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THE EQUIVARIANT BRAUER GROUP AND TWISTED
TRANSFORMATION GROUP C*-ALGEBRAS

JUDITH A. PACKER

ABSTRACT. Twisted transformation group C*-algebras associated to locally compact dynamical systems
(X =Y/N, G) are studied, where G is abelian, N is a closed subgroup of G, and Y is a locally trivial prin-
cipal G-bundle over Z = Y/G. An explicit homomorphism between H2(G, C(X, T)) and the equivariant
Brauer group of Crocker, Kumjian, Raeburn and Williams, Bry (Z), is constructed, and this homomor-
phism is used to give conditions under which a twisted transformation group C*-algebra Co(X) X1, G
will be strongly Morita equivalent to another twisted transformation group C*-algebra Co(Z) X 4.0 N.

These results are applied to the study of twisted group C*-algebras C*(I", ) where I' is a finitely generated
torsion free two-step nilpotent group.

Introduction

Fifteen years ago, M. Rieffel published the extremely useful observation that if the
locally compact groups G and N have commuting free and proper actions on a locally
compact Hausdorff space Y, then the transformation group C*-algebras Co(Y/N) x G
and Co(Y/G) x N are strongly Morita equivalent to one another [Ri]. This result,
attributed by Rieffel to P. Green, was a motivating factor behind I. Raeburn’s paper
[Ra], as well as for A. Kumjian’s, Raeburn’s and D. Williams’ recent proof that for
second countable Y, G and N as above, the equivariant Brauer groups Brg(Y/N),
Bry (Y/G) and Brgy (YY) are isomorphic to each other. In this note, we investigate
how the isomorphism of the equivariant Brauer groups above can be used to obtain
information about twisted transformation group C*-algebras corresponding to a dy-
namical system (Y/N, G) in the case where G is abelian and N is a closed subgroup
of G, so that N acts trivially on Y/G. In this case BrN(Y/ G) is known to be isomor-
phic to the direct sum C(Y/G, H*(N, T)) ® H'(Y/G,N) & H*(Y/G, S), at least
for N elementary abelian (cf. [PRW], [P2]) and our aim in this paper is to use the
above structure to describe the strong Morita equivalence between twisted transfor-
mation group C*-algebras for (Y /N, G) and crossed product C*-algebras of the form
B xg N, where B is a stable, separable continuous trace C*-algebra with spectrum
Y /G, and the induced action ,3 of N on Y /G is trivial. Along with giving precise for-
mulas for the element in Bry (Y /G) corresponding to a twisted transformation group
(Y/N, G, w) where [w] € H*(G, C(Y/N,T)), we will determine conditions under
which a twisted transformation group C*-algebra Co(Y/N) X, G will be strongly
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Morita equivalent to another such C*-algebra Co(Y/G) X 4,6, N. This question
was first raised in [P1, Section 3] and a special case of this situation has already been
considered in [LP2] in order to study twisted group C*-algebras associated to discrete
Heisenberg groups. This motivates Section 3 of our paper, which gives an analysis
of more general twisted group C*-algebras C*(TI', u) where I' is a finitely generated,
torsion free two-step nilpotent discrete group, and [1] € H?(T', T). Under appropri-
ate conditions on [u1] these C*-algebras will be isomorphic to twisted transformation
group C*-algebras C(Y/N) %, G, of the form described above and the invariants
of the associated C*-dynamical system [(B, 8, N)] € Bry(Y/G) can in many cases
be explicitly computed. These results can be used to state conditions under which
C*(I", n) will be strongly Morita equivalent to C*(I'g, o), where Iy is a subgroup
of I' of finite index and po = u restricted to I'g x I'yp. This result can be extremely
useful in K -theory calculations.

I would like to thank S. Echterhoff and 1. Raeburn for useful conversations on the
topic of this paper and 1. Raeburn for making available to me at a very early stage a
preprint of [RW2].

1. Preliminaries

1.1. The equivariant Brauer group. Let (Y, t, G) be a locally compact second
countable topological dynamical system. The equivariant Brauer group Brg(Y) is
defined to be the set of all equivalence classes of C*-dynamical systems [(A, a, G)],
where A is a stable, separable continuous trace C*-algebra with spectrum Y, « is a
strongly continuous action of the group G on A such that the induced action & of G on
A=VYis givenby t,and (A}, a;, G1) ~ (A3, a3, G) if there exists a x-isomorphism
®: A} — A, preserving the spectrum Y such that o, is exterior equivalent to P o o
&~!. In [CKRW] it was shown that Brg (¥) was an abelian group with multiplication
given by balanced tensor productover Co(Y) and [1]g:, vy = [(Co(Y)QK, t®Id, G)].
This group is defined very naturally in the sense that if (Y}, t;, G|) and (Y3, 72, G3)
are equivalent dynamical systems, i.e., if there is a homeomorphism ¢: ¥; — Y, and
an isomorphism A: G; — G such that ®(1,(g)y) = 12(A(g))P(y), Vy € Y}, then
Brg, (Y1) = Brg,(12).

A filtration involving the Moore cohomology groups H” (G, HY(Y,S)), p+q=
2, was developed in [CKRW] to aid in the computation of Brg(Y). We mention two
of the homomorphisms from this filtration.

PROPOSITION 1.1 [CKRW, Theorem 5.1(3)]). Let (Y, t, G) be a topological dy-

namical system and Brg (Y) the associated equivariant Brauer group. Then there are
homomorphisms

dy,): [H*(Y,2)1° - H*G, (C(Y,T))
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and

&v.c): H*(G,C(Y, T)) - Brg(Y)

such that the sequence

[H2(Y, 2)1° YL HY(G, (C(¥, T)SBrg (V) .1

is exact.

We mention for future reference that the map &y,g) sends [0] € H 2(G, (C(Y,T))
to the equivalence class of the C*-dynamical system given by [(Co(V)RK(LA(G)), a,
G)], where «,, is the action of G on Cy(Y) ® K associated to the twisted C*-dynamical
system (Co(Y), 7, 0, G) by the stabilization trick of [PR1](see [P1], Equations 2.1-
2.4).

We state two more results mentioned in the introduction concerning the equivariant
Brauer group which will be of use to us.

THEOREM 1.2 [KRW]. Let P be an l.c.s.c Hausdorff space carrying commuting
[free and proper actions of the locally compact groups G and H. Then there are isomor-
phisms 6g: Brg(P/H) — Brgxy(P) and 6y: Bry(P/G) — Brgyy(P). Further-
more if06([A, a, G)]) = ([(C, y, G x H)] and 6y ([(B, B, H)]) = [(C, vy, G x H)]
then the C*-algebras A x4 G, C x,, (G x H) and B xg H are all strongly Morita
equivalent to one another.

The next result gives an explicit description of the group Bry(Z) where N is an
elementary abelian group acting trivially on the space Z (this theorem has recently
been extended to compactly generated groups N by S. Echterhoff and D. Williams
[EWD).

THEOREM 1.3 [P2], [PRW]. Let N be an elementary abelian group acting trivially
on the l.c.s.c Hausdorff space Z. Then there is an isomorphism

Bry(Z) = C(Z, HH(N,T) @ H' (Z, N') ® H*(Z,Z)
= H%Z,H*(N,T) ® H'(Z, H'(N, T)) ® H*(Z, H*(N, T)) (1.2)

Denoting by I1;: i = 0, 1, 2, the projection of Bry (Z) onto each summand in (1.2),
we recall that Iy can be identified with the Mackey obstruction map My: Bry(Z) —
C(Z, H*(N,T)) and I,([(B, B, N)] gives exactly the Dixmier-Douady class of B.
The map I1; is related to the Phillips-Raeburn obstruction.

We also recall that under the hypotheses of Theorem 1.3 there is a monomor-
phism Ez yy: Hp2t(N, C(Z,T)) - H'(Z, N') whose range is denoted by H.(Z, N)
and represents the set of equivalence classes of characteristic principal N bundles
over Z[RW1, Prop 3.8]. Here H‘ft(N , C(Z, T)) represents the group of equivalence
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classes of pointwise trivial 2-cocycles. We then have the following relationship be-
tween Proposition 1.1 and Theorem 1.3.

