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THE Lp REGULARITY PROBLEM FOR THE HEAT
EQUATION IN NON-CYLINDRICAL DOMAINS

STEVEN HOFMANN AND JOHN L. LEWIS

ABSTRACT. We consider the Dirichlet problem for the heat equation in domains with a minimally smooth,
time-varying boundary. Our boundary data is taken to belong to a parabolic Sobolev space having a
tangential (spatial) gradient, and 1/2 of a time derivative, in Lp, < p < 2 + . We obtain sharp Lp

estimates for the parabolic non-tangential maximal function of the gradient of our solutions.

1. Introduction

In this note, we consider the regularity problem for the heat equation in certain
non-smooth, time-varying domains. The class of domains which we consider are
those given by the region above a time-varying graph:

(1.1) f2{(x0, x,t) Ex]n-! x: x0 > A(x,t)}.

Here, A is Lipschitz in x, uniformly in time, i.e.,

(1.2) sup IA(x, t) A(x + h, t)l < fl0lhl,
x,t

for some fl0 < cx; furthermore, A satisfies a certain half-order smoothness condition
in t, which we shall now describe. Following Fabes and Riviere [FR], we define the
half-order time derivative __
(1.3) ]n - o A

that is, on the Fourier transform side,

(.A)^(, r) =-- c A(, r),

where, obviously, and v denote the Fourier transform variables in space and time,
respectively. We shall assume that

(1.4) II/ln A II, </3! < x,
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THE Lp REGULARITY PROBLEM 753

where the parabolic BMO norm is, as usual, defined by

Ilbll. sup Ib(x) bBIdz.

Here B denotes an arbitrary parabolic ball

B {z 11n :llz z011 < r},

and, for non-zero z (x, t) lln, the parabolic norm Ilzll II(x, t)ll is defined to
be the unique positive solution p of the equation

Ixlz 2

It is well known, and easy to verify, that

II(x,t)ll Ixl / Itl 1/2,

and that

II(rx, rZt)ll rll(x, t)ll.

Having defined the class of domains which we shall consider, we are now in a
position to define the parabolic Sobolev spaces on 0fl, in which spaces we shall take
our boundary data. For each fixed t, let f2t denote the cross-section

t --= {(xo, x) e x n-l :x0 > A(x, t)}.

By (1.2), f2t is a Lipschitz domain with Lipschitz constant no larger than/]0. We
define dot to be the usual surface measure on the Lipschitz graph 0f2t, i.e., in graph
co-ordinates,

dot =- v/l + IVxA(x, t)12dx.

We then define "surface measure" do on O as

do =_ dotdt.

The parabolic Sobolev spaces LPI,I/E(n) are given by Lpl,llE(n) (0
A)-1/Z(LP(n)), at least for < p < n + (in thins paper, p will always lie

in this range, and, typically p < 2). By parabolic singular integral theory (see [FR]),

Ilfll,,’1/2
Since A is Lipschitz, in graph co-ordinates,

do(x, t) =- dot(x)dt " dxdt;
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thus, we can naturally define Lp

,1/2 (0) by setting

,.1/2

where f(x, t) f(A(x, t), x, t).
In this paper, we conside the regulEity problem

u- =0 in

(1.6) Rp
N.(Vu) e LP(O).

Here N. denotes the parabolic non-tangential maximal operator

N.(F)(A(x, t), x, t) sup IF(y0, y, s)l,
F

and F F (A (x, t), x, t) is the parabolic cone

F (y0, y, s): (x y, s)ll (y0 A (x, t))

It is not hard to see that for small enough, depending only on fl0 and fl in (1.2)
and (1.4), one has F(A(x, t),x, t) , at eve point (A(x, t),x, t) 0. Indeed,
by a routine extension to the parabolic case of a result of Strichaaz [Stz] (see also
[H for a proof in the parabolic case), it follows that (1.2) and (1.4) imply the LiPl
condition

(1.7) sup IA(x, t) A(x
X,t

from which the non-tangential accessibility follows easily.
The main result of this paper is the following:

THEOREM 1.8. Given a domain f2 as in (1.1), which satisfies (1.2) and (1.4), then
there existspo > such that the regularity problem Rp is uniquely solvable in the
range < p < Po. Here Po can be taken to depend only on o, , and the dimension
n.

