C*-algebra A’3 generated

by unitaries U, V and W satisfying (3.1). Let Z2 act on C(2) by (k, n)" f ->

f o p-k p, where the commuting homeomorphisms cpand cP2 ofq2 are given by
Pl (w, v) (w, .v) and tP2(w, v) (.w, wv). Then

A,3 c*{{’r2,

(2) Let zr’ be a representation ofHs,3 such that rr rr’ (as scalars) on the center
(Z, 0, 0, 0, 0) ofHs,3, and let A be the C*-algebra generated by r’. Then A ASo’3

via a unique isomorphism 09 such that thefollowing diagram commutes:

H5,3 ----+ A ,3

A

(3) The C*-algebra AS0’3 has a unique tracial state.

Proof. Note that the flow (Z2, ,][,2) with action given by

(k, n)" (w, v) -> qb-l o (w, v) ()nw, .-k+nn-)/2wnv)

is minimal, since the Anzai flow (Z, ,]2) generated by $2 alone is [5; 3.3.12]; (Z2, ,]2)
is also effective, so C* (C(2), Z2) is simple. The rest of the proof can be modeled
on that of Theorem 1.1; see also the Discussion in Section 1. El

In the next note, we shall need the presentation ofA’3 coming from the subgroup
N (Z, 0, 0, 0, 0) C H5,3, for which Hs,3/N H3 x Z. For this presentation.,
define a cocycle or: (H3 x Z) x (H3 x Z) -- C by

ot((j, k, m, n), (j’ k’ m’ n’)) jmk’-t-nj’-t-m’n(n-l)/2

Then A’3 C* (H3 x Z, ct).



SIMPLE QUOTIENTS OF C* (g) 325

Note. As was indicated in the notes in Sections and 2, the C*-algebras A50’1

and AS0’, can be thought of as generated by representations of canonical commutation
relations (CCR) over (Zr, b), where b is a bicharacter on Zr. The algebras AS0’i,
3, 5, 6, and A50’,4 can be thought of as generated analogously by such representations
only over non-abelian groups. From the presentation of AS0’3 just given, the group
required is H3 x Z and b is no longer a bicharacter, but rather b is the cocycle
Then the required representation W of CCR over (H3 x Z, b), or b-representation of
H3 x Z, is given by

W(j, k, m, n) XjWk VmUn,
where U, V, W and X satisfy (3.1), so that

W(s)W(s’) b(s, s’)W(ss’), s, s E H3 x Z.

Now Packer’s theorem [13] shows that the C*-algebra C*(H3 x Z, t) generated by
the b-representation is simple ([23] no longer being applicable).

Other infinite dimensional simple quotients of C*(H5,3). Suppose that ) is a
primitive qth root of unity; suppose also that A is a simple quotient of C*(H5,3)
that is irreducibly represented and generated by unitaries U, V, W and subsidiary
operator X satisfying (3.1). Then wq commutes with U and V and so by irreducibility
equals ,’I, a multiple of the identity. Since W is a generator of A, we can substitute
W , W, where ’q ", and have W I, while (3.1) still holds with W1
replacing W. Also, xq Ix’I, so if Ix’ is not a root of unity, substitute X IxX1,
where Ixq Ix’, in (3.1); then the following equations are satisfied:

UV IxX VU, UW WU, UX ,XU, VW
VX X V, WX1 X1WI and W X I. (3.3)

Now we can modify the presentation C* (C(2), Z2) for AS0’3 (in Theorem 3.1) and
present A as C* (C(Zq x q[’), Zq x Z); the action of Zq x Z on C(Zqx ql") is generated
by the commuting homeomorphisms of Zq x , (x, v) - (x, v) and (x, v) -(.x, Ixxv). The unitaries

X x(0,0), V 13(0,0), U t(0,1 and W t(l,0

ine(Zq xZ, C(%q X"])) C C*(C(%q xJ), %q xZ) satisfy (3.3). (Herex E C(gq xrJ)
is the function (x, v) x.) The flow (Zq x Z, Zq x ’) is minimal [10; Theorem 3]
and effective, so C* (C(Zq x "i[’), Zq x Z) is simple and isomorphic to A.
When Ix is a root of unity (as well as k), the C*-algebra A is finite dimensional.

The argument for this is analogous to that made in the previous section.

3.2 THEOREM. A C*-algebra A is isomorphic to a simple infinite dimensional
quotient ofC* (H5,3) if, and only if, A is isomorphic to A’3 for some irrational O, or
to C*(C(Zq x qi’), Zq x Z) (as above) for some ), a primitive qth root of unity, and

Ix not a root ofunity.
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The referee pointed out that the method of proof of Proposition 1.6 of Lee and
Packer [9], a result that is about 2-step groups, can be made to apply here and show
that C* (C(Zq x ql"), Zq x Z), and the analogous algebras in Sections 4-6, have matrix
algebra presentations. We avoid the modification of this proof to our 3- and 4-step
settings by giving explicit matrix presentations of the other quotients in Sections 3-6.