COROLLARY 1.4 [P2,2.4]. Let N be an elementary abelian group acting trivially
on the l.c.s.c Hausdor(f space Z, and let [(B, B, N)] € Bry(Z). Then [(B, B, N)] €
&z.n(HA (N, C(Z, M) ifandonly if 2 (I(B, B, N)]) = 6(B) = {0}and T, ([(B, B,
N)l e H.(Z,N).

1.2. The A-invariant. The A-invariant, first defined by 1. Raeburn and D.
Williams in their study of continuous trace C*-dynamical systems [RW1], built on
prior work of J. Huebschmann [Hu], and at least for a discrete group G with normal
subgroup N can be viewed as one way of organizing the information one obtains about
H?*(G, M) from the Lyndon-Hochschild-Serre spectral sequence. Let G be an l.c.s.c.
group with closed normal subgroup N. Suppose that M is a Polish G/N module,
with the abelian group structure on M denoted by (a, b) —> ab, a,b € M. Let
Z(G, N; M) denote the set of pairs {(A, )} where \: GX N - Mandu: N > M
are Borel maps satisfying

weZ*N, M), 1.3)

A(lg,n) =1y =A(s,1y),(s,n) € G X N, (1.4)
A(m,n) = u(m, n)u(n, m)~", (m,n) € N x N, (1.5)
A(st,n) = A(s, n)s(A(s, t,n)), (s,2,n) € G x G x N, (1.6)

A(s, mn) = s(u(m, n))"p,(m, n)A(s,m)A(s,n), (s,m,n) € G x N x N. (1.7)
With pointwise operations, Z(G, N; M) is an abelian group. Let B(G, N; M)
denote the subgroup of A(G, N; M) consisting of all pairs of the form

(A, = (s(m) o), p(m)p(n)p(mn)~")}

where p: N — M is a Borel map. Then the A-invariant group A(G, N; M) is
defined to be the quotient group Z(G, N; M)/B(G, N; M). It can be shown [RW2]
that the A-invariant fits into the Inflation-Restriction sequence indicated,

0> H'(G/N, )2 H' (G, M) XS 5\ (N, [M])C/N

H2(G/N, M) H2(G, M)—"> A(G, N; M)—> H3(G /N, M)-™> H3(G, M),
(1.8)
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and that A (G, N; M) is determined by the exact sequence

0 — H'(G/N,Hom(N, M))—=> A(G, N; M)

/
[HX(N, M)1° %5 H2(G/N, Hom(N, M)) (1.9)
Formulas for the maps r, 4, i, j, k are given in [RW2]. The case of interest to us is
the situation where M = C(Y, T), where G is abelian and Y is a G-space with
constant stabilizer subgroup N, and G/N acts freely and properly on Y. Then

the map r: H*(G, C(Y,T)) = A(G, N; C(Y,T)) is given by r([c]) = [(A, )],
where

Ag,n) =o(g,n)on, 8", (g.n)eGxN, (1.10)

U =0NxN- (1.11)
Moreover in this situation, Raeburn and Williams have defined a subgroup
Zw(G,N; C(Y,T)) € Z(G,N,C(Y,T))
by
[, m)] € Zu(G, N; C(Y,T)) if u € ZL(N, C(Y,T)).
Since clearly B(G, N; C(Y,T)) C Zx(G, N; C(¥,T)) it is possible to define the
subgroup

Ap(G,N; C(Y, T))=Zx(G,N; C(¥,T))/B(G, N; C(Y, T)) CA(G, N; C(Y, T).

Under the above assumptions, Raeburn and Williams have proved the following:

THEOREM 1.5 [RW1, Theorem 6.5, Proposition 7.1]. Let G be an l.c.s.c abelian
group acting on the l.c.s.c Hausdor(f space Y with constant stabilizer subgroup N in
such a way that Y is a locally trivial principal G /N - bundle over the quotient space
Z =Y/(G/N). Let IN(Y) C Brg(Y) be defined by In(Y) = {[(A,a, G)]: /N €
Inn(A)}; i.e., the action « restricted to N is inner. There are homomorphisms

d: In(Y) > Ap(G,N; C(Y,T)) (1.12)
and

Fuy.6): An(G, N; C(Y,T)) - H'(Z, N) (1.13)

such that Fyc) o d([(A, o, G)]) = [Ay], where {Ay] is the class of the principal
N bundle A x4 G — Y/G = Z. Furthermore Fy,g) is a monomorphism and the
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image of Fy ) is equal to

{[F1e H'(Z, N): p*(F) € H:(Y, N},
where p: Y — Y /G = Z is the quotient map.

2. Strong Morita equivalence of twisted transformation group C*-algebras

Let Y be an l.c.s.c. Hausdorff space, let G be an l.c.s.c. abelian group with closed
subgroup N, acting freely and properly on Y}, and suppose that

(2.1) p;: Y - Y/N = X is alocally trivial principal N-bundle,
2.2) p2: X > X/G =Y/G = Z is alocally trivial principal G/N — bundle,
23) ps=prop: Y = Y/G = Z is alocally trivial principal G — bundle.

If G is an elementary abelian group, (2.1)—(2.3) will follow automatically from the
freeness and properness of the G-actionon Y. We will consider twisted transformation
group C*-algebras Co(X) %, G, where [w] € H 2(G, C(X, T)), and our main aim
will be to identify the element [(B, B, N)] € Bry(Z) guaranteed by Theorem 1.2
such that Co(X) ., G is strongly Morita equivalent to B x g N; along the way we
will state conditions on [@] which will guarantee that Co(X) X, G is strongly Morita
equivalent to a twisted transformation group C*-algebra of the form Co(Z) x 35 N,
@ € Z*(N, C(Z, T)). Asthe latter type of C*-algebras can be decomposed as the C*-
algebra of sections of a C*-bundle whose fibers are twisted abelian group C*-algebras,
they are more easy to study.

We note that examples from [RR] and [PR3] show, first of all, that there ex-
ists a locally trivial principal G/N-bundle X over Z which is not the quotient of a
G-bundle, such that the ordinary transformation group C*-algebra Co(X) X, G is
not strongly Morita equivalent to any crossed product of the form B xg N, where
[(B, B, N)] € Bry(2), and, second, that even if X is the quotient by the action of
N of a G-bundle Y over Z, Co(X)X,,, G need not be strongly Morita equivalent
to a twisted transformation group C*-algebra Co(Z) x 47 N, so that some sort of
conditions on X, Z and [w] € H*(G, C(X,T)) are necessary to obtain positive
results.

For future reference we point out that if G is a countable discrete abelian group
and X is alocally trivial G/N bundle over the space Z = T, k € N, then X is always
the quotient of a principal G-bundle (X, G):

PROPOSITION 2.1. Let G be a countable discrete abelian group and N a subgroup
of G, and let X be a locally trivial principal G /N -bundle over Z = T*, k € N. Then
there is a locally trivial principal G-bundle Y over T* such that Y/N = X.

. Proof. The bundle (X, G/N) over Z = T* is classified by an element [y] €
H'(Z,G/N) = H'(Z, G/N), and X will be the quotient of a G-bundle (Y, G) over
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Z = T* ifand only if [y] is in the range of the map =r,: H'(T*, G) — H!(T*, G/N),
where 7: G — G/N is the projection map. By a slight modification of [PR3,
Lemma 2.6], there is a commutative diagram

HY\(Z¥, ) 2> H"(ZF, G/N)
()" (Aa/n)" 2.4)
H\(T*, G)-=>H'(T*, G/N)

where (Ag)* and (Ag,ny)* are the isomorphisms between group cohomology and
Cech cohomology obtained by using the fact that T* is a classifying space for Z*.
Since G is discrete abelian, every homomorphism from Z* to G/N can be lifted to
a homomorphism from Z* to G, and the result follows from the commutativity of
diagram (2.4).