To put this result into context, let us review a bit of recent history. The class of
domains which we consider here was introduced by the second author (Lewis) and
M. Murray in [LM], although condition (1.4) of the present paper was formulated
in a somewhat different fashion there; that the two formulations are equivalent was
established in a previous paper of the present authors [HL]. Modulo this equivalence,
in [LM], the following result was proved.

THEOREM 1.9. Given a domain 2 as in Theorem 1.8, there exists qo < o such
that the adjoint Dirichlet problem (Dq) (defined below) is uniquely solvable in the
range qo < q < o. Here qo can be taken to depend only on o, and dimension.
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The adjoint Dirichlet problem (D) entails finding a solution v to the following
problem:

Av+ =0
LqOq Vligft f E (3f2)

N,v e Lq

(Remarkmby the change of variable -- -t, it is equivalent to solve Dq). The
exponents p and q in Theorems 1.8 and 1.9, respectively, are dual to each other, i.e.,

_+l 1. Indeed, our proof of Theorem 1.8, based on a technique introduced by
erchota [V] in the case of harmonic functions in a Lipschitz domain, depends on
showing that the solvability of D implies that of Rp, +/- + +/- 1. The converse
(namely that Rp D) is easy, and has been noted in [L].qFurthermore, in [HL]
it is shown that Theorem 1.8 is optimal, in the sense that even when fl0 0 (i.e., the
case that A(x, t) A(t)), one can construct a class of domains for which solvability
of Rp, for any given p > 1, can be made to fail by taking fll large enough. In other
words, one can never hope to fix a p for which Rp holds in all domains f2 of the
type considered here: to do so, one must impose some restriction on the size of fl.
An optimal theorem of the latter sort was proved in [HL]; namely that R2 holds for
domains of the type considered here for arbitrary fl0 < x, if fl is small enough
depending only on fl0 and dimension (analogous L2 theorems for the Dirichlet and
Neumann problems were also proved in [HL]).,The results of [LM] and [HL] were
thus extensions to the non-cylindrical case of work of Fabes and Salsa [FS] and R.
Brown [Brl], [Br2], who proved that if fll 0 (i.e., A(x, t) A(x)), then one
has solvability of D ([FS]), and Rp and the Lp Neumann problem ([Brl,2]), in the
optimal ranges2-e < q < o, < p < 2+e. Given these theorems in the
cylindrical case, and also the prior work in the harmonic case of Verchota [V], and
Dahlberg and Kenig [DK], it was a reasonable conjecture that Rp, and also the Lp

Neumann problem, should be solvable for p in the dual range to that of Theorem 1.9;
Theorem 1.8 states that this is indeed true for Rp. What is surprising though, is that
in contrast to [Br2] and [DK], this is not at all the case for the Neumann problem.
Indeed, in a separate paper we shall show that the LP Neumann problem is solvable
if and only if fl < e(p), where e(p) -- 0 as p 1. An interesting feature of the
theory in non-cylindrical domains, then, is the dichotomy between the regularity and
Neumann problems.

As mentioned previously, our proof of Theorem 1.8 utilizes a duality method
due to Verchota [V] in the harmonic case. Verchota’s method extends routinely
to the case of the heat equation in cylindrical domains (although we note that this
was not Brown’s approach in [Br2]mrather, his proof is modeled on the H-atomic
arguments of [DK]). When one attempts to extend the arguments of [V] to the non-
cylindrical case, however, there arise certain terms which are absent in the harmonic
and parabolic cylindrical cases, but which, taken individually, are terrible in the non-
cylindrical case. However, by performing some algebraic manipulations, a change
of variable and a few integrations by parts, one can show that, miraculously, these
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terrible terms sum precisely to zero. Our main contribution then, aside from some
technical Lq estimates at the time-varying boundary for derivatives of caloric and
adjoint caloric functions, is our unraveling of the algebra which permits this "mirac-
ulous" cancellation. Otherwise, our approach is a straightforward adaptation of the
argument in [V].