3.3 THEOREM. When . is a primitive qth root of unity and lz e2rri is not a
root of unity, the C*-crossed product C*(C(Zq x qI’), Zq x Z) (of Theorem 3.2) is
isomorphic to Mq2 (Aq2o).

Proof Let unitaries Uo and Vo satisfy UoVo Izq2VoUo, so that Uo and Vo
generate Aq2o.3 First define X2 6 Mq (C) to have l, , 2, q-1 on the diagonal;

U2 Mq (Aq2o) to have Uo in the upper right hand comer and l’s on the subdiagonal;

V2
_
Mq 3 -q -(q-l)q(Aq2) to have Vo, Vo, 2q Vo V0 on the diagonal; so

U2V2 ILqv2u2, U2X2 ,X2U2 and V2X2 X2V2,

and U2, V2 and X2 generate Mq (Aq2o). Now let I be the identity matrix in Mq (C),
and define unitaries U’, V’ and W’ in Mq(Mq(gaq2,)) Mq2(Aaq2,), all unspecified
entries of which are 0.

U’ has U2, IzXEU2,/2XEU2,2 /L3XEU23 /zq-1X-1 UEOn the diagonal,
V’ has V2 in the upper right hand comer and I’s on the subdiagonal, and

W’ has I, I, 21, 31 q-11 on the diagonal.
Then U’, V’, W’ and subsidiary operator X’ satisfy (3.3) and generate Mq 3(Aq29)

(X’ having XE’S on the diagonal).

4. The simple quotients A’,4 of H5,4

Let unitaries U, V and subsidiary operator W satisfy

UV WVU, UW XWU and VW IWV, (4.1)

5,4 C*-where/z e2ri and L e2riO are linearly independent; let A0,0 denote the
algebra generated by U and V. The equations (4.1) yield a group with a representation
whose generated C*-algebra is A’,4. The group is H5,4 (= Z5 as a set) with multipli-
cation

(h, j, k, m, n)(h’, j’, k’, m’, n’) (4.2)
(h q- h’ q- ink’ + mnm’ + nm’(m’ 1)/2, j + j’ + nk’ + m’n(n 1)/2,
k +k’ +nm’ m +m’ n +n’)
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and inverse

(h, j, k, m, n)-1 (-h +mk nm(m + 1)/2, -j + nk mn(n + 1)/2,
k + nm, -m, -n);

we think of it as the lattice subgroup of Nielsen’s G5,4 R5 with multiplication
(4.2) [1 1] (although, in fact, Nielsen’s group has a slightly different, but isomor-
phic, multiplication). The representation of H5,4 is given by zr" (h, j, k, m, n) >
#h)j WkVmUn, and obviously generates A’,4.

Most of the results in this section appear in Packer [14], where (among other
things) the equations (4.1) are studied; the group H5,4 is identified; the C*-algebras
A’,4 (called in 14] the algebras ofclass 3 associated with (4.1)) are classified, shown
to be generated by representations of H5,4, and shown.to be simple with unique trace;
and similarly for the algebras A (called ofclass 2 in [14]) in Theorem 4.2 below.

For completeness, the results for H5,4 are presented in the same format as for the
other Hs,i’s. Aspects given here that are not dealt with in 4] include the connection of
H5,4 with the Lie group G5,4, and also the algebras A2 (in Theorem 4.2 below), which
appear here as the simple (rather than universal) infinite dimensional C*-algebras
generated by unitaries satisfying (4.1) when and/z are both roots of unity. The
algebras A2 here are simple quotients of Packer’s class algebras. Also, the matrix
presentation for the algebras A2 appears here for the first time (Theorem 4.3 below).

4.1 THEOREM. Let lz e2ri and ) e2trio be linearly independent.
(1) There is a unique (up to isomorphism) simple C*-algebra ASo’, generated by

3 be generated by unitaries U’ and V’unitaries U and V satisfying (4.1). Let A
3 by v: U’satisfying U’V’ IzV’U’. Define an automorphism v ofA V’U’,

3 ThenV’ ) V’" v determines an action ofZ on A.
C (Ao, Z).

(2) Let r’ be a representation ofH5,4 such that zr zr’ (as scalars) on the center

(Z, Z, 0, 0, 0) ofH5,4, and let A be the C*-algebra generated by r’. Then A - A’,4
via a unique isomorphism 09 such that thefollowing diagram commutes:

r 5,4H5,4 A0,o
r’ /o

A

(3) The C*-algebra A5o’,4 has a unique tracial state.