We now let Y, X, and Z be as in (2.1)—(2.3), fix [w] € H*(G, C(X,T)) and
consider the twisted transformation group C*-algebra Co(X) x,,G. By Theorem 1.2,
there is a C*-dynamical system (B, 8, N) such that B has continuous trace, B=2,
the induced action ﬁ of N on Z is trivial, and B x g N is strongly Morita equivalent to
Co(X) X+, G, which can be constructed using the isomorphism 6y, Lobg: Brg(X) —
Bry(Z) of Theorem 1.2. We shall use a slightly different isomorphism W between
Brg(X) and Bry (Z), defined as follows:

¥ =K*oA* 06, 2.5)
where 6: Brg(X) — Brg.n(Y) is as in Theorem 1.2,

A*: Brgxn,)(Y) = Brgxn,o,)(Y)

is obtained by taking ® = Id and defining A: Gx N — G x N by A(g, n) = (gn, n),
where 1, is the action of G x N on Y definedby 7,(g, n)y = gn~'y,and 1, = 110A4, as
in our remarks prior to the statement of Prop. 1.1, and K*: Brgxn,,)(Y) = Bry(Z)
is given by Theorem 5.3 of [PRW]; more precisely, we have K*([(C, y, G x N)]) =
[(C x,/6 G, /vy, N)1, where, by abuse of notation, y /x denotes the action of N
on the crossed product C x,,c G obtained from standard decomposition results
for crossed product C*-algebras, so that C x, (G x N) = (C x,,6 G) x,/n N.
It is then easy to check that setting ¥ ([(Co(X) ® K, ay, G)] = ¥(§x,6)([w]) =
[(B, B, N)] € Bry(Z), B xg N will be strongly Morita equivalent to Co(X) %X, G.

Before stating the main theorem, we establish some notation. For [w] € H?(G,
C(X,T),let[wy] = Res([w]) € H*(N, C(X, T)), where Res: H*(G, C(X,T)) —
H?(N, C(X, T)) is the restriction map. Taking M = C(X, T) in (1.8) and (1.9), we
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note that Res = j so that [wy] € [H*(N, C(X,T))]°. For N elementary abelian
acting trivially on X, by [PRW, Cor 5.2] there is a split exact sequence
Ty
i —_—

0 — H(N,C(X,T))—>H*(N,C(X,T)) T C(X,H*(N,T)) >0 (2.6
and clearly if [wy] € [H®(N, C(X,T))]1°, we have m,([wy]) = f., o p2, where
fo: Z — H?*(N,T) is continuous. One easily checks that [ f,] = Mg (§x.c)l@)),
where Mg: Brg(X) — C(Z, H*(N, T)) is the Mackey obstruction map defined in
Section 1 of [PRW]. Given [w] € H?*(G, C(X, T)), we now define [(Ae, ie)] €
A(G x N,N;C(Y,T)). Here the action of G x N on Y is defined by 15; i.e.,
72(g,n)y = gy, and N is identified with the subgroup {15} x N of G x N.

Ao((g1,11), n2)(¥) = w (g1, n2)(p1(y))w(nz, g1)(p1(y)) 27

Ho(ni, n2) = 0y, 1) (Pr)Lix (f)17 (11, n2) (p3 (7)), (2.8)
where j,: C(Z, H*(N,T)) — H*(N,(C(Z,T)) is the splitting map for the exact
sequence (2.6) where the trivial N-space X is replaced by the trivial N-space Z. By
construction, one checks that

[(Aos mo)] € Ap(G x N, N; C(Y, T)) C A(G x N, N; C(Y, T)).

We now state the main theorem.

THEOREM 2.2. Let G be an l.c.s.c. abelian group, with closed subgroup N which
is elementary abelian, and suppose that G acts freely and properly on the l.c.s.c.
Hausdorff space Y, in such a way that the quotient maps p,: Y — Y/N = X,
P2 X > X/G = Z and p3 = pyo p1: Y — Z satisfy (2.1)~(2.3), respectively.
Denote by d;, i = 0, 1,2, the homomorphisms of H 2(G, C(X,T)) into the groups
C(Z, HXN,T), H'(Z, N), and H*(Z, S) defined by d; = T1; o W 0 £(x.c), respec-
tively, where the maps I1; are defined after (1.2). Then

do([w]) = [fol, 2.9
di([@]) = Fy,oxn([Aas Hol), (2.10)
d([w]) = &v.6)(pilw)) € Bra(Y) = HX(Z, S), (2.11)

with [ f,,] as in (2.6), and Fy gxn) as in (1.13).

Remark. 1f in addition w is a continuous cocycle on N x N and not just Borel, we
note that an explicit formula for d; ([w]) is given as follows: Let {N;}; be a trivialing
open cover for Z corresponding to the G-bundle p3: ¥ — Z,andletc;: N; = Y
be local cross sections and A;;: N; N N; — G the transition functions defined by
¢j(2) = Aij(2)ci(z). Then

d([w)) = ik ()] = [0 (2 (2), Ak (2)) (p1(ci (2)))]. (2.12)
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We will first establish a sequence of lemmas.

LEMMA 2.3. Let(Y, G), (X, G)and (Z, N) be as in the statement of Theorem 2.2,
and let [w] € H*(G, C(X, T)). Then

A* 060G o Ex,6)([w]) = &y, 5,6x M) ([00,1]),
where [0,,1] € H(ztz)(G x N, C(Y,T)) is defined by
0w,1((g1,11), (g2, n2))(y)
= w(gin, £202)(P1(»)), (€1,n1),(82,n) € GxN,yeY. (2.13)

Proof. By checking the definitions of &x, ¢) as explicitly given in [P1, 2.1-2.4]
and 6g: Brg(X) — Brgxn.r)(Y) as given in [KRW, Prop. 7], we see that

0 o &x.6)([w]) = &,v.Gxn) ([00,2]),

where [0,2] € HZ \(G x N, C(Y, T)) is defined by

00,2((81,11), (82, 12))(¥) = w(g1, g2)(P1()), (81, 11), (82,n2) € G X N,y € Y.
2.14)
In what follows, for [c] € H*(G x N, C(Y,T)) we denote by Afo1 the action of
G x N on Co(Y) ® K given by the stabilization trick. Using [P1, 2.1-2.2], one can
also check that the action A, , o A of G x N on Cy(Y) ® K obtained from calculating

A*E.r,6xn ) [06,1)) = A*([(Co(Y) B K, ¥ja,,1, G X N)]) € Brigxn,(Y)

is exterior equivalent to the action ya+(s,,)] of G X N on Co(Y) ® K, and since
Er.6xN) ([00,1]) = [(Co(Y) ® K, Var(o..11» G X N)], we see that A* o 6; o
Ex,6)({w]) = &y,1,,6xN) ([00,1)), as desired.

We now show that o, | is cohomologous to another cocycle o,,, in part by using
the decomposition for H(zm(G x N, C(Y, T)) given in (1.8) and (1.9).

