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THE EQUIVARIANT BRAUER GROUP AND TWISTED
TRANSFORMATION GROUP C*-ALGEBRAS

JUDITH A. PACKER

ABSTRACT. Twisted transformation group C*-algebras associated to locally compact dynamical systems
(X Y/N, G) are studied, where G is abelian, N is a closed subgroup of G, and Y is a locally trivial prin-
cipal G-bundle over Z Y/G. An explicit homomorphism between H2(G, C(X, "1)) and the equivariant
Brauer group of Crocker, Kumjian, Raeburn and Williams, BrN(Z), is constructed, and this homomor-
phism is used to give conditions under which a twisted transformation group C*-algebra Co(X) x r.o, G
will be strongly Morita equivalent to another twisted transformation group C*-algebra Co(Z) x td.o, N.
These results are applied to the study of twisted group C*-algebras C* (17, #) where 17 is a finitely generated
torsion free two-step nilpotent group.

Introduction

Fifteen years ago, M. Rieffel published the extremely useful observation that if the
locally compact groups G and N have commuting free and proper actions on a locally
compact Hausdorff space Y, then the transformation group C*-algebras Co(Y/N) x G
and Co(Y/G) x N are strongly Morita equivalent to one another [Ri]. This result,
attributed by Rieffel to P. Green, was a motivating factor behind I. Raeburn’s paper
[Ra], as well as for A. Kumjian’s, Raeburn’s and D. Williams’ recent proof that for
second countable Y, G and N as above, the equivariant Brauer groups Br(Y/N),
BrN(Y/G) and BrN(Y) are isomorphic to each other. In this note, we investigate
how the isomorphism of the equivariant Brauer groups above can be used to obtain
information about twisted transformation group C*-algebras corresponding to a dy-
namical system (Y/N, G) in the case where G is abelian and N is a closed subgroup
of G, so that N acts trivially on Y/G. In this case Brs(Y/G) is known to be isomor-
phic to the direct sum C(Y/G, H2(N, "i[’)) I(Y/G,.//’) IY12(y/G, ,S), at least
for N elementary abelian (cf. [PRW], [P2]) and our aim in this paper is to use the
above structure to describe the strong Morita equivalence between twisted transfor-
mation group C*-algebras for (Y/N, G) and crossed product C*-algebras of the form
B x, N, where B is a stable, separable continuous trace C*-algebra with spectrum
Y/G, and the induced action/ of N on Y/G is trivial. Along with giving precise for-
mulas for the element in Brs(Y/G) corresponding to a twisted transformation group
(Y/N, G, w) where [w] H2(G, C(Y/N, qI’)), we will determine conditions under
which a twisted transformation group C*-algebra Co(Y/N) x r,o G will be strongly
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Morita equivalent to another such C*-algebra Co(Y/G) x td,oN N. This question
was first raised in [P1, Section 3] and a special case of this situation has already been
considered in [LP2] in order to study twisted group C*-algebras associated to discrete
Heisenberg groups. This motivates Section 3 of our paper, which gives an analysis
of more general twisted group C*-algebras C* (F,/z) where l-’ is a finitely generated,
torsion free two-step nilpotent discrete group, and [/z] HE(F, q[’). Under appropri-
ate conditions on [/x] these C*-algebras will be isomorphic to twisted transformation
group C*-algebras C(Y/N) x r,o G, of the form described above and the invariants
of the associated C*-dynamical system [(B,/, N)] e BrN(Y/G) can in many cases
be explicitly computed. These results can be used to state conditions under which
C* (F,/z) will be strongly Morita equivalent to C*(F0,/z0), where F0 is a subgroup
of F of finite index and/.to =/z restricted to l"0 x F0. This result can be extremely
useful in K-theory calculations.

I would like to thank S. Echterhoff and I. Raeburn for useful conversations on the
topic of this paper and I. Raeburn for making available to me at a very early stage a
preprint of [RW2].

1. Preliminaries

l.l. The equivariant Brauer group. Let (Y, r, G) be a locally compact second
countable topological dynamical system. The equivariant Brauer group Br6() is
defined to be the set of all equivalence classes of C*-dynamical systems [(A, c, G)],
where A is a stable, separable continuous trace C*-algebra with spectrum Y, t is a

rongly continuous action of the group G on A such that the induced action t of G on
A Y is given by r, and (Al, cl, Gl) (A2, 02, G) ifthere exists a .-isomorphism
q: A A2 preserving the spectrum Y such that ct2 is exterior equivalent to oc o-. In [CKRW] it was shown that Br (Y) was an abelian group with multiplication
given by balanced tensorproduct over Co(Y) and ]Brr) [(Co(Y)(R)/C, r(R)Id, G)].
This group is defined very naturally in the sense that if (Y, rl, G) and (Y2, r2, G2)
are equivalent dynamical systems, i.e., if there is a homeomorphism " Y Y2 and
an isomorphism A: G G2 such that (r(g)y) r2(A(g))(y), Yy YI, then
Br, (Y) Br (Y2).
A filtration involving the Moore cohomology groups HP(G, Iq (Y, .)), p -- q2, was developed in [CKRW] to aid in the computation of Br(Y). We mention two

of the homomorphisms from this filtration.

PROPOSITION 1.1 [CKRW, Theorem 5.1(3)]. Let (Y, r, G) be a topological dy-
namical system andBr(Y) the associated equivariant Brauer group. Then there are
homomorphisms

dr,: [H2(y, Z)]t -- H2(G, (C(Y,’F))
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and

H2r,G) (G, C(Y, T)) ---> BrG(Y)

such that the sequence

[H2(y, Z)]6 H2(G, (C(Y, T))BrG(Y)
is exact.

(1.1)

We mention for future reference that the map tr,a) sends [tr] H2(G, (C(Y, T))
to the equivalence class ofthe C*-dynamical system given by (Co(Y)(R)IC(L2 (G)),
G)], where c, is the action ofG on Co(Y)(R)IC associated to the twisted C*-dynamical
system (Co(Y), r, , G) by the stabilization trick of [PRl](see [PI], Equations 2.1-
2.4).
We state two more results mentioned in the introduction concerning the equivariant

Brauer group which will be of use to us.

THEOREM 1.2 [KRW]. Let P be an l.c.s.c Hausdorff space carrying commuting
free andproperactions ofthe locally compactgroups G and H. Then there are isomor-
phisms 0: Br(P/H) BrH(P)and OH: BrH(P/G) -- BrH(P). Further-
more ifO([A, ct, G)]) ([(C, ’, G x n)] and 0H([(B,/3, n)]) [(C, ?’, G x n)]
then the C*-algebras A xa G, C x (G x H) and B x t H are all strongly Morita
equivalent to one another.

The next result gives an explicit description of the group Br/v(Z) where N is an
elementary abelian group acting trivially on the space Z (this theorem has recently
been extended to compactly generated groups N by S. Echterhoff and D. Williams
[EW]).

THEOREM 1.3 [P2], [PRW]. Let N be an elementary abelian group acting trivially
on the l.c.s.c Hausdorffspace Z. Then there is an isomorphism

Br/v(Z) C(Z, H2(N, T)) ]9/rl (Z, .]Q’) /3(Z, Z)

/-(Z, ’]-t2(N, T)) if)/’1 (Z, 7-/ (N, T)) /-)2(Z, 7-/(N, T)) (1.2)

Denoting by Hi" 0, 1,2, the projection ofBr/v (Z) onto each summand in (1.2),
we recall that II0 can be identified with the Mackey obstruction map M/v" Br/v (Z) --->
C(Z, H2(N, T)) and l’I2([(B,/3, N)] gives exactly the Dixmier-Douady class of B.
The map Ill is related to the Phillips-Raeburn obstruction.
We also recall that under the hypotheses of Theorem 1.3 there is a monomor-

phism Ez,/v)" Hp2t(N, C(Z, T)) --/1 (Z, .]Q’) whose range is denoted by/c (Z,

and represents the set of equivalence classes of characteristic principal/Q bundles
over Z[RW1 Prop 3.8]. Here 2Hpt(N, C(Z, T)) represents the group of equivalence
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classes of pointwise trivial 2-cocycles. We then have the following relationship be-
tween Proposition 1.1 and Theorem 1.3.