Proof. Note first that an argument as in [10; remark before Theorem 3] shows
is outer, and thenthat each automorphism v", n # 0, of the simple C*-algebra
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3[8; Theorem 3.1] yields the conclusion that C (A0, Z) is simple. Specifically, if vn

is inner and is implemented by some unitary T A3, then in K1 (A),
[vn(U’)] [TU’T*] [U’] and [vn(u’)] [)n(n-l)/2V’nU’] n[V’] + [U’];

since K1 (A3) - Z2 is generated by [U’] and [V’] (see [16]), we must have n 0.
The rest of the proof can be modeled on the proof of Theorem 1.1. El

We need another presentation of A’,. Define a cocycle a" H3 x H3 --+ C by

ot((k, m, n), (k’, m’, n’)) mk’+mnm’+nm’(m’-l)/2,nk’+m’n(n-1)/2.

Then A:4 C* (Ha,

Note. The presentation C*(H3, c) of A50:4 above shows how the algebras
can be thought of as generated by a representation ofCCR over the non-abelian group
H3 (see the note in Section 3). Indeed, in [14; Example 1.9], Packer is generating a
class of algebras including the A’,4 ’s in this way.

Other infinite dimensional simple quotients of C* (H5.4). 1. Suppose first that .
and/z are linearly dependent and that/z, at least, is not a root of unity; there is no other
restriction on L, which could be a root of unity. Let A be the C*-algebra generated
by unitaries U and V satisfying (4.1). Then the same formulas as in Theorem 4.1

3 by outer automorphisms; so the generated crossed productgive an action of Z on A,
A1 C*(A3, Z) is simple and A is isomorphic to it. In this case A1 is an algebra of
class 2 14]. When ; 1, the equations (4.1) are essentially equations (0.1) in the
Preliminaries, and A A4.

2. The situation is much the same when . and/x are linearly dependent and .,
at least, is not a root of unity. Explicitly, Theorem 2.9 of 14] shows that then the
algebra generated by unitaries satisfying (4.1) is isomorphic to an A C*(A3,, Z)
(as in case 1) for suitable irrational Ol and rational 01.

3. If and/z are primitive qth and q’th roots of unity, respectively, let q"
lcm {q q’}. Then wq" commutes with both U and V so assuming thatA is irreducibly
represented, we have Wq’’ r/’I a multiple of the identity. If r/’ is not a root of unity,
a modification of’ the second presentation given above for A50’, yields a simple C*-
algebra isomorphic to A. First, the substitution W W where r/q" r/’, changes
(4.1) to

qt!UV lWl VU, UW1 )LW1U, VW1 lZWl V and W 1. (4.3)

Now use (4.3) to simplify the product (WVm un)(Wkl Vm’ Un’) and get

lLmk’+mnm’+nm’(m’- 1)/2,nk’+m’n(n- 1)/2 r]nm’ Wkl +k’+nm’ vm+m un+n
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Then the group we need is H 7/q,, X 7/ X 7/, with multiplication

(k, m, n)(k’, m’, n’) ((k + k’ + nm’)mod p, m + m’, n + n’)

and the cocycle we need is c" H x H C defined by

ct((k, m, n), (k’, m’, n’)) Id,mk’+mnm’+nm’(m’-l)/2xnk’+m’n(n-1)/2r]rim’

Much as in the note in Section 3, the simplicity of A2 C* (H, ct) follows from 13],
so A is isomorphic to A2.

When/x 1 in this case, the algebra A is isomorphic to q,A#, where 0 e2rti#;
see Theorem 0.2 in the Preliminaries.

4. If 0 is also a root of unity (as well as and/z), then a C*-algebra generated
by unitaries U and V satisfying (4) is finite dimensional; see the argument for the
analogous claim in Section 2.

4.2 THEOREM. A C*-algebra A is isomorphic to a simple infinite dimensional
quotient of C*(H5,4) if, and only if, A is isomorphic to A’, for some linearly in-

dependent L and Iz, or to A1 C*(A, Z) or A2 (as in cases and 3 above,
respectively).

Since none of the .unitaries generating the algebra A1 C*(A, Z) is unipotent,
we conjecture that A is not isomorphic to a matrix algebra; however it can be shown
that A is isomorphic to a subalgebra of MQ(A,) for suitable Q and o’.

4.3 THEOREM. When , lz, rl, q, q’, q" and A2 C*(H, ct) are as in case 3
above, the C*-algebra A2 is isomorphic.to a matrix algebra Mq,,(A3v), where e2rrir’

(_ l)q"+lrlq".