LEMMA 2.4. LetY, X, Z, G and N be as in the statement of Theorem 2.2. Define
[o,] € Zfz(G x N, C(Y,T)) by

0,((y1, 11, ), (82, 12))(Y) = w(g1, &2)(P1(YNA(g1, n2)(p1(¥))w(ny1, n2)(pi1(y))
for (gy,n1), (g2,n) € G x N,y €Y, (2.15)
where A: G x N - C(X,T) is defined by
rg, n)(x) = w(g, n)x)w(n, g)(x), (g.n) € G x N,x € X. (2.16)

Then o, is cohomologous to o).
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Proof. We first establish for the reader’s convenience that [(A, wy)] € A(G, N;
C(X,T)), although this follows from Raeburn and Williams’ unpublished work
[RW2, Section 5]; i.e., we shall prove that

A(g182, M)(x) = A(g1, n)(X)A(g2, ) (g7 'x) g1,82€ G,neN,x e X (2.17)

and

(g, nn2)(x) = w(ng, n2)(g ' x)w(ny, n)(x)A(g, n1)(x)A(g, n2)(x)
forg e G,n;,n e N,x € X. (2.18)

We have

(8182, n)(x)
= w(g182, M) (X)w (1, 8182)(x)
= [w(g1, 82)(X)w(g2, M) (g7 ' X)w (g1, ng2) () 1[w (g1, 82) (X)w (n, g1)(x)
- w(ngi, g2)(0)]
= w(g2, n) (g7 ' V) (g1, ngr)(X)w(n, g))X)w(ng, g2)(x)

= w(g2, ) (g7 ' W)w(gr, M X)w(gin, £2)(X)w(n, g2)(g7 'x)]

cw(n, g1)(x)w(ng, g2)(x)
= g1, n)(X)A (g2, n) (g7 'x),

establishing (2.17).
As for (2.18), we have

A(g, mn2)(x) = w(g, mn2)(x)w(niny, g)(x)

Il

w(ny, n2)(g ' x)w(gny, n)(x)w (g, n))(x)w(niny, g)(x)

= w(ni, n2)(g ' X)w(gny, n2)(x)w(g, n))(x)w(ny, ny)(x)

cw(ny, g)(X)w(ng, nag)(x)

= w(n, n)(g ' X)wn, n)X)w(g, n)X)w(n, &) (x)w(n, g)(x)
cw(ny, gna)(x)w(g, n2)(x) o w(ng, gny)(x)

= w(n, n) (g~ X)w(ny, n2)(x)A(g, n)(x)A(g, n2)(x).

With the above identities in mind, we define b: G x N — C(Y, T) by b(g, n)(y) =
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w(n, g)(p1(y)) and compute

[db 0,,11((g1, 11), (82, n2))(¥)
= w(ny, 8)(P1(M)w(n2, £2)(Pi(gr'y)

- w(ninz, 8182)(P1(y))w(gi1n1, g2n2)(p1(y))

= w(n1, g (0181, 8212) (X (12, 22) (g7 V)0 (n1n7, £182)(x)
(letting x = p(y))

= w(n1, g18212) (V) (g1, g212) (X)w(n2, £2)(87 ' V) (minz, £182) (x)

= w(n1, g182m2) (w112, 8182)(X)w(g1, n2) (x)w(g1n2, 82)(x)

= w(g1, £2)X)w (g1, 1) ()@ (na, g)X)w(ny, n2) (x)w(ny, g182n2)(x)
- (ninz, 8182)(X)w(gin2, 82) (X (g1, g2)(X)w(n2, 81)(x)
- w(ny, n2)(x)

= 0,((81, 11), (82, n2))(Y)w(ni, 8182n2) (X)w (8112, 82) (X)w (&1, 82)(x)

cw(n2, g)(X)w(ny, n28182) (X)w(n2, 8182)(x)
= 0w ((g1,n1), (82, n2)) (y)w(nz, g1)(x)w(n2g1, 82)(x)
- w(n2, 8182) (X)w (g1, 82)(x)
= 0, ((81,n1), (g2, n2)) (),

so that o, |, is cohomologous to o, as desired.

Proof of Theorem 2.2. By Lemma 2.3 and 2.4, we have d; ([w]) = I1; o K*

Gy, rnoxmon), i = 0,1,2. We now write [0,,] as a product [t,] - [m,], where
[m,]), [t0] € H,22(G x N, C(Y, T)) are defined by

mu((g1, 1), (82, n2))(Y) = ju([fuD(n1, n2)(p3(y)) (2.19)
for (g1, n1), (g2,n2)€Gx N, yeY,[f,]asin Eq. (2.6),
and
T, = 0,m. (2.20)
We now write
§z,m (Lix(f0)D) = [(Co(Z) ® K, Bw, N)] € Bry(Z)

and

Ev.n.6xN)([Me]) = [(Co(Y) ® K, Yim,1» G X N)] € Brgxn,o)(Y).
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Through direct computation, one checks that the action 7,®8 of G x N on Co(Y)®c,(z)
Co(Z) ® K = Co(Y) ® K is exterior equivalent to ¥, ;. Thus

0 (K* (v, 5.6 x M) ([00))))
= I;(K*([(Co(Y) ® K, T ® Bu, G x N)]))
= I ([((Co(Y) ® K) x: G, Bu, N)D), i=0,1,2,
= I1;([(Co(Z) ® K, Bus N)D)
= I (§z,m (L fuDD), i =0,1,2.

Now &z nyyojx: C(Z, H?*(N,T)) —> Bry(2) is a splitting for the Mackey obstruction
Mo = My: Bry(Z) — C(Z, H*(N, T)), so that dy([w]) = Mg 0 &z,n) 0 jx ([ ful) =
[fo]l. We now recall from [P2] and [PRW] that for [(B, B, N)] € Bry(Z), the
element [(By, B1, N)] = [(B, B, N)] - &z n(j«»(Mn([(B, B, N)]))) € Bry(Z) has
trivial Mackey obstruction, so is locally unitary, in the sense of J. Phillips and L
Raeburn [PhR], by Theorem 2.1 of [Ro]. IT;([(B, B8, N)]) is defined to be that element
Iq] € H'(Z,N) representing the principal N bundle B; x s N — By = Z. Itis
evident from this definition that d;([w]) = ;& v ([« ([fuD)) = 1 Y Z.Ky and
clearly

d([w]) =T2(§z.7) (i ([fo D)) =8 ([L(Co(Y)RK) X : G =8([Co(Z)RK]) =132z s)-

We now consider K*(&(y,-,,cxn)([T])), [T»] as in (2.20). We first note that upon
identifying the subgroup {1} x N of G x N with N, T,/1}xN)x({1}x~) €an be written
as py(wy - j«([fu)™") € H34(N, C(Y, T)) by the exactness of sequence (2.6). Also,
denoting &y 1, 6x Ny ([To]) bY [(Co(Y) ® K, ¥i,1, G x N)], one checks that y,,; is
inner when restricted to the stabilizer subgroup {1} x N for the 1, action on Y, and
that d([¥r,1]) = [(Aw, He)], Where d: Iy n(¥Y) = Ap(G X N,N; C(¥Y,T))isasin
(1.12), and (A,,, 1,,) are as defined in (2.7) and (2.8). By Theorem 1.5, the class of the
locally trivial principal N bundle over Y/(G x N) = Z, givenby ((Co(Y)®K) Xy,
G x N)* — Z, is exactly Fy,5.6xn) © A([Viz,1]) = Fy,n,6xN) ([Aws Hol)s WhiCl} by
results from [RW 1] will lie in the subgroup {[F] € H'(Z, N): p%(F) € H:(Y, N}
Hence

Mo(K™* 0 &y,5,.6xn) ([T0])) = TTo((Co(Y) ® K Xy, G, Ve, yns N)) = lezm

(as 4, restricted to {1} x N is locally unitary), and by the definition of I1; given
above, Iy (K* 0 §v,1,,6xM) ([T0])) = Fy,5,,6x8) ([(Aw, 1e)]). We now calculate

M2 (K* 0 &y.0.6xm) ([Tw)))
= M (K*[(Co(Y) ® K, Yz,), G x N)]
= 8([Co(Y) ® K1 Xy, 6. (G x (1)) € HX(Z, S).
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From the formula for z,,, one calculates that

[(Co(Y) ® K, Viru/axiy» G x {1D] = Ew.6)(p] (@)
= [(Co(Y) ® K, @p(fw))» G)] € Brg(Y).

It follows that

$((Co(N)BK) Xy, G x{1) =8 ((Co(NBK) Xar,, G =8((Co(Y) X1, 1 () ©)BK),
the last equality given by the stabilization trick of [PR1]. But formulas for the
Dixmier-Douady classes of twisted transformation group C*-algebras where G acts
freely and properly on Y have been given in [PR2, Cor 3.4 and (xx) on p. 604], and if
the cocycle w is continuous on G x G and not just Borel, so is p} (w), and Corollary 3.4
in [PR2] gives 8((Co(Y) X, Ph@) G) ® K) as a 2-cocycle with representative given
by the right-hand side of (2.12).