The paper is organized as follows. In the next section, we give the proof of
Theorem 1.8, modulo the technical Lq boundary estimates to which we had alluded.
In the last section, we prove these technical estimates.

Acknowledgements. The first author thanks Carlos Kenig for several helpful con-
versations regarding this problem (and related ones), and particularly for the sugges-
tion that we might try to solve it using the method of [V].

2. Proof of Theorem 1.8

We define the single layer potential of a function f by

(2.1) Sf(X, t) =-- W(X Q, s)f(Q, s) das(Q) ds,

where (X, t) --_-- (x0, x, t) 6 fl, and

W(X, t) =_ (4rrt) -"/2 exp{-lXl2/4t}Xit>ol

is the usual Gaussian in ]1n+l Here, and in the sequel, we have used the notational
conventions that capital Y, X denote the spatial components of points in f2, and P, Q
denote the spatial components of points on 0ft. Our goal is to establish existence in
Theorem 1.8 by obtaining a representation of our solution as the single layer potential
of a suitable density function. To this end we recall that it is enough to establish, for
p as in Theorem 1.8, the following inequality"

(2.2)

where St, denotes the boundary single layer potential

St,f(P,t)=_ W(P Q,t s)f(Q,s)d(Q)ds,

(P, t) 6 0. The singular integral estimates of [LM] and [H2], plus the method of
continuity, may then be used to show that (2.2) implies the desired representation
formula, and hence also existence of solutions to Rp, with non-tangential estimates.
The details of the method of continuity argument may be found in the survey article
of Kenig [K]. The same argument applies in the parabolic case, and with LP in place
of L2.
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To establish (2.2), we follow the strategy of Verchota IV]. For any f Cc(Ofl),
set u Sf, and let u_ S_f denote the single layer potential of f in the domain- (f2)c. Define

K*f(P,t)=_p.v.ff N(e,t) Ve W(P Q, s)f(Q, s) dots(Q) ds,

where NtP,t) denotes the unit outer normal to 0" at the point (P, t). In [LM],it is
shown that, on 0f2,

(2.3) 0-- I + f

and

(2.4)
ON_ - I f,

where N_ denotes the outer unit normal to 0- (i.e., the inner normal to 0f2). As
usual, then, to prove (2.2), it will suffice to establish the estimate

(2.5)
LP(On)

Indeed, interchanging the roles of f2 and -, we see that (2.5) also holds with u
replaced by u_. Since tangential derivatives of u (including ]I)n) do not jump across
the boundary, we immediately obtain from (2.3)-(2.5) the estimate

< C(10, 1, n, p)llullL tan),

from which (2.2) follows by the triangle inequality.
We therefore proceed to prove (2.5). Following [V], we dualize. By Theorem 1.9

(i.e., the result of [LM]), it suffices to establish the following estimate:

vdatdt
n, ON

013where Av + 0, and vl0n, N.v
_
Lq and q > qo(/3o, 1, n). By density and

a standard limiting argument, it suffices to prove (2.6) for vl0n 6 Cc(Og2). It also
suffices to prove (2.6) under the a priori assumption that A(x, t) C. With these
a priori assumptions, the function

w(xo, x, t) =-- v(ct, x, t) dot
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a,o 0 in f2 Clearly,is well defined in f2, and is also an adjoint solution, i.e., Aw +
a--w We also define1)
0xo

vj -xjW, O < j <n--l,

where v0 v. In the next section, we shall prove the following:

LEMMA 2.7.
Then

(i)

(ii)

o LqLet Aw + Ow/Ot 0 in f2, and suppose that -#-xo w E (02).