Proof. First choose a primitive q"th root of unity (, for which there are relatively
prime integers c and d such that ) (d and/z (-c. Next choose a, b 6 Z so that
ad bc l, and set

U uavb and V’= Ucvd.
Then U’ and V’ generate the same C*-algebra as U and V, and using (4.3) one verifies
that they satisfy

and

U’V’ o(W V’U’,

UtW1 a[.Lbw1ut (W1Ut

Vtwl )LcdwlV WlVt,
where ) is a power of . times a power of/x, so X is a q"th root of unity. Thus
W’ X WI satisfies W’q" 1, and Theorem 0.2 in the Preliminaries implies that A2
is isomorphic to Mq, (Aar). El
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5. The simple quotients ASo’5 of H5,5

Let . e2riO for an irrational 0, let unitaries U, V and subsidiary operators W
and X satisfy

UV WVU, UW XWU, UX XU,
VW WV, VX XV and WX XW, (5.1)

and let A’5 denote the C*-algebra generated by U and V.
The equations (5.1) yield a group with a representation whose generated C*-algebra

is A’5. The group is H5,5 (= Z5 as a set) with multiplication

(h, j, k, m, n)(h’, j’, k’, m’, n’) (5.2)
(h + h’ + nj’ + k’n(n 1)/2 + m’n(n 1)(n 2)/6,
j + j’ + nk’ + m’n(n 1)/2, k + k’ + nm’, m + m’, n + n’),

and inverse

(h, j, k, m, n)- (-h + nj kn(n + 1)/2 + mn(n + 1)(n + 2)/6,
j + kn mn(n + 1)/2, -k + mn, -m, -n);

we think of it as the lattice subgroup of Nielsen’s G5,5 5 with multiplication
(5.2) [11] (although, in fact, Nielsen’s group has a slightly different, but isomor-
phic, multiplication). The representation of H5,5 is given by zr" (h, j, k, m, n) ->
.hxJ WkVmUn, and obviously generates A0’5

5.1 THEOREM. Let , e2trio for an irrational 0.
(1) There is a unique (up to isomorphism) simple C*-algebra A’5 generated by

unitaries U and V satisfying (5.1). Define a homeomorphism p ofq3 by p (x, w, v)
(Lx, xw, wv); iteration ofqb gives an action ofZ on C(’]3), n: f - f o pn. Then

As0’5 C* (C(’3), Z).

(2) Let re’ be a representation ofHs,5 such that r :r’ (as scalars) on the center
(Z, 0, 0, 0, 0) ofHs,5, and let A be the C*-algebra generated by 7r’. Then A A0’5

via a unique isomorphism w such that thefollowing diagram commutes:

H5,5 -----> A ,5

A

(3) The C*-algebra AS0’s has a unique tracial state.

Proof. Ji [7] and Packer 12] and Rouhani [20] have noted that Anzai flows, like
(Z, ,3) generated by the homeomorphism p, are minimal, so the crossed product
C*((3), Z) is simple and has a unique trace. The proof that A05’5 C*(C(I’3), Z)
can be modeled on the proof of Theorem 1.1. El
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Other infinite dimensional simple quotients of C*(H5,5). Suppose that ) is a
primitive qth root ofunity and thatA is a simple quotient of C* (H5,5) that is irreducibly
represented and generated by unitaries U and V and subsidiary operators W and X
satisfying (5.1). Then xq commutes with U and V and so by irreducibility equals
Iz’I, a multiple of the identity. Put X /zX1 for/gq /t, SO that Xq 1, and
substitute X =/zX1 in (5.1) to get

UV WVU, UW IzX1WU, UX1 X1U,
VW WV, VX X V, WX XW and X --1. (5.3)

1. If/x is not a root of unity, then much as for the other quotients of C* (H5,3), or as
in 10; Theorem 3], we can modify the presentation C* (C(qI’3), Z) for A05’5 in Theorem
5.1 and present the operators U and V (and W and X) with the flow .T" (Z, Zq x T2)
generated by the homeomorphism of Zq X 2, t (X, 1/), I)) (,X, /ZXW, 1/31)). To
see that .T" is minimal, note that

(/)+6qk (x, 1/3, 1)) (,r-k6qk, ,(r+6qk)(r+6qk-1)/21gr+6qkl13,,(r+6qk)(r+6qk- )(r+6qk-2)/6 (lgX (r+6qk)(r+6qk- 1)/2 ll)r+6qk 1))
(,r, r(r-l)/2lgr+6qkll),
r’(r- (r-2)/6xr(r )/2 lg(r+6qk)(r+6qk- )/2 ll)r+6qk 1))

and use the fact that, when ql" is not a root of unity, {(k, k:): k Z} is dense
in "11"2; this is the fact that yields the minimality of the Anzai flow on the 2-torus [5;
3.3.12, for example]. So the C*-crossed product C*(C(Zq x ql’2), Z) is simple and
isomorphic to A with U and V corresponding to l and 1)0 in el(Z, C(Zq x T2)),
where v is the function (x, w, 1)) v in C(Zq x 2).