Finally, using the factthatI1;,i = 0, 1, 2, K*, and §y,,,gx ) are homomorphisms,
we have d;([w]) = IT; o K*[£y,r,,6xn ([0])] = TT; 0 K* 0 &y,1,,6xn) ([T]) - i ©
K* 0 &y,m.6xNy([my]), i = 0, 1,2, which combined with our previous calculations
completes the proof of Theorem 2.2 and establishes (2.12).

We now can determine conditions on [w] under which a twisted transformation
group C*-algebra will be strongly Morita equivalent to a twisted transformation group
C*-algebra of the form Co(Z) x4 N for [@] € H*(N, C(Z, T)).

COROLLARY 2.5. LetY, X, Z, G, N, and [w] € H*G,C(X,T)) be as in
the statement of Theorem 2.2. Suppose that dy([w]) = [z ) and di([w]) €
IVI(!(Z R N ), where dy and d, are the maps defined in Theorem 2.2. Then there ex-
ists @ € H*(N, C(Z, T)) such that Co(X) X 1.0 G is strongly Morita equivalent to
Co(Z) X145 N.

Proof. This follows directly from Theorem 2.2 together with Corollary 1.4.

For the next result, we make the additional assumption that w restricted to N x N
takes on its values in p(C(Z, T)) € C(X,T).

THEOREM 2.6. Let Y, X, Z, G, N, and [w] € H*(G,C(X,T)) be as in the
statement of Theorem 2. Suppose in addition that w is (cohomologous to) a cocycle
which when restricted to N x N takes on its values in p5(C(Z,T)) € C(X,T).

Then in order that d,([w]) = M22.5 and dy([w]) € ﬁcl (Z, I\Al), it is necessary and
sufficient that the following conditions hold:

() [p([wD)] € Im dy,6) € H*(G, C(Y, T)).
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(ii) The map pT(A): G — C(Y, N ) defined by
1

PTA(@© (M) = w(g, n)(p1()w(n, &)(pi1(y)

is trivial in H'(G, C (Y, 1\7)); (g,n)eGxN,yeY.

If these conditions are satisfied, Co(X) %, G is strongly Morita equivalent to
Co(Z) X14,0y N, where oy € H*(N, C(Z, T)) is obtained from w;y x y by identifying
p3(C(Z,T)) with C(Z, T).

Proof. The proof of Theorem 2.2 combined with the results of Corollary 1.4
show that Cy(X) %, G will be strongly Morita equivalent to Co(Z) X4 N if
dr([w]) = [1142z,s) and di([w]) € I-Vlé(Z,J\Af ). Since G acts freely and properly
on Y, for any [(C, ¥, G)] € Brg(Y), C x, G will be a continuous trace C*- algebra
with spectrum Z, and the map 5 Brg(Y) — ﬁz(Z, S) given by 3([((3, y,G))) =
8(C x,, G) is an isomorphism. Hence by Prop 1.1 and (2.12), d,([w]) = [yijx(2)] =
S(Co(Y)®K) ><,,“,;,(|wl)I G)) = [l]ﬁz(z's) if and only if pj([w]) € Im d(y,g), estab-
lishing (i). Since wynxn takes on its values in p3(C(Z, T)) € C(X, T)), the element
Mo: N x N — C(Y,T) defined in (2.8) takes on its values in p3(C(Z, T)) and is
an element of th(N,C(Y, T)) so that [(1, u,)] € Ap(G x N, N; C(Y, T)); and
writing i, = p}(fi,,) where fi,, € ZL(N, C(Z, T)), we have Fy.gxm([(1, to)]) =

Ezm(f.) € HAZ, N). Since di([w]) = Fiy.oxm ([(hor k)] € HE(Z, N) by
hypothesis, itf0|10WS}hat Fiy.6xm (s DD = Fir.oxm{(Ras o)D) Fir.oxm (I(1,
o)™ € HYZ,N). Let [y] = Fyoxm((ho, D) € HLM(Z,N), and find
o] € H&(N, C(Z,T)) with Ez n([p]) = [y]. Then [(1, p3(p)] € An(G x
N,N:;C(Y,T)) and Fiy.gxm (L, p3(0)D) = [¥] = F.xm ([ DD. Since
Fiy.gxn) isinjective, this implies that [(A,,, 1)] = [(1, p5(0))] € A (GxN, N; C(Y,
T). Now we adapt sequence (1.9) to obtain an exact sequence for A(G x N, N;
c,T)):

0— H'(G,C(Y, N))—>A(G x N, N; C(¥, T))—j—>[H2(N, cy, ¢

H*(G,C(¥, N)) @.21)

Hence [p3(0)] = j([(1, p3(o)]) = j([(Ao, DD = joi(pT(M)] = U im2w.cvmyo-
Therefore

[P3()] =[11€ H*(N,C(Y,T)
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and consequently

[, p3(eN]I=[11€ A(G x N, N; C(¥,T)),

(Pt = [(Ae, DI =1, p3(0))] = [1aGxN,N;Cx,T)-

Since i is an injection, this implies that [pf(\)] = 1 € H G, cy, N )), as we
desired to show .

Remark 2.7. Although the assumption that w/N x N takes on its values in
p;(C(Z, T)) may seem very strong, there are subgroups N for which this will always
happen, regardless of Y, X, Z, and G. In particular, if N = Z" for some n € N,
the sequences (1.8), (1.9) with M = C(X, T) and (2.5) show first that w/znxz» €
[H%(Z", C(X, T))]%, and second that H2(Z", C(X,T)) = C(X, H*(Z", T)), since
HZ(Z", C(X,T)) is trivial. Consequently, [H*(Z", C(X, T))]° = C(X/G, H*(Z",
T)) = C(Z, H*(Z", T)), and thus w|z»xz» is cohomologous to a cocycle taking on
its values in p3(C(Z, T)).

3. Applications to twisted two-step nilpotent group C*-algebras

In this section, we consider twisted group C*-algebras C*(I", u), where I' is a
torsion free finitely generated two-step nilpotent group, i.e., where I' is a central
extension of Z¢ by Z", for £, n € N, and we establish conditions on [] € H*(T", T)
analogous to conditions (i) and (ii) of Theorem 2.6 which will imply that C*(I", w)
is strongly Morita equivalent to C*(I'g, ;o) where T'p is a subgroup of I" of finite
index and o = p|ryxr,- Though the conditions as stated may appear somewhat
specialized, they frequently arise when one is considering examples of multipliers
[u] € H*(T", T) which are not homotopic to the identity in H2(I', T). Let (I', 1) be
as above, and suppose that I" contains a central subgroup D which itself contains the
commutator subgroup C = [T, I'], and suppose in addition the following conditions
are satisfied:

3.1 U\DxD is trivial.

(3.2) The homomorphism ¢p(u): T' — D defined in [PR3] by

op(WY)d) = ud,y)uly,d),y e,d e D

has closed (i.e., finite) range R in D, sothat R = Dé’ for some subgroup Dy € D of
finite index.

(3.3) Setting M = ker¢p(u), the quotient group M /Dy (which we shall prove is
abelian) splits as

M/Dy = D/Do® M/D.
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(This final condition of course automatically happens if M/D = Z* for some k €
N.)

The commutator subgroup C of I' will automatically satisfy (3.1) [LP1, Prop. 1],
so if C also satisfies (3.2) and (3.3) for u, we can take D = C.

Assuming that (3.1) and (3.2) hold, we obtain the following decomposition result.