COROLLARY 1.4 [P2, 2.4]. Let N be an elementary abelian group acting trivially
on the l.c.s.c Hausdorffspace Z, and let [(B,/3, N)] E BrN(Z). Then [(B,/3, N)] E

tz,s)(H(N, C(Z, q))) ifandonlyifHE([(B, , N)]) 8(B) {O}andl-l([(B, ,
v : z, .).

1.2. The A-invariant. The A-invariant, first defined by I. Raeburn and D.
Williams in their study of continuous trace C*-dynamical systems [RWl ], built on
prior work of J. Huebschmann [Hu], and at least for a discrete group G with normal
subgroup N can be viewed as one way oforganizing the information one obtains about
H2 (G, M) from the Lyndon-Hochschild-Serre spectral sequence. Let G be an l.c.s.c.
group with closed normal subgroup N. Suppose that M is a Polish GIN module,
with the abelian group structure on M denoted by (a, b) ab, a, b M. Let
Z(G,N; M) denote the set ofpairs {(k,/Z)} where,k: G x N M and/z: N M
are Borel maps satisfying

/z Z2(N, M), (1.3)

,k(lt, n) IM .(s, lu), (s,n) G x N,

X(m, n) --/z(m, n)/z(n, m)-l, (m, n) N x N,

(1.4)

(1.5)

)(st, n) 2.(s, n)s(2.(s, t, n)), (s, t, n) G x G x N,

.(s, mn) s(/z(m, n))-l/z(m, n)(s, m)(s, n), (s, m, n) G x N x N. (1.7)

With pointwise operations; Z(G, N; M) is an abelian group. Let B(G, N; M)
denote the subgroup of A (G, N; M) consisting of all pairs of the form

{Ap (s(p(n)-)p(n), p(m)p(n)p(mn)-l)}

where p: N --+ M is a Borel map. Then the A-invariant group A(G, N; M) is
defined to be the quotient group Z(G, N; M)/B(G, N; M). It can be shown [RW2]
that the A-invariant fits into the Inflation-Restriction sequence indicated,

0 -- n (G/N, M)-n (G, M)--n (N, [M])6//v

H2(G/N, M)-H2(G, M)--5-A(G, N; M)----+H3(G/N, M)-H3(G, M),
(1.8)
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and that A (G, N; M) is determined by the exact sequence

0 -- HI(G/N, Hom(N, M))---A(G, N; M)

[H2(N, M)]G H2(G/N, Hom(N, M)) (1.9)

Formulas for the maps r, 8, i, j, k are given in [RW2]. The case of interest to us is
the situation where M C(Y, q), where G is abelian and Y is a G-space with
constant stabilizer subgroup N, and GIN acts freely and properly on Y. Then
the map r: H2(G, C(Y, ql’)) A(G, N; C(Y, ql’)) is given by r([a]) [(), #)],
where

.(g, n) a(g, n)cr(n, g)-l, (g, n) E G x N,

lZ O’INN
Moreover in this situation, Raeburn and Williams have defined a subgroup

Zpt(G, N; C(Y, q)) c_ Z(G, N, C(Y, q))

by

(1.11)

and

d: lv(Y) --* Apt(G, N; C(Y, qr))

Apt(G, N; C(Y, q)) I71 (Z, .I(/’) (1.13)

such that F(r,G) o d([(A, a, G)]) [Xa], where [.a] is the class of the principal
I bundle A x G -- Y/G Z. Furthermore F(y,G) is a monomorphism and the

(1.12)

[0, n)] E Zpt(G, N; C(Y, q[’)) if/z Zp2t(N, C(Y, q)).

Since clearly B(G, N; C(Y, )) C Zpt(G, N; C(Y, )) it is possible to define the
subgroup

Apt(G, N; C(Y, q[’))= Zpt(G, N; C(Y, q))/B(G, N; C(Y, q))C A(G, N; C(Y, q)).

Under the above assumptions, Raeburn and Williams have proved the following"

THEOREM 1.5 [RW1, Theorem 6.5, Proposition 7.1 ]. Let G be an l.c.s.c abelian
group acting on the l.c.s.c Hausdorffspace Y with constant stabilizer subgroup N in
such a way that Y is a locally trivial principal GIN bundle over the quotient space
Z Y/(G/N). Let IN(Y) C BrG(Y) be defined by llv(Y) {[(A, a, G)]: ot/N
Inn(A)}; i.e., the action ot restricted to N is inner There are homomorphisms
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image of F(r,) is equal to

{IF] /(Z, ): p*(F) /(Y,.//’)},
where p" Y Y/G Z is the quotient map.

2. Strong Morita equivalence of twisted transformation group C*-algebras

Let Y be an l.c.s.c. Hausdorff space, let G be an l.c.s.c, abelian group with closed
subgroup N, acting freely and properly on YI, and suppose that

(2.1) Pl" Y ---> Y/N X is a locally trivial principal N-bundle,
(2.2) p2" X X/G Y/G Z is a locally trivial principal GIN- bundle,
(2.3) P3 p2 o pl" Y -- YG Z is a locally trivial principal G bundle.

If G is an elementary abelian group, (2.1)-(2.3) will follow automatically from the
freeness and properness ofthe G-action on Y. We will consider twisted transformation
group C*-algebras Co(X) xr.,o G, where [to] H2(G, C(X, ql")), and our main aim
will be to identify the element [(B,/, N)] e Bray(Z) guaranteed by Theorem 1.2
such that Co(X) x,o G is strongly Morita equivalent to B x, N; along the way we
will state conditions on[to] which will guarantee that Co(X) x r,o G is strongly Morita
equivalent to a twisted transformation group C*-algebra of the form Co(Z) Xd, N,

Z2 (N, C(Z, "11")). As the latter type of C*-algebras can be decomposed as the C*-
algebra of sections of a C*-bundle whose fibers are twisted abelian group C*-algebras,
they are more easy to study.
We note that examples from [RR] and [PR3] show, first of all, that there ex-

ists a locally trivial principal G/N-bundle X over Z which is not the quotient of a
G-bundle, such that the ordinary transformation group C*-algebra Co(X) x G is
not strongly Morita equivalent to any crossed product of the form B x, N, where
[(B,/, N)] BrN(Z), and, second, that even if X is the quotient by the action of
N of a G-bundle Y over Z, Co(X)x,,o G need not be strongly Morita equivalent
to a twisted transformation group C*-algebra Co(Z) Xd,’ N, so that some sort of
conditions on X, Z and [to] H2(G, C(X, ql’)) are necessary to obtain positive
results.

For future reference we point out that if G is a countable discrete abelia.n group
and X is a locally trivial G/N bundle over the space Z ql"k, k N, then X is always
the quotient of a principal G-bundle (X, G)"

PROPOSITION 2.1. Let G be a countable discrete abelian group andN a subgroup
ofG, and let X be a locally trivial principal G/N-bundle over Z qk, k N. Then
there is a locally trivial principal G-bundle Y over qk such that Y/N X.