2. Suppose that/x is also a root of unity, say a primitive q’th root of unity, and
let q" lcm {q, q’}, the least common multiple of q and q’. Then wq" 0’I, a
multiple of the identity. If r/’ is not a root of unity, substitute W r/Wl (as well as

q,,X =/zX) in (5.1), where r/q" 0’. Then W and we can present A using the
homeomorphism tP2 on A’ Zq x Zq,, x qI’, P2(x, w, v) (x, Ixxw, Owv). The
flow (Z, A’) that 2 generates is usually not minimal, so we restrict q2 to 32 x
where 32 C Zq x Zq,, is the finite set

Y {(x, w) (x, w, 1) tp(1, 1, ql’) for some r N}
{(r, r(r-1)/21gr r N}.

Then the flow (Z, 3; x ql’) is minimal; the proof of this is similar to, but easier than,
the minimality proof in case 1 above. So C* (t7(32 x T), Z) is simple and isomorphic
to A.

3. When r/is a root of unity (as well as/x and .), the C*-algebra A is finite
dimensional.
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5.2 THEOREM. A C*-algebra A is isomorphic to a simple infinite dimensional
quotient ofC* (H5,5) if, and only if, A is isomorphic to A’5 for some irrational O, to

C*(C(Zq x ql’2), Z), or to C*(tT(A’), Z) (as in cases 1 and 2 above, respectively).

The referee pointed out that the algebras C*(C(%q )< ,.2), %) and C*(C(3; x ql’), Z)
above are isomorphic to matrix algebras over an irrational rotation algebra. For

t4C* (C(Zq x "1I’2), Z) the simple C*-algebra A , (q) (for an irrational t’) needed for the
matrix algebra is the analogue ofA corresponding to a ’scaled’ variant H(q) of the

t44-dimensional group H4. That is, A , (q) is a simple quotient of C*(H,(q)), and thus
is the C*-algebra generated by an irreducible representation of H(q). This group
and C*-algebra were mentioned in [10; p.633]; the technical detail we need is that

4generators for A (q) are unitaries Uo, V0 and W0 satisfying

UoVo WVoUo, UoWo ( WoUo and VoWo WoV0, (5.4)

where ( e2riY.

5.3 THEOREM. When ) is a primitive qth root of unity and Iz and C*((%q X

q[,2), Z) are as in case above, the C*-algebra C* (C(Zq x ql’2), Z) is isomorphic to
the matrix algebra Mq (A’4r, (q)), where ( e2ri (- 1)q+l/zq.

t4Proof. Let unitaries Uo, V0 and W0 satisfy (5.4), thus generating A v (q)" Then
define unitaries in Mq (A’4r (q)) as follows (all of whose unspecified entries are 0).

U’ has l’s on the subdiagonal and U0 in the upper right hand comer;
V’ has do Vo, dl Wl Vo, d2W-2 Vo, d W-fq-1)

q- 0 Vo on the diagonal;
W’ has bWo, b-ff.Wo, b2,3Wo bq-l.q(q-1)/2Wo on the diagonal, and
X’ has 1, , 2,..., xq-1 on the diagonal.
The constants must be chosen to make these matrices satisfy the equations (5.3);

as defined, they already satisfy all but the first equation. We arrange U’V’ W’V’U’
by letting b be a qth root of

(qa-q)/6lzq(q-1)/2-q-1 -(qa-q)/6-q(q-1)/2 (-- 1)q’l-1

and setting dr -(r3-r)/6lr(r-1)/2-(r-1). Then the matrices satisfy (5.3) and generate
Mq (A’4e (q)). [:]

To identify the algebra C* (C(3; x ql’), Z) with a matrix algebra over an irrational
rotation algebra, we start by determining the cardinality C 13;I of the set 3; in
(in 2 above).

5.4 LEMMA. (a) Ifq is odd, then C lcm{q, q’}, the least common multiple of
q and q’.

(b) Ifq is even and q’ is odd, then C 2 lcm{q, q’}.
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(c) Ifq 2st and q’ 2s’t are both even and and t’ are odd, then

(i) C 2 lcm{q, q’}, ifs > s’,
lcm{q(ii) C q }, ifs + --s’, and

(iii) C lcm{q, q’}, ifs + < s’.

Proof. Now 2 {(r, .r(r-1)/2ljl, ) r e N}, and it follows from the defi-
nition of (Z, 32 x ql’) as a minimal subflow of (Z, A’) that C is the first r e N for
which

(,r, r(r-1)/2ldr (1, 1),

so C is a multiple of q; also it is clear that C _< 2 lcm{q, q’}.
Part (a) follows because aq(aq--1)/2 1 for all a 6 N, when q is odd.
For (b) and (c) where q is even, note that

aq(aq--1)/2 I ifa is even,
|--1 ifaisodd,

so C 2 lcm{q, q’} for (b) and (i) of (c) because lcm{q, q’} is an odd multiple of q
in these cases; also, for (b), /L

n # --1 for any n 6 N. For case (ii) of (c), we have
C 1/2 lcm{q, q’}, because this is an odd multiple both of q and of q’/2, so

Xc(c-1)/z lz
c 1.