PROPOSITION 3.1. Let I' be a finitely generated torsion free two-step nilpotent
group, let [u] € H*(T, T) and suppose there is a central subgroup D of T containing
C such that (3.1) and (3.2) are satisfied. Then the twisted group C*-algebra C*(T", w)
is *-isomorphic to a twisted transformation group C*-algebra C(T*) x ., G, where
£ is the rank of D, G = T'/D, the action T of G on T* = D is given by trans-
lation corresponding to the homomorphism ¢p(u): T' — D of 3.2), and [w] €
H*(G, C(X,T)), where X = T¢. Moreover, letting N = ker t = ker ¢p(u)|p,
there is an l.c.s.c. free and proper G space (Y, G) such that the spacesY, X =Y/N,
Z =Y/G = X/G satisfy the conditions of (2.1)=(2.3). If in addition we assume
that (3.3) holds, then we can assume without loss of generality that w|yxy takes on
values in p5(C(Z,T)) € C(X,T).

Proof. By definition, C*(T", u) is the twisted crossed product C x4, T, so that
by the decomposition theory for twisted crossed products [PR1, Theorem 4.1]) we
have C*(I', u) = C xq,, ' = C(ﬁ) X7 G, where G = I'/D is abelian since
C C D, and since u|pxp is trivial, C xyg, D = C*(D) = C(ﬁ) = C(TY) for
some ¢ € N by the Fourier transform. The formulas given in [PR 1], Theorem 4.1,
for 7 and w show that the action  of G on C (D) is translation corresponding to
the homomorphism ¢p(u): ' — D, which, since lpxp is trivial, factors through
I'/D = G. Choosing a cross-section c: G — T with ¢(1) = 1, and writing

n(g1, g2) = c(g)c(ga)c(gig) ' e D= D, g, €6, (3.4)

we can compute w € Z2(G, C(D, T)) as

(g1, &2)(x) = u(c(gr), c(g2))(n(g1, g2). c(g182))n(g1, 82)(x)
g1.82€G,xeD. (3.5)

By assumption (3.2), the range R of ¢p(u) is a finite group which is isomorphic to
G/N, for N = Ker t. Hence N is of finite index in G and G/N acts freely and
properly on X = D whichis a locally trivial principal G/N-bundle over b /G/N =
Z. Setting Dy = R* C D, by the Pontryagin theory Z = Do, so that Z also has the
structure of an £-torus. By Proposition 2.1, there is a locally trivial principal G-bundle
Y over Z such that Y/N = X, so that (2.1)—(2.3) are satisfied. To establish the last
statement of the proposition, we let u = Ker ¢p(u), Co = {c € C: u(c, yI)u(y,c) =
1,Vy el'},and Dy = {d € D: u(d, y)u(y,d)=1,Yy €T}. SinceCC D C M,
Co € Dy € M. The argument of Theorem 1.2 in [PR3] shows that 4 = Inf ji for
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nez 2(r /Dy, T). Furthermore there is an exact sequence
1 > M/Dy — /Dy — T'/Do/M/Dy =T /M = R = D — 1. (3.6)

Since Dy = [D//Fo] and is finite, by the theory of finite abelian groups we know that
D/Do = D/ Dq. We now establish that M/ Dy is abelian. Let 'y = I'/Co. Then p,
being the inflation of a multiplier on I'/ Dy, can also be viewed as a lift of a multiplier
w1 on the intermediate quotient group I'y. If Co # C, T'y is again a two-step nilpotent
group with commutator subgroup C; = C/Cy, and letting ¢¢, (u1): T'1 = C, by
construction ¢ () will be surjective, and by [PR3, Cor 1.3], K| = ker ¢¢, (i) is
a normal abelian subgroup of I'; containing C;. Nowset K = {y e I': y - Cp €
Ky € Ty =T/Cy}. Then K = ker ¢c(un): T — é, and since Ky = K/Cy is
abelian , [K, K] € Cy. Since M = ker ¢p(un) C ker ¢c(un) = K, it follows that
[M, M] C [K, K] C Cy, and since Cy < Dy, we see that M/ Dy = M /Cy/Dy/Cy is
abelian. Recalling that N = M/D, upon restricting n € Z%(G, D) defined in (3.4)
to N x N, we obtain a cocycle ny € Z%(N, D). By the Bockstein exact sequence

HA(N, Do)—> HX(N, D)Z> H*(N, D/Do)—>H*(N, Dg) (3.7

it follows that [ny] = i.([]) for [x] € H2(N, Do) if and only if m,([ny]) =
[11a2(N,D/Dy)- 1t follows that 7y is cohomologous to a cocycle taking values in Dy if
and only if the central extension M /Dy of N = M /D by D/ D, corresponding to the
cocycle m.(ny): N x N — D/Dy splits, i.e., if and only if the group extension

1= D/Dy — M/Dy— M/D — 1 (3.8)

splits. Consequently if M /D, (which we know is abelian) is isomorphic to D/Dy &
M/ D, then, upon changing nAby a coboundary if necessary, we can choose 7 so that
nn takes on values in Dy %PO C C(ﬁo, T) = p3(C(Z,T)), where py: X = D—
D/G = D/G = D/R = RL = Dy = Z. It follows that for w as defined in (3.5),
o|nxn Will also be (cohomologous to) a cocycle taking on its values in p5(C(Z, T)),
as we desired to show. Of course if N = M/ D is torsion free (hence by assumption
isomorphic to Z™ for some m € Z%) then it will always be true that M /Dy will split
as D/Dy @ M/ D, so that it will always be true that w can be chosen so that w|y«x
takes on its values in p5(C(Z, T)). This is consistent with the results of Remark 2.7.

Remark 3.2. 1t follows from the above proposition that if (I', u) is a group-
multiplier pair where I is a finitely generated nilpotent torsion free two-step nilpotent
group and if there exists a central subgroup D containing the commutator subgroup
for I' such that D satisfies (3.1) and (3.2), then we can apply Theorem 2.2 to construct
a continuous trace C*-algebra B with spectrum Dy and an action Bpof M/D =N
on B such that the induced action B is trivial on the spectrum Z and B xg N is
strongly Morita equivalent to C*(I', u). In general, the Dixmier-Douady class of



724 JUDITH A. PACKER

B in ﬁz(Z , S) and the Phillips-Raeburn obstruction [y] € H (z, N ) associated to
[(B, B, N)] € Bry(Z) can be non-trivial, as we will see in upcoming examples. For
the next few results, however, we concentrate on finding conditions under which
C*(I', ) will be strongly Morita equivalent to C*(I'g, uo), where I'g is a subgroup
I of finite index and po = t|ryxr,-

COROLLARY 3.3. Let I' be a finitely generated torsion free two-step nilpotent
group, let[u] € H*(T', T), and suppose there is a central subgroup D of T containing
the commutator subgroup satisfying (3.1) and (3.2), and such that M / D is free abelian
(so that (3.3) is also satisfied). Then there is a subgroup T'g of finite index in T" such
that, defining j1o = p|r,xry, [1to] is in the path component of the identity in H 2T, T).

Proof. 'The proof of Proposition 3.2 shows that we can define I'y to be the central
extension of M /D = N by Dy defined by ny: N x N — Dg which fits into the exact
sequence

1> Dy—>T9o—> M/D— 1.

Note 'y € M. Since u(d, m)u(m,d) = 1 Vm € M,Vd € D by definition of M,
it follows that wo(d, y)uo(y,d) = 1,¥d € Dy, Vy € Ty so that pg = Inf(ilp) for
o € ZX(M /D, T). Butif M/D is free abelian, H 2(M /D, T) is path-connected.
Consequently [fIo] is in the path component of the identity in H2(M/D, T), so that
[uol is in the path component of the identity in H?(I'y, T).

COROLLARY 3.4. Let I' be a finitely generated torsion free two-step nilpotent
group and [1] € H*(T, T). Suppose there exists a central subgroup D C T contain-
ing the commutator subgroup of T" such that (3.1)—(3.3) are satisfied, and suppose the
multiplier [w] € H*(G, C(X, T)) defined in (3.5) satisfies conditions (i) and (ii) of
Theorem 2.6. Then C*(T", ) is strongly Morita equivalent to C*(T'y, i19), where I'gy
is a subgroup of T of finite index and (1o = [|ryxr,. If in addition, using the notation
of Corollary 3.3, M/ D is free abelian , C*(T", u) is K K -equivalent to C*(T'y).