Proof. The bundle (X, G/N) over Z ’I["k is classified by an element [,]
l (Z, /N) (Z, G/N), and X will be the quotient of a G-bundle (Y, G) over
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Z qi,k if and only if [,] is in the range of the map zr." / (Tk, G) --> / (q[’i, G/N),
where zr" G --> G/N is the projection map. By a slight modification of [PR3,
Lemma 2.6], there is a commutative diagram

H (Z G)--H (Zk, G/N)

D Or G fl

(2.4)

where (,k)* and (,k//v)* are the isomorphisms between group cohomology and
(ech cohomology obtained by using the fact that ql" is a classifying space for Zk.
Since G is discrete abelian, every homomorphism from Z to GIN can be lifted to
a homomorphism from Zk to G, and the result follows from the commutativity of
diagram (2.4).
We now let Y, X, and Z be as in (2.1)-(2.3), fix [o9] 6 H2(G, C(X, ql’)) and

consider the twisted transformation group C*-algebra Co(X) x ,o,G. By Theorem 1.2,
there is a C*-dynamical system (B,/3, N) such that B has continuous trace,/ Z,
the induced action/3 of N on Z is trivial, and B x t N is strongly Morita equivalent to
Co(X) x ,,o G, which can be constructed using the isomorphism 0 o0: Br(X)
Br/v(Z) of Theorem 1.2. We shall use a slightly different isomorphism P between
Br(X) and Br/v(Z), defined as follows:

q K* o A* o 0, (2.5)

where 0" Br(X) -- Br/v(Y) is as in Theorem 1.2,

A*" Br</v,r,)(Y) ---> Br</v,2)(Y)

is obtained by taking Id and defining A" G x N ---> G x N by A(g, n) (gn, n),
where r is the action ofG xN on Y definedby r(g, n)y gn-y, and r2 r oA, as
in our remarks prior to the statement of Prop. 1.1, and K*" Br<a/v,2)(Y) Br/v(Z)
is given by Theorem 5.3 of [PRW]; more precisely, we have K*([(C, ,, G x N)])
[(C x/ G, ,//v), N)], where, by abuse of notation, ,//v denotes the action of N
on the crossed product C x/ G obtained from standard decomposition results
for crossed product C -algebras, so that C x r (G x N) (C xr/ G) x//v N.
It is then easy to check that setting q([(C0(X) (R)/C, tzo,, G)] P(<x,)([to]))
[(B,/3, N)] 6 Br/v(Z), B xt N will be strongly Morita equivalent to Co(X) x,o G.

Before stating the main theorem, we establish some notation. For [o9] 6 H2(G,
C(X, q[’)), let [w/v] Res([w]) 6 H2(N, C(X, qI’)), where Res: H2(G, C(X, q)) --->
H2(N, C(X, "I[’)) is the restriction map. Taking M C(X, ’F) in (1.8) and (1.9), we
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note that Res j so that [toN] 6 [H2(N, C(X, ql’))]a. For N elementary abelian
acting trivially on X, by [PRW, Cor 5.2] there is a split exact sequence

2
---+

0 -- Hpt(N, C(X, ql"))- HE(N, C(X, q)) . C(X, HE(N, ql")) -- 0 (2.6)
J.

and clearly if [O9N] 6 [HE(N, C(X, ,][,))]G, we have zr.([o9N]) fo o P2, where

f: Z -- H2(N, q) is continuous. One easily checks that [fo] Mo((x.o)[o9]),
where Mo: Br(X) - C(Z, HE(N, ql’)) is the Mackey obstruction map defined in
Section of [PRW]. Given [o9] HE(G, C(X, ql’)), we now define [(.o,/xo)]
A(G x N, N; C(Y, qI’)). Here the action of G x N on Y is defined by rE; i.e.,
rE (g, n)y gy, and N is identified with the subgroup 16} x N of G x N.

.oo((gl,nl),nE)(y) og(gl,nE)(pl(y))og(n2, gl)(pl(y)) (2.7)

/zo(nl, n2) og(nl,n2)(pl(y))[j,(fo)]-l(nl,n2)(p3(y)), (2.8)
where j,: C(Z, HZ(N, q)) HZ(N, (C(Z, ql’)) is the splitting map for the exact
sequence (2.6) where the trivial N-space X is replaced by the trivial N-space Z. By
construction, one checks that

[(.o,/o)1 Apt(G x N, N; C(Y, q)) C A(G x N, N; C(Y, q)).

We now state the main theorem.

THEOREM 2.2. Let G be an l.c.s.c, abelian group, with closed subgroup N which
is elementary abelian, and suppose that G acts freely and properly on the 1.c.s.c.
Hausdorff space Y, in such a way that the quotient maps pl: Y ---> Y/N X,
P2: X ---> X/G Z and P3 P2 o Pl: Y Z satisfy (2.1)-(2.3), respectively.
Denote by di, 0, 1, 2, the homomorphisms of H2(G, C(X, 7)) into the groups
C(Z, H2(N, q)), ISI (Z,J), and H2(Z, S) defined by di I’Ii o ql o (X,G), respec-
tively, where the maps Hi are defined after (1.2). Then

d0([og]) [f,o], (2.9)

dl([ogl) F(y,GxN)([w,

d2([o9]) (Y,G)(P[og]) Bro(r) - /2(Z, S),

(2.10)

(2.11)

with [fo)] as in (2.6), and F(r,tN) as in (1.13).

Remark. If in addition to is a continuous cocycle on N x N and no_tjust Borel, we
note that an explicit formula for d2([o9]) is given as follows: Let {Ni }i be a trivialing
open cover for Z corresponding to the G-bundle p3: Y Z, and let ci: Ni Y
be local cross sections and .ij: Ni N Nj -- G the transition functions defined by
cj (z) .ij (z)ci (z). Then

d2([o9]) [I)ijk(Z)] [og(ij(Z), ,jk(Z))(pl(Ci(Z)))]. (2.12)
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We will first establish a sequence of lemmas.

LEMMA 2.3. Let(Y, G), (X, G) and (Z, N)beaginthestatementofTheorem2.2,
and let [o9] H2(G, C(X, q)). Then

A* o Oo o (x,;)([o9]) (v,r:,o/v)([o-o,]),

where [o-o,] Hr:)(G x N, C(Y, q)) is defined by

O-o, ((g, n), (g., n2))(y)

=og(gn,g2n2)(p(y)), (g,n), (g2, n2) G x N, y Y.

Proof. By checking the definitions of (x,) as explicitly given in [P l, 2.1-2.4]
and 0" Br(X) -- Br(N,,)(Y) as given in [KRW, Prop. 7], we see that

0G 0 (X,G)([o9]) (Y,r,G xn)([0"09,2]),

where [o"o,2] H,(G x N, C(Y, q[’)) is defined by

O"o,2((g, n), (gz, n2))(y) --og(g, g2)(P(Y)), (g,n), (g2, n2) G x N, y Y.
(2.14)

In what follows, for [o"] 6 HZ(G N, C(Y, )) we denote by kt the action of
G x N on Co(Y) (R) 1E given by the stabilization trick. Using [P1, 2.1-2.2], one can
also check that the action .. A of G x N on Co(Y) (R) 1E obtained from calculating

A*((V,r,,N )([o"o, 1])) A*([(Co(Y) (R) 1C, Yt’o,.21, G x N)]) 6 Br<ou,r2)(Y)

is exterior equivalent to the action ’[A*(cro.2)] of G x N on Co(Y) (R)/C, and since
(r,r,ou)([o"o,l]) [(C0(Y)(R)/C, ’ta*tcro.2]], G x N)], we see that A* o 0o o

(x,o)([og]) r,r2,ov)([o",o,]), as desired.

We now show that O",0,1 is cohomologous to another cocycle O",0, in part by using
the decomposition for H)(G x N, C(Y, qI’)) given in (1.8) and (1.9).

LEMMA 2.4. Let Y, X, Z, G and N be as in the statement ofTheorem 2.2. Define
[O’w] C= Z2 (G x N, C(Y, q)) by

’2

O-o((Y, n, ), (g2, n2))(y) og(gl, g2)(Pl(Y))Z(gt, n2)(pl(y))og(n, n2)(p(y))

for (g, n), (g2, n2) G N, y Y, (2.15)

where : G x N C(X, q) is defined by

Z(g, n)(x) og(g, n)(x)og(n, g)(x), (g, n) G x N, x X. (2.16)

Then O",0 is cohomologous to O"00,
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Proof We first establish for the reader’s convenience that (X, tov)] 6 A(G, N;
C(X, ql")), although this follows from Raebum and Williams’ unpublished work
[RW2, Section 5]; i.e., we shall prove that

k(ggz, n)(x) .(g, n)(x)k(g2, n)(g-x) g, g
_
G, n . N, x

_
X (2.17)

and

(g, nln2)(x) w(n, n2)(g-lx)oo(nl, n:z)(x)k(g, n)(x).(g, nz)(x)

for g
_
G, n nz

_
N, x . X. (2.18)

We have

k(gl g:z, n)(x)

og(glg2, n)(x)og(n, glg2)(x)

[w(g, gz)(X)og(g2, n)(g-(x)og(gl, ngz)(X)][og(g, g:z)(x)og(n, g)(x)

.w(ng,gz)(X)]

o9(g2, n)(g-(x)w(g, ng)(x)w(n, g)(x)w(ng, gz)(x)

o9(g2, n)(g-x)[w(g, n)(x)w(gn, gz)(X)og(n, gz)(g-{lx)]
o)(n, gl)(X)og(ngl, gz)(X)

Z(g, n)(x).(g2, n)(g-(x),

establishing (2.17).
As for (2.18), we have

k(g, nn2)(x) oo(g, nn2)(x)o(nnz, g)(x)

09(n, n:z)(g-x)w(gn, n)(x)w(g, n)(x)w(nnz, g)(x)

w(n, nz)(g-x)w(gn, nz)(x)w(g, n)(x)w(n, n:z)(x)

w(nz, g)(x)og(n, nzg)(x)

oo(n, nz)(g-lx)og(nl, nz)(x)og(g, nl)(x)w(n:z, g)(x)w(n, g)(x)

w(nl, gnz)(x)og(g, nz)(x) c w(nl, gnz)(x)

oo(n, nz)(g-x)w(n, n:)(x)L(g, n)(x)k(g, nz)(x).