Case (iii) of (c) follows similarly, rl

5.5 LEMMA. Theflow (Z, 32 x T) is isomorphic to aflow (Z, Zc x "I[’) generated
by a homeomorphism " (w, v) ,-> (X1 w, r/1 wv), where XI is a primitive Cth root

of unity, and 01 q is chosen appropriately.

Proof. We need to construct a homeomorphism

’" y X J[P {(r, )Lr(r--1)/2ll,r) r < C} x ’F ----> Zc x

that commutes with the actions of Z, i.e., such that r o 2 ap o r on 32 x ql". Define
r as follows for v

r(1, 1, v) (1, v),

o2(1, 1, v) r(X,/z, r/v) o r(1, 1, v) (1, v) (Xl, r/iv),

2 l/t22(1, 1, v) 1"(,2 ./d,2, /d.r/2V) o r(1, 1, v) (1, v) ().21, ,.lr/12v),
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and so on down to

r o Oc(1, 1, v) r(kc, C(C-I)/21d,C, C(C-I)(C-2)/61d,C(C-1)/21Cv
v(1, 1, )C(C-I)(C-2)/6C(C-I)/2rICI))

--lpC OT(1 1))-- lpC(1 V) (.CI,:C(C-I)/2OFI))
aC(C-I)/2,,,CI)).(1, ^1 ’

The definition of r on (1, 1, T) at this last step must coincide with the definition at
the first step, so r/1 is chosen to satisfy the equation

.C(C-1)(C-2)/6C(C-1)/2C aC(C-1)/2,,,C
’1 ql

e.g., O1 //1, where//1 is a Cth root of

2 ,c(c-1)(c-2)/6]d,c(c-1)/2 /.c1(c-1)[2.
To see that v commutes with the actions of Z, take a point P E 3) x T. Then
P (1, 1, v) for some 0 < r < C and v E T, and

r+l lpr+lZ" o (P2(P) "r o 2 (I, I, v) o "r(l, I, v)

as required.

p o r o 0(1, 1, v) o v(P),

5.6 THEOREM. Let ;k, lz, rl, q, q’, q" and C* (3 x T, Z) be as in case 2 above, and
let C lYl be as in Lemma 5.4. Then the C*-crossed product C*( x T, Z) is iso-
morphic to the matrix algebra Mc(A3v), where e2ri (-1)C+r/1c (- 1)c+l,k2r/C
and rl and 2 are as in the proofofLemma 5.5.

Proof The isomorphism of the flows (Z, 3) x T) and (Z, Zc x T) (Lemma 5.5)
implies the isomorphism ofthe C*-crossed products C* (C(3) x T), Z) and C* ((7(Zc x
T), Z), the latter ofwhich is isomorphic to the matrix algebra Mc(A3v) (Theorem 0.2).

6. The simple quotients A’6 of H5,6

Let ) e2riO for an irrational 0, let unitaries U, V and subsidiary operators W
and X satisfy

UV WVU, UW XWU, UX )XU,
VW 2.WV, VX XV and WX XW, (6.1)

and let AS0’6 denote the C*-algebra generated by U and V.
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The equations (6.1) yield a group with a representation whose generated C*-algebra
is A05’6. The group is H5,6 (-- Z5 as a set) with multiplication

(h, j, k, m, n)(h’, j’, k’, m’, n’)
(h + h’ + mU + nj’ + mnm’ + nm’(m’- 1)/2
+ k’n(n 1)/2 + m’n(n 1)(n 2)/6,
j + j’ + nk’ + m’n(n 1)/2, k + k’ + nm’, m + m’, n + n’),

(6.2)

and inverse

(h,j,k,m,n)-1 (-h + mk + nj nm(m + l)/2 kn(n + l)/2
+ mn(n + 1)(n + 2)/6,

j + kn mn(n + 1)/2, -k + ran, -m, -n);

we think of it as the lattice subgroup of Nielsen’s G5,6 5 with multiplication
(6.2) [1 1] (although, in fact, Nielsen’s group has a slightly different, but isomor-
phic, multiplication). The representation of H5,6 is given by zr" (h, j, k, m, n) -hxJwkvmun, and obviously generates A05’6. The simplest isomorphism we have
been able to devise of our H5,6 into Nielsen’s G5,6 is (h, j, k, m, n) - (h + j -1-
2k/3, j + k/2, k, m, n).