Lq (c3) OXo Lo(O2)

Ilbnwllo(om < C(q, [30, [3, n)
Lq(O)

For the remainder of Section 2, we shall take Lemma 2.7 for granted.
Returning to the proof of (2.6), we note that by Green’s Theorem (in the space

variable),

(2.8) v dat dt u dat dt, ON , ON

+ ff (Auv uAv) dXdt

u- dat dt

ff t "u+ -ff-v+u- dXdt,

where denotes differentiation in the direction of the outer unit normal N. Follow-
ing [V], and setting N Neo 4- Nle 4- 4- Nn-en_l (where ej is the unit basis
vector in the xj direction), we have

= <N,
ON

n-I

= joNj 0 0

.= Oxj Oxo

Noj]O NOxj w O
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(since to is an adjoint solution)

_
0 NOO

j=l
VJ Ot

W,

0where 77r < j < n 1, denotes a tangential derivative. Then the right side of (2.8)
equals

(2.9) ou---_ vj dtrt dt + uwt dx dt + (utv + uvt) dX dt
J--I n 2

I + II + III,

where in the middle term we have used the fact that,tin graph co-ordinates, -Ndcrt
dx. We integrate by parts in I to obtain

< c(q,/30, ill, n)llull.1/2 IIO011L0,

by Lemma 2.7. In the harmonic case, we would be done now (indeed, this was
the proof in IV]). Furthermore, in the case of the heat equation in cylinders, term
III 0, and

HD]/2uD]/2w dx dt,(2.10) IIII ,,
where H denotes the Hilbert transform in t, and

D]/2f (r)

is a 1-dimensional half order derivative in t. Since Irl/z is an Lp multiplier for
< p < oo e.g., (see [S, Theorem 6, p. 109]), (2.10) is bounded by

(2.11) cpllIullL, IIw L,,

where (Df)^(, r) I1(, r)llf(, r). But by (1.5) applied on the Fourier transform
side,

n-I 0
D jRj-jxj+RnII),,.=

where

(]nf)/(, r) f(,)
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and

(Rjf)^

(Rnf)^()

I1(, r)ll
](,r),l <j <n-1

By [FR], the parabolic Riesz transforms Rj, < j < n, are all bounded on Lp,
< p < oo, and by [S, Theorem 6, p. 109]

By Lemma 2.7, (2.11) is no larger than

C(p, rio, ill, n)llull.1/2
as desired.

The problem then, in the non-cylindrical case, is to deal with the errors which arise
when one attempts to treat the terms I I and I I I in (2.9). To this end, we define a
parabolic approximate identity

Pxf (x, t) =- tpx f (x, t)

=_ -d tp
X t-s),2 f(y, s) dy ds,

where d n + is the homogeneous dimension of parabolic n, and where tp e C,
supptp c_ fl (0) (the unit ball), tp > 0, tp is even and f o 1. Next, we choose a
small (fixed)constant y > 0, depending only on the constant C(fl0 + fl) in (1.7),
such that for all (x, t) e n,

0
< + PexA(x t) < 3/2.

2-

For such y, the Dahlberg-Kenig-Stein mapping

p(X, x, t) =-- (X + PexA(x, t), x, t)

defines a 1-1 mapping of the half-space F_+ _= {(X,x, t) 9 > 0, (x,t) }
onto 2, and furthermore p" 0_+ 0f. We remark that this mapping appeared
first in a paper of Dahlberg [D] (although this explicit construction was due to Kenig
and Stein), and has recently proven useful in [HL] and in work of Dahlberg, Kenig,
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Pipher and Verchota [DKPV]. Now, the term I I in (2.9) equals

[u o p(O, x, t)][wt o p(0, x, t)] dx dt

-(u o p.wt o p)d.dxdt

-(u o p[to o P]t) d. dx dt

+ - u opWxo op-PxA d.dxdt

=--fI+E.

The term II may be handled essentially like the term II in the cylindrical case.
Indeed,

I/-II f HD/2 I/2(uop)D (wop) dx dt

_< Cllull,? Ilvll,,,

by exactly the same argument as in the cylindrical case (see (2.8) and the ensuing
discussion).

Next, we claim that

(2.12) E =_-III,

in which case we are done. To prove (2.12), we first observe that

(2.13) E (u o p)xogo o p- Pr,xA + u o p(O&o o P)x" Pr,xA

0 0
+ u o p wx,, o P-ff--PaxA

=-- E + E2 + E3.