With the above identities in mind, we define b: G x N C(Y, 7) by b(g, n)(y)
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to(n, g)(Pl (Y)) and compute

[db cro.l]((gl, n), (g2, n2))(y)

to(nl, g)(p(y))to(n2, g2)(pl(gy))
to(nln2, glg2)(p(y))to(gln, g2n2)(p(Y))

to(n, gl)(x)to(ng, g2n2)(x)to(n2, g2)(g-lx)to(nn2, gg2)(x)

(letting x pl (y))

to(n, glg2n2)(x)to(g, g2n:z)(x)to(n2, g2)(g-x)to(nn2, gg2)(x)

to(n, glg2n2)(x)to(nn2, glg:,.)(x)to(gl, n2)(x)to(gn2, g2)(x)

to(g, g2)(x)to(gl, n2)(x)to(n2, g)(x)to(n, n2)(x)to(n, gg2n2)(x)

to(nn, glg2)(x)to(gln2, g2)(x)to(g, g2)(x)to(n2, gl)(x)

to(n n2)(x)

r((g, n), (g, n))(y)to(n, gg2n2)(x)to(gn2, g2)(x)to(gl, g2)(x)

to(n2, g)(x)to(n, n2gg2)(x)to(n2, gg2)(x)

ro((g, nl), (g:z, n2))(y)to(n2, g)(x)to(n2g, g2)(x)

to(n2, gg2)(x)to(g, g2)(x)

cro((g, n), (g2, n2))(y),

so that ro, l, is cohomologous to ro, as desired.

ProofofTheorem 2.2. By Lemma 2.3 and 2.4, we have di ([to]) Hi c) K*
(r,1-2,N([ro])), 0, 1,2. We now write [tr,o] as a product Iron] [mo], where
[re,o], [r,o] H2 (G x N C(Y, ql")) are defined by

moo((g, n), (gg_, n:))(y) j.([fo])(n, n2)(P3(Y)) (2.19)

for (gl, hi), (g2, n)_G xN, yY, [fo] as in Eq. (2.6),

and

We now write

and

(2.20)

tz,v([j.(foo)]) [(Co(Z) (R)/C,/o, N)] Bray(Z)

[(Co(Y)
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Through direct computation, one checks that the action r2(R)/5 ofG xN on Co(Y)(R)coz
Co(Z) (R) 1C Co(Y) (R) 1C is exterior equivalent to ’tmJ. Thus

l"I (K* (’(y, r2,t x v) ([cro])))

Hi(K*([(Co(Y) (R)/C, r (R)/,o, G x N)]))

I-I([((C0(Y) (R) K:) x, G, #o,, N)]), 0, 1,2,

Hi([(Co(Z) (R)/C, o,, N)])

n(z,s([j,([f])])), O, 1,2.

Now z,Noj." C(Z, H2(N, qI’)) -- BrN(Z) is a splitting for the Mackey obstruction
Flo Ms" Bray(Z) C(Z, H2(N, ql")), so that d0([to]) Flo o z,v o j.([fo,])
[fo,]. We now recall from [P2] and [PRW] that for [(B, , N)] e BrN(Z), the
element [(B, ill, N)] [(B, r, N)]. Z,lV(j,(M1v([(B, r, N)]))) e Bray(Z) has
trivial Mackey obstruction, so is locally unitary, in the sense of J. Phillips and I.
Raeburn [PhR], by Theorem 2.1 of [Ro]. H ([(B, r, N)]) is defined to be that element
[q] e /-)(Z,./Q’) representing the principal ]Q bundle B x, N / Z. It is
evident from this definition that dl([W]) Fl(z.N([j.([fo,]))) l,z,A, and
clearly

d2([to]) 1-12((z.v(j.([fo,])))= a([[(C0(Y)) xrG])=8([Co(Z)tg])--

We now consider K*((r,2,v)([r,o])), [r,o] as in (2.20). We first note that upon
identifying the subgroup x N of G x N with N, ro/(lllV)x(llv) can be written

2as p(toN j,([fo]) l) 6 Hpt(N, C(Y, qI’)) by the exactness of sequence (2.6). Also,
denoting (r,2./v)([vo,]) by [(Co(Y) (R)/C, Ytrj, G x N)], one checks that ?’trl is
inner when restricted to the stabilizer subgroup x N for the r2 action on Y, and
that d([ytrl]) [()o,,/zo,)], where d: lll}v(Y) -- Apt(G x N, N; C(Y, qI’))is asin
(1.1 2), and (,X.o,, #o,) are as defined in (2.7) and (2.8). By Theorem 1.5, the class of the
locally trivial principal/Q bundle over Y/(G x N) Z, given by ((Co(Y)(R) K)x
G x N)^ -- Z, is exactly F(r,2, o d([ytl]) Fr,,v([.,o,/z,o]), which by
results from [RW1] will lie in the subgroup {[F] /1 (Z,)Q)" p(F) cl (Y,./(f)}.
Hence

FIo(K* o (y,r2,GxN)([5o])) FI0((C0(Y) (R)/C x,to, G, Ytro,]/v, N)) lc(z.’)

(as ’[] restricted to {1 x N is locally unitary), and by the definition of 1I1 given
above, FI(K* o (V.2,GN)([ro,])) F(V, r2,GN)([()o,,/Zo,)]). We now calculate

FI2(K* o (V.,VU)([r,o]))

H2(K*[(Co(Y) (R) gS, Y[ro,], G x N)]

8([C0(Y) (R)/Cl xt,ol/l, (G x {1 })) I712(Z, S).
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From the formula for to,, one calculates that

[(C0(Y) (R)/C, ’[r,,/cl,I, G x {1})1 ir,o(P([to])
[(C0(Y) (R)/C, Op([og]) G)] Bro(Y).

It follows that

8 ((C0 (Y) (R)/C) x,G x 1}) 3 ((C0(Y)(R)/C) x %,,,o, G))= 8 ((C0(Y) x r,p;(o,)G)(R)/C),

the last equality given by the stabilization trick of [PRI ]. But formulas for the
Dixmier-Douady classes of twisted transformation group C*-algebras where G acts
freely and properly on Y have been given in [PR2, Cor 3.4 and (**) on p. 604], and if
the cocycle to is continuous on G x G and notjust Borel, so is p’ (to), and Corollary 3.4
in [PR2] gives ((Co(Y) X,po G) (R) 1C) as a 2-cocycle with representative given
by the right-hand side of (2.12).

Finally, using the fact that Hi, 0, 1,2, K*, and(r,,2,N) are homomorphisms,
we have di([to]) I’l o g*[(y,r2,GxN)([tTog]) I’I 0 K* o (y, r2,GxN)([15og]) 7t" o

K* o (v,2,v)([mo,]), 0, 1,2, which combined with our previous calculations
completes the proof of Theorem 2.2 and establishes (2.12).

We now can determine conditions on [to] under which a twisted transformation
group C*-algebra will be strongly Morita equivalent to a twisted transformation group
C*-algebra of the form Co(Z) Xid,tb N for [&] e H2(N, C(Z, q)).