6.1 THEOREM. Let . e2rifor an irrational O.
(1) There is a unique (up to isomorphism) simple C*-algebra m’6 generated by

unitaries U and V satisfying (6.1). Let U’ and V’ be unitaries generating A, i.e.,
U’, V’ and subsidiary operator W’ satisfy

U’V’ W’V’Ur, U’W’ ZW’U’ and V’W’ W’V’.

Define an automorphism v ofA by v" U’ - V’-I U and V’ )V’; v determines
an action ofZ on A. Then

A’6" C*(A Z)

(2) Let re’ be a representation ofH5,6 such that zr zr’ (as scalars) on the center

(Z, 0, 0, 0, 0) ofHs,6, and let A be the C*-algebra generated by zr’. Then A A50’6
via a unique isomorphism o9 such that thefollowing diagram commutes"

rr A50,6H5,6

A

(3) The C*-algebra A’6 has a unique tracial state.
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Proof. The basic idea of the proof of simplicity is similar to that of Theorem 4.1;
see also the Discussion in Section 1. The rest of the proof can be modeled on the
proof of Theorem 1.1.

Another presentation of ASo’6 will be useful below; it arises from the normal
subgroup N (Z, 0, 0, 0, 0) C H5,6 for which Hs,6/N H4. With cocycle
ct: Ha x H4 C defined by

ot((j, k, m, n), (j’, k’, m’ n’)) .mU+nj’+mnm’+nm’(m’-l)/2+Un(n-l)/2+m’n(n-l)(n-2)/6

we have AS0’6 ="’ C* (H4, o).

Other infinite dimensional simple quotients of C*(H5,6). Suppose that . is a
primitive qth root ofunity and thatA is a simple quotient of C* (H5,6) that is irreducibly
represented and generated by unitaries U and V and subsidiary operators W and X
satisfying (6.1). Guided by C* (A04 Z) in Theorem 6.1, we note first that xq commutes
with U and V and so by irreducibility equals/z’l, a multiple of the identity.

1. When/z’ is not a root of unity, substitute X =/xX1, where/zq =/x’, in (6.1)
and get

UV WVU, UW II.X1WU, UX X1U,
VW .WV, VX1 X1 V, WX1 XlW and X 1. (6.3)

Then the second, third and last equations show that U, W and X1, with the correspon-
dence (U, W, X1) (U, V, W), satisfy (0.2) of Theorem 0.2 in the Preliminaries, so
these unitaries generate a simple C*-algebra qA/ C A, where/x e2ri The remain-
ing unitary V provides an automorphism v of qA#, v" U - W-Iu and W - .W,
and v generates an action of Z on qm. Since K1 (qm/) Z2 with generators [U]
and [W], we can argue again as in the proof of Theorem 4.1 that the automorphisms
vn, n # O, are outer; so C* (qA/, Z) is simple and A is isomorphic to it.

2. When/x is also a root of unity (as well as .), say a primitive q’th root of unity,
a modification of the presentation C*(H4, t) for A05’6 (mentioned above) gives the
simple C*-algebra generated by U and V satisfying (6.1). If q" lcm{q, q’}, then
wq"commutes with both U and V and equals o’l, a multiple of the identity. Suppose
that O’ is not a root of unity, and substitute W r/W1, where Oq" r/(as well as
X =/zX1) in (6.1). The result is

UV OWl VU, UW1 IzX1 W1U, UX1 ZX1U,
(6.4)

VW1 .W1 V, VX X V, WIXI X1 W1, X Wlq’’.

Now use (6.4) to simplify the product

k(X{Wvmun)(x’w1 vm’un’)
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and get cA xJ+J’+nk’+m’n(n-1)/2 Wq’k’+nm’ un+n’, where

c mk’+nj’+mnm’+nm’(m’- 1)/2+k’n(n- 1)/2+m’n(n- 1)(n-2)/6
id,

nk’ onto’.
Then the group we need is H 7q X 7q,, X 7/ X Z with multiplication

(j, k, m, n)(j’, k’, m’, n’)
((j + j’ + nk’ + m’n(n 1)/2)modq, (k + k’ q- nm’)modq", m + m’, n + n’)

and cocycle c: H x H ---> C, ct((j, k, m, n), (j’, k’, m’, n’)) c. To see that the
crossed product C* (H, c) is simple, one must check that Packer’s condition is satis-
fied; but this is easy to do, and so A is isomorphic to C* (H, c).

3. When r/is a root of unity (as well as be and .), a simple C*-algebra generated
by U and V satisfying (6.1) is finite dimensional.

6.2 THEOREM. A C*-algebra A is isomorphic to a simple infinite dimensional
quotient ofC* (H5.6) if, and only if, A is isomorphic to AS0’6 for some irrational O, to
C* (qA/, Z) or to C* (H, ct) (as in cases 1 and 2 above, respectively).