On the other hand,

ut o p -(u o p) Uxo o p- Pr,xA

0
Ut 0 p - (13 0 p) 13xo 0 p’ PexA
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Thus, changing variables in III in (2.9), we obtain

(2.14)

NOW,

1112 (u o p)xv o p-ff’PxA =-- -El,

since is Wxo. Also,

II14 =-- u o p (v o p)x-T Pr,xA -E2.

Finally, integrating by parts in t, we obtain that

Illi uop-7(vop) +-PxA d.dxdt

u o p v o p -7-PAd)dxdt
= 1113- E3.

Adding (2.13) and (2.14), we get zero. Modulo the proof of Lemma 2.7, which
we give in the next section, this concludes the proof of existence in Theorem 1.8.
Uniqueness in Theorem 1.8 may be deduced from (2.2) as in [HL, pp. 397-399]. The
argument given there for p 2 carries over to the case p > with minimal changes.
We omit the details.
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3. Proof of Lemma 2.7

We first show that (i) of Lemma 2.7 implies (ii). That is we begin by proving

(3.1) IlInWllLq(a) Cql]VWllLq(aa).

(We recall that

r f( r) --= o ]I))-! (f)]Dnf =-- C
I](, r)]] Ot

f f(, r) --o A--
V/I 12 r 0t

(f)

and of course Dn is equivalent to ]])n in the Lq norm). Let g e C, Ilgllp 1,
+/- -I- 1 1. To bound the left hand side of (3.1), it is enough to consider
P q

where Px is the parabolic approximate identity defined in the previous section. Since

Dn D-’ o g/, where (D-’ f)^(se, r) II(se, r)ll -l f,

(3.3)

Since Px is even, and therefore has vanishing first moments, Ox ]I)-1 P, satisfies
the Littlewood-Paley estimate

(fo I(g12 dx dt)
lip

<_ cpllgllp, < p < oo.
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n-I

Ihl _< cpllgllp
j=0 q

<_ c(p, ,o, ,8)llgllpllN,(Vw)llq

<_. c(p, /0, )llgllpllVwllq,

as desired, where in the last two inequalities we have used first the square function
estimates of Brown [Br3] and then Theorem 1.9 (the result of [LM]), to remove
the non-tangential maximal function, since w.j is an adjoint solution for each j 6

10, n }. (We remark that [Br3] treats the Lusin "S" function, rather than the
"g" function which arose in the last display above, but one can use interior estimates
for adjoint caloric functions to show that the former controls the latter; we omit the
details.) Furthermore,

1121 _< c,llgll, Io,,, o pl E
2 )

/2

Since q > 2, to control the square of the last factor, it suffices to estimate

(3.4) Iwx. o 012 -PxA LdL v(x,t)dxdt,

2where L, 7 + 1, v L, 1. In the last expression, we may replace u by the

parabolic A weight =_ (M(Ivl+))/+ (here M denotes the parabolic maximal
function) so that (3.4) is dominated by

(3.5) % f (N**(w.r,, o p))2 dx dt. dp(A, )),

where N** denotes the non-tangential maximal operator in _+, and where

(3.6)  a,,v)=_suplfffor(B) 12B "PxA Ld, ).dxdt.

Here, the sup runs over all parabolic balls B, and r (B) denotes the parabolic radius of
B. Also, IBlv =- fR (x,t)dxdt. Butfore chosen small enough, I111 _< c.llvll
C,,.r. Hence, the first factor in (3.5) is no larger than

c,,.rllN**(w.,, o P)II 2Lq (I") --< Cn.q N. (wx0) Lq(a),2
where we have used the fact that

N**(u o p) < [N,(u)] o p,
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for any u e Lloc defined on , as long as the cones defining N** have sufficiently
narrow aperture. Also, by [HL, Lemma 2.8],

$(A, 1) < C(n, Y)IIInAII, C(n, ’)IIIAII,,

and the extension to the weighted case

(3.7) (A, )) < C(n, V, e)IIIDAII,

is a standard exercise which we omit. We do point out however, that we have used
the parabolic version of a result of Coifman and Rochberg [CR], namely that

(M(IvI+,)]/TM

is an A weight with A constant depending only on e. Since e depends, in turn, only
on q, and since y had been chosen to depend only on/50 and/, the desired bound
for (3.4), and hence for (12) now follows immediately.