COROLLARY 2.5. Let Y, X, Z, G, N, and [to] 6 H2(G, C(X, T)) be as in
the statement of Theorem 2.2. Suppose that dE([to]) [l ]z,s) and dl ([to])

/c (Z, .r), where dE and dl are the maps defined in Theorem 2.2. Then there ex-
ists H2(N, C(Z, q)) such that Co(X) xr,,o G is strongly Morita equivalent to

Co(Z) Xld,t5 N.

Proof. This follows directly from Theorem 2.2 together with Corollary 1.4.

For the next result, we make the additionil assumption that to restricted to N x N
takes on its values in p(C(Z, ))

_
C(X, q).

THEOREM 2.6. Let Y, X, Z, G, N, and [to] H2(G, C(X, 7f)) be as in the
statement of Theorem 2. Suppose in addition that to is (cohomologous to) a cocycle
which when restricted to N x N takes on its values in p*2(C(Z, q[’)) c_ C(X, q).
Then in order that dE([to]) [l]B2tz,s and dl ([to]) /(Z,/), it is necessary and

sufficient that thefollowing conditions hold:

(i) [p([to])] Im dtr,6 c_ H2(G, C(Y, q)).
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(ii) The map p’0k): G -- C(Y, IQ) defined by

p(.)(g)(y)(n) o)(g, n)(pl (y))w(n, g)(pl (y))

is trivial in H (G, C(Y,/)); (g, n) 6 G x N, y 6 Y.
If these conditions are satisfied, Co(X) x r,o G is strongly Morita equivalent to

Co(Z) x 8,o, N, where wN e H(N, C(Z, "]I’)) is obtained from wlcu by identifying
p(C(Z, )) with C(Z, q).

Proof The proof of Theorem 2.2 combined with the results of Corollary 1.4
show that Co(X) x,oo G will be strongly Morita equivalent to Co(Z) x8,,o N if
d2([w]) ]n2z,s) and dl ([w]) e /c(Z, ff). Since G acts freely and properly
on Y, for any [(C, y, G)] e Br(Y), C x v G will be a continuous trace C*- algebra
with spectrum Z, and the map " Br(Y) ---> /2(Z, S) given by 6([(C, y, G)])
t;(C x v G) is an isomorphism. Hence by Prop 1.1 and (2.12), d2([w]) [Yijk(z)]
((C0(Y) (R)/) x,,,,,o, G)) [l]t2z,s if and only if p([w]) Im dv,G), estab-

lishing (i). Since wlvs takes on its values in p(C(Z, q[’))

_
C(X, qI’)), the element

lz,o: N x N --> C(Y, ’F) defined in (2.8) takes on its values in p(C(Z, T)) and is
an element of Zpt(N,.C(Y, ’F)) so that [(1,/x,o)] Apt(G N, N; C(Y, )); and

writing/x,o P(,o) where ,o Zpt(N, C(Z, "I[’)), we have Ftr,m([(l,/z,)])
ECz,m([o]) (Z, 2Q). Since dl([Og]) Fv,6xm([(.o,/zo,)] /c(Z,Jc) by
hypothesis, it follows that Fv,xV)([(.,o, 1)]) Fv,xm([(.o, #o)])" FCv,xm([(l,
/z,o)]-) (Z,./Q’). Let [?’] FCv,/v)([(.o,, 1)]) /c(Z,.’), and find
[p] Hp(N, C(Z,’F)) with Ez,m([P]) [y]. Then [(1, p(p)] Apt(G x
N, N; C(Y,’I[’)) and F,.v)([(l, p(p))]) [’] F[v.v)([()o, 1)]). Since

Fv. v)isinjective, this implies that [(,o, 1)] [(1 p*3(,0))] Apt(GxN, N" C(Y,
ql’). Now we adapt sequence (1.9) to obtain an exact sequence for A(G x N, N;
C(Y, T)):

0 --> Ht(G, C(Y,/Q))--A(G N, N; C(Y, "I[’))--[H2(N, C(Y, T))]

H2(G, C(Y, /Q)) (2.21)

Hence [p(p)] j([(l, p(p))]) j([(ko, 1)1) j o i(p’(.)] [IltHtN,Ctr,r)].
Therefore

[p(p)] [1] H2(N, C(Y, ’F))
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and consequently

[(1, p(p))] [1] E A(G x N, N; C(Y, T)),

i([p(X)]) [(,ko, 1)] [(1, pj(p))] [1]A(GN,N;C(Y,T)).

Since is an injection, this implies that [p()] E H(G, C(Y,/)), as we
desired to show.

Remark 2.7. Although the assumption that to/N N takes on its values in
p. (C(Z, T)) may seem very strong, there are subgroups N for which this will always
happen, regardless of Y, X, Z, and G. In particular, if N Zn for some n N,
the sequences (1.8), (1.9) with M C(X, "r) and (2.5) show first that oo/z,,z,,
[H2(Z’, C(X, ))], and second that H2(Zn, C(X, q)) - C(X, H2(,n, q)), since

2 nHpt(Z C(X, ql’)) is trivial. Consequently, [H2(Zn, C(X, qI’))] C(X/G, H2(Zn,
q)) C(Z, H2(Zn, q)), and thus tolz,.,, is cohomologous to a cocycle taking on
its values in p.(C(Z, q)).

3. Applications to twisted two-step nilpotent group C*-algebras

In this section, we consider twisted group C*-algebras C*(F,/x), where F is a
torsion free finitely generated two-step nilpotent group, i.e., where 1" is a central
extension of Z by Z, for e, n e 11, and we establish conditions on [#] e H2(F,
analogous to conditions (i) and (ii) of Theorem 2.6 which will imply that C* (1",
is strongly Morita equivalent to C*(F0,/x0) where F0 is a subgroup of F of finite
index and/x0 #lroro. Though the conditions as stated may appear somewhat
specialized, they frequently arise when one is considering examples of multipliers
[/z] E H2(F, "I) which are not homotopic to the identity in H2(F, 3"). Let (F,/x) be
as above, and suppose that F contains a central subgroup D which itself contains the
commutator subgroup C [F, F], and suppose in addition the following conditions
are satisfied:
(3.1)//’lDx D is trivial.

(3.2) The homomorphism ,Po(#)" F defined in [PR3] by

CPD(tX)(y)(d) lz(d, y)lz(y, d), y F, d D

has closed (i.e., finite) range R in/, so that R D0 for some subgroup Do
_
D of

finite index.

(3.3) Setting M ker,po(/z), the quotient group M/Do (which we shall prove is
abelian) splits as

M/Do =-- D/Do MID.
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(This final condition of course automatically happens if M/D Zk for some k
1.)

The commutator subgroup C of I" will automatically satisfy (3.1) [LP1, Prop. ],
so if C also satisfies (3.2) and (3.3) for/z, we can take D C.

Assuming that (3. l) and (3.2) hold, we obtain the following decomposition result.

PROPOSITION 3.1. Let I" be a finitely generated torsion free two-step nilpotent
group, let [/z] 6 H2(I-’, ql’) and suppose there is a central subgroup D off containing
C such that (3.1) and (3.2) are satisfied. Then the twisted group C*-algebra C* (1-’,/z)
is .-isomorphic to a twisted transformation group C*-algebra C(7e) x r,,o G, where
g. is the rank of D, G I’/D, the action r of G on qe D is given by trans-
lation corresponding to the homomorphism cPo(lz)" I" D of (3.2), and [09] 6

H2(G, C(X, q)), where X qe. Moreover, letting N ker r ker Po(/z)lo,
there is an 1.c.s.c. free andproper G space (Y, G) such that the spaces Y, X Y/N,
Z Y/G X/G satisfy the conditions of (2.1)-(2.3). If in addition we assume
that (3.3) holds, then we can assume without loss ofgenerality that tolvu takes on
values in p(C(Z, 7f)) c_ C(X, q).