Proof. By Proposition 3.1 we can write C*(TI', ) as C(X) x4, G, where G =
I''D,X = D, and [w] is as defined in (3.5). Furthermore from the results of Prop 3.1
and by hypothesis, this transformation group C*-algebra satisfies all the conditions of
Theorem 2.6, so that Co(X) x ., G is strongly Morita equivalent to Co(Z) X g,y N =
Co(Do) x 14,0y N . Butasin the proof of Proposition 3.1, Co(ﬁo) X1d,0y N is isomorphic
to C*(I'o, 1o), where Ty is the central extension of N = M/D by D, corresponding
to the two-cocycle ny € Z2(N, Dy). Hence we have shown that C*(T", ) is strongly
Morita equivalent to C*(I"g, uo). Finally, if we assume N is free abelian, then by
Corollary 3.3, [uo] is in the same path component as [1]y2r, 1) € H%(Ty, T), so
that by [PR 3, Cor 2.8], C*(I"y, uo) is KK-equivalent to C*(I'g). Hence C*(T", p) is
KK-equivalent to C*(Typ).
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Example 3.5. Let I be a lattice in the (2n + 1)-dimensional simply connected
Heisenberg Lie group for n > 2 and let [i] be any multiplier of I" (the structure
of the lattice subgroups I' and multipliers [u] were discussed in [LP1]). The center
Z of T is isomorphic to Z so that I'/Z = Z?. Since H*(Z,T) = H*(Z,T)
is trivial, without loss of generality we can assume that u|zxz = 1, so that as
in Proposition 3.1, C*(T', ) decomposes as C(T) x.., Z*", where the action of t
corresponds to translation coming from the homomorphism ®z(u): I' — Z2=T
which factors through I'/Z = Z?". Let M = ker ¢z(u) and set N = M/Z. The
range R of ¢z(w) is finite for dimension n > 2 [LP1], i.e,, R = Zé‘ where Zj is a
finite index subgroup of Z. Since M/Z is torsion free, we have a splitting

M/Zy=Z2/Zo® M/Z

so that conditions (3.2) and (3.3) listed in the first part of this section are also satisfied.
Thus, we can apply Proposition 3.1 and Theorem 2.6 to deduce that C*(T, u) is
strongly Morita equivalent to C*(I'y, o) if we can show that the multiplier [w] €
H?(Z*, C(T, T)) defined in (3.5) satisfies conditions (i) and (ii) of Theorem 2.6.
Now (i) is satisfied automatically, since H2(Z,S) = H*(T,Z) = {0}. We thus
consider whether (ii) is satisfied, i.e., whether or not [p}(A)] € H @G, c, 1\7))
defined by

[PTMI@) () = w(g, n)(pi1(M)wn, g)(pi1(y), ge€GneN,yeV,

is trivial. Now from the exact sequence (2.21), the map i: H!(G, C(Y, 1\7)) -
Ap(G x N, N; C(Y,T)) is injective, and by Theorem 1.5, Fiy,gxn): Ap(G X
N,N;C(Y,T)) - H'(Z, N) is injective. Thus, Fy.gxn) 0i: H'(G,C(Y, N)) —»
H'(Z, N) is injective. Butas Z = T and N = 2 = T?, we have H'(Z, N) =
H\(T, 8**) = H*(T, Z*) = {0}, and it follows from the vanishing of cohomology
groups that [p}(A)] must be trivial. We thus obtain another proof of the following
result, which was first proved in [LP2]:

COROLLARY 3.6. LetT be a lattice in the (2n 4 1) dimensional simply connected
Heisenberg Lie group and let [u] € H*(T', T). Then there is a subgroup Ty of T
of finite index such that the twisted group C*-algebra C* (T, ) is strongly Morita

equivalent to C*(Ty, (o), where [0l = [It/ryxr,] is in the path component of the
identity in H*(T'y, T).

Proof. Ifn =1, it follows from [LP1, Theorem 3.6] that every multiplier on I' is
homotopic to the identity, so that there is nothing to prove. If n > 2, we have shown in
the above analysis that C*(I", u) is strongly Morita equivalent to C*(I'g, 1), where
Ty is the central extension of M/Z by Zy, for M = ker ¢z(1). Since M/ Z is free
abelian, by Corollary 3.3, [140] is in the path component of the identity in H?(T, T).

Next, we give several examples where the invariants do not all vanish, yet are
computable.
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Example 37. Let I" be the following two step nilpotent group of rank 5: I’
is a central extension of Z3 by Z? corresponding to the cohomology class [5] €
H*(Z3, 7?) given by

n((x1, x2, x3), (x{, x5, x3)) = (ax3x|, dx3x;), wherea,d € N,a/d.
As a set, I' can be identified with Z? x Z3. Define u € Z*(T", T) by
w((my, ma, x1, %2, x3), (m', mly, x}, xj, x3)) = e’e 52,
(my, my, x1, X2, x3), (M}, my, x1, x5, x3) € T
For a > 1 it can be verified that [«] is not in the path component of the identity

element in H?(T", T). By Proposition 3.1, we can write C*(I", ) = C(T?) x,, Z,
where t: Z3 — T? is given by

T(x1, X2, X3) = (77572, 1),
and w: Z* x Z3 — C(T?, T) is defined by
w((x1, X2, X3), (X}, X5, X5)) (21, 22) = (21)™*1 (22) 2.

Through direct calculation we check that condition (3.3) is satisfied, so that by Propo-
sition 3.1 again, with G = Z3 and N = Z®aZ&®Z, we can find a principal G-bundle
Y =R x T x Z x Z over Z = T?/G (which can also be identified with T2), where
the action of G = Z3 on Y is given by

(r,z,np,n3) - (X1, x2, x3) = (r + X2, 2,11 + X1, 13 + x3),
(r,z,ni,n3) €Y, (x1,x2,x3) € G.
The map p;: ¥ — X = Y/N = T? is given by
pi(r,z,n1,n3) = (€74, 7).
The map py: X = T2 - Z = T? is given by p2(z1, 22) = (2%, 22), so that p3 =

paopi: Y — Zis given by pa(r,z,ny,n3) = (27", 7). Using the notation of
Theorem 2.6, one computes that [ p} (w)] € H*(G, C(Y,T)) is defined by

[PF(@))((x1, X2, X3), (X}, X3, XD)(F, 2, 1y, n3) = 7ranni zdnn,
(x1, x2, x3), (x1, x5, x3) € G, (r,z,n1,n2) € Y.

and [pf(A)] € H'(G, H'(N, C(Y, T)) is defined by

[T )I((x1, X2, X3), ity J2s 33T, 2, 11, m3)) = (€27iTX3) 1 (4053 ) o (g =2mirxi g=dxay
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Identifying N = 7 with T3, we can write H'(G, H'(N, C(Y,T))) = H!(G,
C(Y, N)) = H'(G, C(Y, T?) and with respect to this identification, we can view
pi(2) as being defined by

i —2irx, -
PYOY((x1, X2, x3), (1, 2, iy, m3)) = (e77rn gdax g=2mirx p=diry
(x1,x2,x3) € G, (r,z,n1,n3) €Y.

We note now thvat as in Examyle 3.5, condivtion (i) of Theorem 2.6 is automatically
satisfied since H2(Z, S) = H?*(T?, S) = H3(T?, Z) = {0}. However condition (ii)
does not hold. We can check thatif f: ¥ — T2 is defined by f = (fi, f2, f3) where
the maps f;: ¥ — T,i =1, 2, 3 are given by the formulas

fl(r’ Z,ny, n3) = eZﬂirng’
fZ(n Z,ny, n3) = Zdang’
fi(riz,ny,n3) = e,

then

PYAESf ((x1, X2, x3), (r, Z,n1,m3)) = (1, 1,27%4%),
(x1,x2,x3) € G,(r,z,n;,n3) €Y.

Let [o] = [p}(M)df]1 € H'(G,C(Y,T?).