Next, we turn to the term I I of (3.2). Integrating by parts in , we get

(3.8) I I In (09 o P)x PxgX d. dx dt

+ In(oo o p)xxPxg)d)dx dt

=- II + II2.

Again, using the fact that IDn I-1 o and ]3- is self-adjoint, we obtain
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Since II + PxAI <_ 3/2, for , small enough depending only on/0 and, II11
can be handled like I1 above, except that one needs to use interior estimate to remove

o pvxA < C(}’)llnAII where )/ /(fl0, ill), II12 cana derivative on o9. Since k I *,

also be estimated like I. And since )3 I’’- P,.A dkdxdt satisfies a weighted
Carleson measure estimate essentially like that expressed in (3.6) and (3.7), we can
treat II just like/.

To finish the proof that (i)=(ii) in Lemma 2.7, it remains to consider Ih in (3.8).
But this term can also be treated by arguments similar to ’those we have not described,
once we note that Qx -MDn Px satisfies standard Littlewood-Paley square function
estimates, just as did )x. The details are omitted.

Next, we turn to the proof of (i) in Lemma 2.7. Our approach here is similar in
spirit to that of [DKPV]. We observe that, for < j < n l,

(3.9) (o9 o P)x. ogx. o p + (ogx,, o P)-’6-E-.. P,xA.
o.,tj

Thus, it suffices to prove that, for < j < n 1,

(3.10) l(o9 o P)x.j q dx dt < C(flo, l, n, q) f Iogx,, o plq dx dt

JI- Cq6 fR,, (ogxi o p)q dx dt,

because the small term can then be hidden on the left hand side of i) in Lemma 2.7.
The left hand side of (3.10) equals

(3.11)

Since the radial maximal function is controlled by the non-tangential maximal func-
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tion, i.e. supx>0 IF(x, ,)l < N**(F)(x), we have that

III < Cq [N**((co O P)xj)]q-2 ((CO O p)x./X)2) d;k dx dt

Cq f,, N**[(co o p)x.i]q

(q, ) (fo o )q/2+ C
JR"

I(co P)x.xl2. d, dx dt

1,+12.

dxdt)

By (3.9) and Theorem 1.9 (the result of [LM]),

I,<_ Cq f,, Ico.i Pl q -4-Cqflot f],, Icoxo Plq,

which yields the desired bound (3.10) if we set 8 e. Choosing e small enough,
and depending only on q, we can make the first summand small enough that it can be
hidden on the left hand side of Lemma 2.7 (i). Next, we note that

(wo p)x,x (Wx.,xo o p) + -PxA + (wx,,x,, o p) + -PxA xjPxA
(COx,, o p)--PzA.axj

Since depends only on q, and since

2

)d, (x, t)dxdt

is a weighted Carleson measure for A,, we can argue as above (see the proof that
i)=ii)) to show that

h < C(q, rio, fl,) f,, ICOx,, o pl q dx dt,

as desired. Thus the term I in (3.11) satisfies (3.10). We therefore turn to II.
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Integrating by parts in xj, we get

II Cq I(0) 0 p)xjlq-2(ogo p)xjx.;(ooo p)xx,kd,dxdt

< Cq 1(09 o P)x. Iq-21(09 o P)x.;x. 12,k dk dx dt

+ Cq- I(w o ) Iq-l(o o O)xxl.d.dx dr.

=_ lI + Ih

Each of these terms can be treated just like I in (3.11). We obtain the bounds

<_ Cqe f I% oI/hi plq,

(which can be hidden) and

Iqf )lllzl < Cq-t ]OOXj o p "k- flO IWxo o p[q

( l)f + C q’
5 " Itx o Plq"

We then set 6 2, with depending only on q, and (3.10) follows. This concludes
the proof of Lemma 2.7.
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