Proof. By definition, C* (F,/z) is the twisted crossed product C x td.u F, so that
by the decomposition theory for twisted crossed products [PRI, Theorem 4.1 ]) we
have C*(F,/z) C Xld, F - C(/) xr,,o G, where G F/D is abelian since
C

_
D, and since #1oo is trivial, C Xd,u D - C*(D) - C(D) - C(qe) for

some e N by the Fourier transform. The formulas given in [PR 1], Theorem 4.1,
for r and to show that the action r of G on C(/) is translation corresponding to
the homomorphism 4o(/z)" F /, which, since #1oo is trivial, factors through
F/D G. Choosing a cross-section c: G F with c(la) It, and writing

r/(gl, g2) c(gl)c(g2)c(glg2)-! D D, g, g2 - G, (3.4)

we can compute to 6 Z2(G, C(/, q)) as

to(gl, g2)(x) #(c(gl), c(g2))lz(rl(gl, g2), c(glg2))rl(gl, g2)(x)
g,gz_G,x. (3.5)

By assumption (3.2), the range R of tPo(/z) is a finite group which is isomorphic to
G/N, for N Ker r. Hence N is of finite index in G and GIN acts freely and
properly on X =/) which is a locally trivial principal G/N-bundle over D/G/N
Z. Setting Do R+/- c_ D, by the Pontryagin theory Z =/0, so that Z also has the
structure ofan e-toms. By Proposition 2.1, there is a locally trivial principal G-bundle
Y over Z such that Y/N X, so that (2.1)-(2.3) are satisfied. To establish the last
statement oftheproposition, we let/z Ker tPo(/z), Co {c C:/z(c, ,)/z(,, c)
1, , F}, and Do {d D: /z(d, F)/z(’, d) 1, , F}. Since C

_
D

_
M,

Co

_
Do c_ M. The argument of Theorem 1.2 in [PR3] shows that # Inf for
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Z2(F/Do, "I[’). Furthermore there is an exact sequence

---> M/Do -- r/Do r/Do/M/Do - r/M -- R -- D ---> 1. (3.6)

Since D- [D/Do] and is finite, by the theory of finite abelian groups we know that

D/Do D/Do. We now establish that M/Do is abelian. Let Fl F/Co. Then
being the inflation of a multiplier on F/Do, can also be viewed as a lift of a multiplier
/z on the intermediate quotient group F l. If Co - C, F is again a two-step nilpotent
group with commutator subgroup C C/Co, and letting cl (/z)" F C, by
construction tp (/z) will be surjective, and by [PR3, Cor 1.3], K ker c, (/Zl) is
a normal abelian subgroup of F containing Cl. Now set K {y 17. ?, Co
K c_C_ Fl 17/C0}. ThenK =kerc(/)" 17 t, and since Kl K/C0is
abelian, [K, K]

_
Co. Since M ker o(/z) c_ ker c(/z) K, it follows that

[M, M]

_
[K, K] c_ Co, and since Co

_
Do, we see that M/Do M/Co/Do/Co is

abelian. Recalling that N M/D, upon restricting r/ Z2(G, D) defined in (3.4)
to N x N, we obtain a cocycle r/v Z2(N, D). By the Bockstein exact sequence

H2(N, Do)---H2(N, D)---->H2(N, D/Do) -H3(N, Do) (3.7)

it follows that [ON] i.([tc]) for [to] e H2(N, Do) if and only if rr.([r/N])
]H2(lV, O/Do. It follows that r/v is cohomologous to a cocycle taking values in Do if

and only if the central extension M/Do of N M/D by D/Do corresponding to the
cocycle zr.(rlN)" N x N --> D/Do splits, i.e., if and only if the group extension

D/Do ---> M/Do ---> M/D --> (3.8)

splits. Consequently if M/Do (which we know is abelian) is isomorphic to D/Do
M/D, then, upon changing r/by a coboundary if necessary, we can choose r/so that

ON takes on values in Do Do c C(0, ) p*2 (C(Z, )), where p2 X --/) -->

D/G D/G D/R R+/- Do - Z. It followS that for w as defined in (3.5),
wlNv will also be (cohomologous to) a cocycle taking on its values in p(C(Z, "I[’)),
as we desired to show. Of course if N MD is torsion free (hence by assumption
isomorphic to Zm for some m e Z+) then it will always be true that MDo will split
as D/Do M/D, so that it will always be true that o9 can be chosen so that WlNN
takes on its values in p(C(Z, )). This is consistent with the results of Remark 2.7.

Remark 3.2. It follows from the above proposition that if (17,/z) is a group-
multiplier pair where 17 is a finitely generated nilpotent torsion free two-step nilpotent
group and if there exists a central subgroup D containing the commutator subgroup
for 17 such that D satisfies (3.1) and (3.2), then we can apply Theorem 2.2 to construct
a continuous trace C*-algebra B with spectrum/30 and an action fl of MID N
on B such that the induced action/ is trivial on the spectrum Z and B x, N is
strongly Morita equivalent to C*(F,/z). In general, the Dixmier-Douady class of
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B in/-r2(Z, ,.) and the Phillips-Raebum obstruction [),] /-)(Z,./’) associated to
[(B,/3, N)] Br/v(Z) can be non-trivial, as we will see in upcoming examples. For
the next few results, however, we concentrate on finding conditions under which
C* (F,/z) will be strongly Morita equivalent to C* (F.0, /.to), where F.0 is a subgroup
r of finite index and/.to =/Zlroro.

COROLLARY 3.3. Let l" be a finitely generated torsion free two-step nilpotent
group, let I/x] HE (l-’, q[’), and suppose there is a central subgroup D ofF. containing
the commutatorsubgroup satisfying (3.1) and (3.2), andsuch that MID isfree abelian
(so that (3.3) is also satisfied). Then there is a subgroup F.o offinite index in F. such
that, defining/.to =/Zlro to, [/zo] is in thepath componentofthe identity in HE (Fo, qI’).

Proof. The proof of Proposition 3.2 shows that we can define r0 to be the central
extension ofMID N by Do defined by r/v" N x N Do which fits into the exact
sequence

1-- Do- ro- M/D--+ 1.

Note Fo c_ M. Since/z(d, m)/x(m, d) Ym e M, Yde D by definition of M,
it follows that/zo(d, y)/zo(’, d) l, Yd Do, ’v’, e Fo so that/zo Inf(o) for
to ZE(M/D, q). But if M/D is free abelian, HE(M/D, ) is path-connected.
Consequently [o] is in the path component of the identity in HE(M/D, qI’), so that
[o] is in the path component of the identity in HE(F.o, ’).

COROLLARY 3.4. Let F. be a finitely generated torsion free two-step nilpotent
group and I/z] HE (F, ql’). Suppose there exists a central subgroup D c_ F contain-
ing the commutator subgroup off such that (3. )-(3.3) are satisfied, and suppose the
multiplier [o9] HE(G, C(X, q)) defined in (3.5) satisfies conditions (i) and (ii) of
Theorem 2.6. Then C* (l",/x) is strongly Morita equivalent to C*(l"o,/zo), where F.o
is a subgroup of F. offinite index and/o =/Zlro to. Ifin addition, using the notation

ofCorollary 3.3, M/D isfree abelian C*(F., ) is KK-equivalent to C*(F.o).

Proof. By Proposition 3.1 we can write C* (l", #) as C(X) x r,,o G, where G
F./D, X D, and [to] is as defined in (3.5). Furthermore from the results of Prop 3.1
and by hypothesis, this transformation group C*-algebra satisfies all the conditions of
Theorem 2.6, so that Co(X) x ,o G is strongly Morita equivalent to Co(Z) x Id,oN N
Co(/o) x Id,oN N. But as in the proofofProposition 3.1, Co(/o) x |d,too N is isomorphic
to C*(l"o,/zo), where F.o is the central extension of N M/D by Do corresponding
to the two-cocycle r/v 6 ZE(N, Do). Hence we have shown that C*(F., #) is strongly
Morita equivalent to C* (l"o,/zo). Finally, if we assume N is free abelian, then by
Corollary 3.3, [/zo] is in the same path component as [l]HEro,r) 6 HE(F.o, "I[’), so
that by [PR 3, Cot 2.8], C* (l-’o,/zo) is KK-equivalent to C* (F.o). Hence C* (F.,/z) is
KK-equivalent to C* (l-’o).
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Example 3.5. Let F be a lattice in the (2n + l)-dimensional simply connected
Heisenberg Lie group for n > 2 and let [/x] be any multiplier of 1-’ (the structure
of the lattice subgroups F and multipliers [/z] were discussed in [LPI]). The center
2 of F is isomorphic to Z so that F/2 Z2n. Since H2(, ’) H2(Z,
is trivial, without loss of generality we can assume that lzlzz l, so that as