The referee suggested that the algebras C* (qA#, Z) and C* (H, ct) above are iso-
morphic to matrix algebras. We show next that C* (qA/, Z) is isomorphic to a matrix

p4algebra over a simple C*-algebra .A A(q, ., () that is a variant of A r (q), as in
the paragraph following Theorem 5.2, and is also a ’scaled’ variant of the algebra
A in Theorem 4.2. To be specifi6, .A is to be generated by unitaries U0, V0 and W0
satisfying

UoVo W VoUo, UoWo ( WoUo and VoWo XWoVo. (6.5)

We remark that, although the generating equations for ,4 still involve the root of unity., they do not involve a unipotent operator.

6.3 THEOREM. When ) is a qth root of unity and C*(qA/, Z) is as in case
above, and ,4 is as in the preceding paragraph, the C*-crossed product C* (qA/, Z)
is isomorphic to the matrix algebra Mq (,4).

Proof. Let unitaries Uo, Vo and W0 satisfy (6.5), thus generating A, and define
matrices Up, V and W in Mq (Jr) exactly as in Theorem 5.6. Then the only difference
between the situation here and that in 5.6 is that the last equation of (6.5) gives the
requirement V’W .WPV (the 4th equation of (6.3)). El

As might be expected, the construction for the final theorem is quite complicated.

6.4 THEOREM. Let , be, rl, q, qP, q’P and C*(H, ct) be as in case 2 above. Then
C*(H, ct) is isomorphic to Mqq,(A,) for e2ri’ ]qq" (--1)q+q’.
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Proof The demonstration is in three steps; the first step is like the proof of 6.3,
the simplification method in the second step has been used in the proof of 4.3, and
the third step is much like the proof of Theorem 0.2.

Step I. Define q-q(q-l)/2__/zq(_l)q+l and

( Olq--loq-q(q--1)/2)(q3--q)/6 l,qlzq(q-1)/2(_l)q+l)(qa-q)/6,

and let an algebra Q be generated by unitaries U2, V2 and W2 satisfying

q"U2V2 (WV2U2, U2W2 =ctW2U2, V2W2 W2V2 and W2 1. (6.6)

(A concrete representation of Q is given in step III.) Define unitaries U’, V’ and
subsidiary operators W’ and X’ in Mq (Q) as follows:

U’ has l’s on the subdiagonal and U2 in the upper fight hand comer;

V’ has V2, /zW-1V2, 2/3’4W2-2 V2, 3/z6lw2-3 V2

-q-1 [zq(q-1)/E-(qa-q)/6w(q-1)V2 on the diagonal;

W’ has Wz, XW2, 23W2 -q-l,q(q-1)/Ew2 on the diagonal;
X’ has 1, , 2 q-1 on the diagonal.

Then U’, V’ and subsidiary operators W’ and X’ satisfy (6.4) and generate Mq (Q).
Step H. Choose relatively prime c and d such that otc)d 1, and choose a and b

such that ad bc 1. Then set U3 UV2b and V3 UV2d. It follows from (6.6)
that the unitaries U3, V3 and W2 satisfy

q"U3 V3 (’Wff V3 U3, U3 W2 a’W2U3, V3 W2 W2V3 and W2 1,

wher (’ (X for some q"th root of unity ; and c’ oa.b is a primitive q"th root
of unity. Also U3, V3 and W2 generate Q.

Step IlL Let , e2’ri’ (tq"oltqq"(q"-l)/2 0
qq" (--1)q+q" and let U0 and V0 be

unitaries generating A3, i.e., U0 V0 ’ VoUo. Then the algebra Q is isomorphic to

Mq,, 3(A). For the unitaries U3, V3 and W2 in II can be represented in Mq,,(A3,) by
specifying that

U3 has Uo in the upper fight hand comer and l’s on the subdiagonal,
V3 has Vo, oltqVO, 20lt3qVO q"-loltqq"(q"-l)/2 on the diagonal,

WE has 1, t’, "72,..., O"-Tq on the diagonal, and these matrix unitaries generate
Mq,, (g3,). i-I

Concluding remarks

Packer [14] has classified the quotients A’, (of class 3) and A (of class 2) of
C*(H5,4). We contemplate the analogous classification of the rest of the simple
C*-algebras considered here in a subsequent paper.
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Another project to consider concerns the other lattice subgroups of the connected
Lie groups Gs,i, < < 6. In [10] we indicated that the 3-dimensional connected
Lie group G3 (the Heisenberg group) admits infinitely many non-isomorphic lattice
subgroups and that the situation is more complicated for the 4-dimensional group. It
is to be expected that the situation is even more complicated for the 5-dimensional
groups.

20.
21.
22.
23.
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