Z2n where the action ofin Proposition 3.1, C*(F,/z) decomposes as C(T) xr,o,
corresponds to translation coming from the homomorphism *z(/z)" 1" --which factors through l"/Z Z2". Let M ker Sz(/z) and set N M/Z. The
range R of Sz(/z) is finite for dimension n >_ 2 [LP1], i.e., R Z6 where Zo is a
finite index subgroup of Z. Since M/Z is torsion free, we have a splitting

M/Zo Z/Zo M/Z

so that conditions (3.2) and (3.3) listed in the first part of this section are also satisfied.
Thus, we can apply Proposition 3.1 and Theorem 2.6 to deduce that C*(I’,/z) is
strongly Morita equivalent to C* (F0,/z0) if we can show that the multiplier [to]
H2(Z2n, C(’]I’, "/[’)) defined in (3.5) satisfies conditions (i) and (ii) of Theorem 2.6.
Now (i) is satisfied automatically, since 2(Z, 6’) 3(q[,, Z) {0}. We thus
consider whether (ii) is satisfied, i.e., whether or not [p(X)] H(G, C(Y, ))
defined by

[p(Z)](g)(y)(n) to(g, n)(p(y))to(n, g)(p(y)), g G, n N, y Y,

is trivial. Now from the exact sequence (2.21), the map i" HI(G, C(Y, ))
Apt(G x N, N; C(Y, qI’)) is injective, and by Theorem 1.5, Ftr,v)" Apt(G x
N, N; C(Y, q)) ffl (Z, J(/’) is injective. Thus, Fr,N) o i" H (G, C(Y, 1(1))
l(Z, ./Q’) is injective. But as Z qI’ and )Q ,2n qi,2n, we have (Z,/)
/ (ql’, $2,) 2(, Z2,) |0}, and it follows from the vanishing of cohomology
groups that [p’(,k)] must be trivial. We thus obtain another proof of the following
result, which was first proved in [LP2]:

COROLLARY 3.6. Let F be a lattice in the (2n + dimensional simply connected
Heisenberg Lie group and let [/z] E HE(I", qI’). Then there is a subgroup Fo of ["

offinite index such that the twisted group C*-algebra C*(17’,/z) is strongly Morita
equivalent to C*(l-’0, bto), where [/zo] [/Z/toto] is in the path component of the
identity in HE(F0, ql’).

Proof If n 1, it follows from [LP 1, Theorem 3.6] that every multiplier on F is
homotopic to the identity, so that there is nothing to prove. Ifn > 2, we have shown in
the above analysis that C*(F,/z) is strongly Morita equivalent to C*(r’0,/z0), where
F0 is the central extension of M/Z by Zo, for M ker qz(/z). Since M/Z is free
abelian, by Corollary 3.3, I/z0] is in the path component of the identity in H2 (1"0, ql’).

Next, we give several examples where the invariants do not all vanish, yet are
computable.
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Example 3.7. Let 1-’ be the following two step nilpotent group of rank 5: F
is a central extension of Z3 by Z2 corresponding to the cohomology class [r/]
H2(Z3, Z2) given by

r/((xl, x2, x3), (x’, x2, x3)) (axsx’n, dx3x), where a, d 1, aid.

As a set, can be identified with Z2 x Z3. Define/z Z2 (1-’, T) by

/z((ml, re:z, xl, x2, x3), (m m2, xn, x2, x e"h-2 i,

(m l, m2, Xl, x2, x3), (m m2, x x2, x l".

For a > it can be verified that [/z] is not in the path component of the identity
element in H2(F, q[’). By Proposition 3.1, we can write C*(I",/z) C(2) x,,o Z3,
where r" Z3 ---> 2 is given by

"r(Xl,X2, X3) (e2rx2, 1),

and to: Z3 x Z3 C(2, ) is defined by

to((Xl, X2, X3) (X )ax3x; )dxaxl’ X2’ X3))(ZI’ Z2) (Zl (Z2

Through direct calculation we check that condition (3.3) is satisfied, so that by Propo-
sition 3.1 again, with G Z3 and N Z aZ Z, we can find a principal G-bundle
Y x q x Z x Z over Z q[,2/G (which can also be identified with q[,2), where
the action of G Z3 on Y is given by

(r, z, nl, n3) (Xl, x2, x3) (r d- x2, z, nl -1- Xl, n3 -I- x3),

(r,z, nl,n3) Y, (XI,X2, X3) G.

The map p" Y - X Y/N 2 is given by

pl(r, z, nl, n3) (e2ri z).

The map p2" X T2 -- Z T2 is given by P2(Zl, Z2) (Z, Z2), so.that P3
pg. o pl: Y -- Z is given by p3(r,z, nl,n3) (e2rrir, z). Using the notation of
Theorem 2.6, one computes that [p’(to)] H2(G, C(, )) is defined by

[p(to)]((Xl, X2, X3) (X I, X2, x3))(r, Z, nl, n3) e2rtirax3x; Zdx3x2,

x) G (r, z n i, n:z) Y.x, x, x3), x’, x,

and [p(L)] HI(G, H(N, C(Y, q[’)) is defined by

[p(.)]((xl, X2, X3), (jl, j2, j3))((r, Z, nl, n3)) :(e2rtirx3) j’ (zdax3)j2(e-2rtirx’ z-dx2)j3.
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Identifying // 3 with T3, we can write H(G, HI(N, C(Y, q))) - H(G,
C(Y, N)) H(G, C(Y, T3)) and with respect to this identification, we can view
p(,) as being defined by

p(,)((Xl, x2, x3), (r, z, nl, n3)) (e2rtirx3, zdax3, e-2rirx’Z-dX2),

(XI,X2, X3) . G, (r,z, nl,n3) Y.

We note now that as in Example 3.5, condition (i) of Theorem 2.6 is automatically
satisfied since 2(Z, S) H2(2, S) H3(’][’2, Z) {0}. However condition (ii)
does not hold. We can check that if f: -- ,3 is defined by f (f, f2, f3) where
the maps 3: Y - ql’, l, 2, 3 are given by the formulas

fl (r, z, n l, na) e2rirna,

f2(F, z, nl, n3) zdana,

f3(r, z, nl, n3) e-2rrirnt

then

p(.)df((xl,XE, X3), (r,z, nl,n3)) (1, 1,z-dx2),
(Xi,X2, X3) . G, (r,z, nl,n3) Y.

Let [p] [p())df] HI(G, C(Y, ql’3)).

By using the definition of the bundle Fr,v(i*[p]) given in [RWl] and the
method outlined in [PR2, Lemma 3.2], we verify that if {Ni }i= c_ Z ,-2 is a local
trivialization of P3: Y -- Z and ci: Ni --+ Y are sections, with ci(z) cj(z)vij(z)
where vj" Nj -- G, then the transition functions for the Q-bundle over Z represented
by F(y,GN)(i*([p])) are

,ij(Z) [P(I)ij(Z), Ci(Z))]-I,.z Nij.

It is evident that the G Z3-bundle Y over Z T2 is the product of the non-trivial
Z-bundle over T and a trivial Z2-bundle over the second factor of T, so that we
can write Nij Nij T where {N j}

_
T is a local trivialization of the projection

p." / -- T. Using this notation we have

I)ij((Zl, Z2)) (0, I)ij(Zl), 0), (Zl, Z2) ( Nij

where I)ij Nij -’> Z are the transition functions associated to the bundle p I --> T
)cj (z) and where, as usual, ci" N --> are local’(Zl) I)ij(Zlvia the formula c

sections. Using this notation, we see that for (z, z2) Nij N/’j x q we have

,,ij((Zl, z2)) [p((0, I)itj(Zl), 0), (ci(zl) z2, 0, 0))]-1

dvj(z)(1, I,Z2 ).
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By the method outlined in Lemmas 3.2 and 3.3 of [LP2], the cocycle {,i(.)} E

/t (qr2, s) 2(q[,2, z) - z defined by the formulas

v’..(z)
{’ij ((zl, Zz))} Zz’J (Zl, Zz) - Nij,

corresponds to the element ez/\el -el Aez in Hz(qrz, Z) A(Z, Z) (recall ee
is the standard generator of H(, Z)), hence {iy} (T, S3) (T, Z3)
Z3 can be represented by the element (0, 0, -de e) (0, 0, -d) (upon viewing
e e as a standard generator in the third coordinate). Using the notation of Theo-
rem 2.6, it follows that d ([w]) (0, 0, -d) (T, S3) H(, Z3). Finally,
one calculates that do([w]) [c] where c: Z(N, ) is defined by

cw(zl, z2)((jl, aj2, j3), (j, aj, j)) (Zl)j3j; (Z2)aj3j

(ZI Z2) Z 2, (j aj, j3), (J, aJz, J3) N.

Thus C* (F, ) is strongly Morita equivalent to a crossed product (C()@E) x,N
(C(T:) @ E) x, Z3, where [(C(T2) @ E, , Z3)] 6 Bru(Z) has the invafiants
computed above.

Example 3.9. We end the paper by considering a twisted group C*-algebra asso-
ciated to a rank six nilpotent discrete group where all of the cohomological invariants
coming from Theorem 2.6 are non-trivial. Let 17 be the central extension of Z3 by Z3

corresponding to the two-cocycle r/: Z3 x Z3 ---> Z3 defined by

X)) (2X3X,2X3Xt 2X2Xtl)rl((XI, X2, X3), (Xtl X2, 1’

x) g3x, x., x3), x’, x2,

so that setwise, F is identified with Z3 x Z3:

17 {(ml,m2, m3, xl,x2, x3)" mi,xi Z,i 1,2,3}.

Define the multiplier/z: 17 x 17 ql" by

lz((ml,mz, m3, xl,xz, x3), (m ,mz, m3, xl,xl,Xz, X (--1)x’m’+x2mz+xm.

Again, one can check that [/z] is not in the path component of the identity in H2 (17, T),
and it follows from Prop. 3.1 that C*(17,/z) is .-isomorphic to the twisted transfor-
mation group C*-algebra C (q[,3) x r,o G, where G Z3, the action r of G on C (q[,3)
corresponds to the homomorphism r" G qI’3 given by r(x,xz, x3) (erix,
e’ix2, ei’"), (x,xz, x3) - G, and the two-cocycle w: G G --+ c(qr3, q[’)is given
by

(-O((XI, X2, X3) (X’ 2x.x’ 2x3x; 2x2x’,l’X2’X3))(Zl’ZE’Z3) Z Z2 Z3

X;) Z3 G.(Zl, Z2, Z3) ,]3 X, (Xl, x2, x3), (x’l, x2,
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Using the notation of Proposition 3.1, we have D Z3 {(nl, n2, n3),ni
_

Z, 1, 2, 3}, and Do 2Z 2Z 2Z {(2nl, 2n2, 2n3),ni Z,i 1,2, 3},
y 3, with the G Z3 action on Y defined by

(rl,r2, r3)(Xl,X2, X3) (rld-Xl,r2Wx2, r3-l-x3), (rl,r2, r3)_]l{3, (Xl,X2, X3)_Z3.

Letting N 2Z 2Z 2Z, the maps pl, p2 and P3 are given by

p" Y X Y/N ,]3,

pl(rl, r2, r3) (ertir erir2, erir3), (rl, r2, r3) ]3,

P2" X Z YG ,]3,

so that

p2(zl, z2, z3) (Z, Z22, Z), (El, Z2, Z3) ( ’]13 X,

p3(rl, r2, r3) (e2r’r’ e2zrir2, e2rt’r3), (rl, r2, r3) ]13.

Applying the notation of Theorem 2.2 and its subsequent remark, we see that
[p([to])] H2(G, C(Y, )) is given by

p([w])((Xl, x2, x3), (Xtl, X2, X3))(rl, r2, e2zrir, x3x’2e2rtir2x3X’e2Ztir.x2x’.

x) G, (rl, r2, r3) Y.(x, x, x3), (x’, x,

and d2([to]) ( /2(Z, S) is defined by the formulas

(d2([tol))ijk(Z) {p([wl)(.ij(Z), jk(Z))(Ci(Z))lijk

where Ni 3 is a local trivialization for the bundle p3" ]13 3 decribed above,
the maps ci" Ni /I3 are local sections, and ci(z) .ij(z)cj(z), z - Nij. Now
define tr" Z2 x Z2 Z by

tr((m, n), (m’ n’)) nm’

let Vi be a local trivialization for the principal %2 bundle I[2 ---> ,]2, and let 5i" V/
]12 and pij" Vi q Vj Vii - Z2 be the corresponding local sections and transition
functions. Define Oi" 3 __.> ,]1,2 1,2, 3 by

(z2, Z3), 1,
Oi(Zl, z2, z3) (Zl, z3), 2,

(zl,z2), i=3.
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Let

{" ijk (Vijk) C }.

(2) (3) /_2Define cocycles {r/)}, {qijkl, IOijk} (T3, S) with respect to the open covers
M(t) M(2) (3){"ijk }, {"ik ,, {Nj by

(Pij (Zz ,Z3 ),Pjk (Z2 ,Z3 A[ (1)ijk((Zl,Z2, Z3)) Z (Zl,Z2, Z3) "’ijk’

M(2)O((Zl, Z2, Z3)) Z
(pij((z,,z3)),pj,((zl,z3))) (Zl, Z2, Z3) "’ijk’

(3) (Zl, z2, z3) 6 ,,t.nijk((z, z2, z3)) z(’J((z’’z))’p*((z’’z)))

By [LP2, Lemmas 3.2 and 3.3], the cocycles {- () () (3)qij,/i}, ij} coespond to the

elements el A e e3, e e e3 and e3 A e e in A3(g3, g) 3(3, Z)
(3 S) and by passing to refinements, one can verify that the product [{qijll

(2) (3)[to}].[toi }1 is cohomologous to [(d([wl))il e (3 S). Hence [(d([wl))il
can be represented by the invariant e A e A e3 + e A e A3 We3 A e A e
e a e e3 3(3, Z) Z (recall that e a e e is the standard generator
for 3(3, Z)). We now compute d ([w]) and show that it also is non-trivial. We
calculate [p(Z)l H(G, HI(N, C(Y, )) as follows:

p(.)((Xl, X2, X3), (2nl, 2n2, 2n3))(rl, r2, r3)

e2ri.2(r2x3+r3x2)nt e2ri .2(rl x3--r3xl )n2 e-2ri .2(r x2+r2xt )n3

(xl, x2, x3) G, (2nl, 2n2, 2n3) N, (rl, r2, r3) Y.

As in Example 3.5 we identify HI(G, Hi(N, C(Y,’ll’)) with H(G, C(Y,I))
H (Z3 C(N3 ql"3)) to get

p’ ()L)((XI, X2, X3), (rl, r2, r3))

(e2ri’2(r2x3+r3xz) e2ri2(rtx3-r3x) e-2ri.2(rtxz+rzx)

(Xl, X2, X3) Z3, (r! r2, r3) ]I{3 Y.

Now define f: N3 -- "ll"3 by

f (rl, r2, r3) (e2ri2r2r3, 1, e-2ri2rir2).

Again, one checks that

p(.)" df((xl, x2, x3), (rl, r2, r3)) (1, e2rri2(r’x.-r3x’), 1).
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Then methods similar to those outlined in Example 3.5 allow one to calculate that
Fr,v(i,([p()])) l(ql"3, S3) 2(3, Z3) is identified with the element
(0,-4el /x e3, 0) upon using the identification of/_)2(3, Z3) with A2(Z3, Z) )
A2 (Z3, Z) A2 (Z3, Z). (Recall that el A e2, e /x e3 and e2 A e3 are the standard
generators for A2(Z3, Z).) Hence d([to]) (0,-4e A e3, 0) andis also non-
trivial. Finally, one calculates d0([to]) [co] where c,o: 3 Z2(N, q) is defined
by

co(z z2 z3)((2nl 2n2, 2n3), (2n’l, 2n’2, 2n)) 4n3n’ 4n3n; 4n2n’Z Z2 Z3

(2n, 2n2, 2n3), (2n’l, 2n, 2n) N, (z, z2, z3) Z 3.
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