By using the definition of the bundle Fy,gxn)(i*[p]) given in [RW1] and the
method outlined in [PR2, Lemma 3.2], we verify that if {N;};—=; € Z = T? is a local
trivialization of p3: ¥ — Z and ¢;: N; — Y are sections, with ¢;(z) = ¢;(2)v;;(2)
where v;j: N;; = G, then the transition functions for the N-bundle over Z represented
by Fy.gxn(i*([p])) are

2ij(2) = [pij (@), ci @™, z € Nj.

It is evident that the G = Z3-bundle Y over Z = T? is the product of the non-trivial
Z-bundle R over T and a trivial Z2-bundle over the second factor of T, so that we
can write N;; = N;; x T where {N;;} € T is a local trivialization of the projection
p: R — T. Using this notation we have

vij (21, 22)) = (0, };(21), 0), (21, 22) € Nij

where vj;: N;; — Z are the transition functions associated to the bundle p: R — T
via the formula c;(z1) = v;;(z1)c(z1), and where, as usual, ¢;: N; — R are local
sections. Using this notation, we see that for (z1, z2) € N;; = N] ;X T we have

%ij (@1, 22)) = [p((0,V};(z1), 0), (i (z1), 22,0,0)]

dvj;(z1)

= (191922 )'
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By the method outlined in Lemmas 3.2 and 3.3 of [LP2], the cocycle {Af})} €
H'(T?, S) = H*(T?, Z) = Z defined by the formulas

DO 2 =27, @1, 22) € Ny,
corresponds to the elementey Ae; = —eAeyin H2(T2, Z) = A?(Z?, Z) (recall e; Ae,
is the standard generator of H2(T?, Z)), hence {A;;} € H'(T?, 8% = H*(T?, Z°) =
73 can be represented by the element (0, 0, —de; A e2) = (0,0, —d) (upon viewing
e) A e as a standard generator in the third coordinate). Using the notation of Theo-
rem 2.6, it follows that d, ([w]) = (0, 0, —d) € H'(T?, 8%) = H2(T?, Z%). Finally,
one calculates that dy([w]) = [c,,] where c,,: T2 — Z2(N, T) is defined by

(@1, 22)(ts @jas j3)s Gif» @y §3)) = (21)201 (20)202
(215 22) € Z = T2, (j1, ajo, ja), (1> ajps j3) € N.

Thus C*(T", p) is strongly Morita equivalent to a crossed product (C (THRK) x gN =
(C(T? ® K) xp Z?, where [(C(T?) ® K, B,Z3)] € Bry(Z) has the invariants
computed above.

Example 3.9. 'We end the paper by considering a twisted group C*-algebra asso-
ciated to a rank six nilpotent discrete group where all of the cohomological invariants
coming from Theorem 2.6 are non-trivial. Let I" be the central extension of Z> by Z>
corresponding to the two-cocycle n: Z3 x Z3 — Z3 defined by

n((x1, X2, ¥3), (X}, %3, X3)) = (2x3%7, 2x3X], 2X2%),
(X1, X2, X3), (x1, X3, x3) € Z3,
so that setwise, I" is identified with Z3 x Z3:
' = {(my, my, m3, x1, x2,x3): m;, x; € Z,i = 1,2,3}.
Define the multiplier u: I' x I' - T by
w((my, ma, ma, x1, x2, x3), (m'y, mhy, my, x\, X}, X5, x3)) = (=1)¥mi+xmy+rm;

Again, one can check that [11] is not in the path component of the identity in H 2(r, ),
and it follows from Prop. 3.1 that C*(I", ) is *-isomorphic to the twisted transfor-
mation group C*-algebra C(T?) x ., G, where G = Z?, the action 7 of G on C(T%)
corresponds to the homomorphism 7: G — T3 given by t(x;, x2, x3) = (e™*',
e"i%2 e™ %) (xy, X2, x3) € G, and the two-cocycle w: G x G — C(T?, T) is given
by

2x3x, 2x3x| 2x3x’
o((x1, X2, x3), (x), X3, X321, 22, 23) = 27 25 'z

(zh 22, Z3) € T3 = X9 (X|,x2, x3)s (x;yxé’ x;) € ZS =G.
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Using the notation of Proposition 3.1, we have D = Z3 = {(ny, ny, n3),n; €
Z,i = 1,2,3},and Dy = 2Z & 2Z & 2Z = {(2ny, 2n,,2n3),n; € Z,i = 1,2, 3},
Y = R3, with the G = Z? action on Y defined by

(r1, r2, 13) (X1, X2, X3) = (ri+x1, 24X, r34x3), (11,12, 13) €R?, (x4, 32, x3) € Z°.
Letting N = 2Z @ 27 & 27Z, the maps p, p2 and ps are given by

p:Y > X=Y/N=T,

Pl(rl, r, r3) = (e”irla e?firz’ eﬂ'i".i), (rl’ r, 7'3) € R39
P X—>Z=Y/G="T3,

221, 22,23) = (24, 3, 22),  (21,22,23) € T® = X,
so that
par1, ra, r3) = (XM, 2T QMY (ry 1, r3) € RO,

Applying the notation of Theorem 2.2 and its subsequent remark, we see that
[p}(lwD] € H*(G, C(Y, T)) is given by

P} (o)) ((x1, X2, x3), (x{, X5, X3))(r1, 2, r3) = ¥ irmsiag?ninm ghnirsnx
(x1, X2, X3), (x1, X3, X3) € G, (ry,ra,13) €Y.

and dy([w)) € H 2(Z, S) is defined by the formulas

(d2([0]))ijk (2) = {pTUwD Xij (2), Ajx(2))(ci(2))}ijx

where {N;} C T2 is alocal trivialization for the bundle p3: R> — T? decribed above,
the maps c;: N; — R? are local sections, and c;(z) = Aij(2)cj(z),z € Nij. Now
define o: Z? x Z* — Z by

o((m,n),(m',n)) =nm,

let {V;} be alocal trivialization for the principal Z2 bundle R? — T2, and lete;: V; —
R? and p;;: V; N'V; = V;; — Z? be the corresponding local sections and transition
functions. Define 6;: T3 — T2 i =1,2,3 by

(229 23)9 i= 1,
ei(zls 22, 23) = (zl’ 23)’ i = 4,

(z1,22), i=3.
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Let
N} = 67 (Vip) € T3,
(NG = 65" (Vi) S T3,
(NG = 65" (Vijo) S T

Define cocycles {n,?;,i}, {nfﬁ}, {ng,)(} € H? (T3, S) with respect to the open covers

INSL AN ANS) ) by

(1 0 (pij((z2,23)), pjk ((z2,23))) 1
nijz((211221z3)) = gy AR (21,22»23)€N,~(j,3,
2 0 (pij((21,23)), 0k ((21,23))) 2
Ne((21,22,23)) = 25 ORI (2, 20, 23) € N,
A3) o (pij((21,22)), pjx ((z1,22))) 3
(21, 22, 23)) = 25 PRI (7, 29, 23) € N

By [LP2, Lemmas 3.2 and 3.3], the cocycles {n}},)(}, {'7,%1}, {nff-’,i} correspond to the
elements e; Ae; Aes,ex Aep Aesand es A ey Ae in A3(Z3,Z) = H¥(T?,Z) =
H(T?, S), and by passing to refinements, one can verify that the product [{ng},)(}] .
[{n2})- [{n{;2}] is cohomologous to [(da ([w]))iji] € HA(T?, S). Hence [(d2([]))ij«]
can be represented by the invariant ey Ae; A ez + e Aep Az +ez3 Aep Aey =
ey NeyNe3 € H 3(T3,Z) = Z (recall that e; A e; A e3 is the standard generator
for H3(T3, Z)). We now compute d; ([w]) and show that it also is non-trivial. We
calculate [p}(A)] = H'(G, H'(N, C(Y, T)) as follows:

PIA((x1, x2, x3), 2ny, 202, 2n3))(r1, 12, 13)
_ e2ni~2(r2x3+r3x2)n|e27ri~2(r|x3—r3x|)nze—2m‘~2(r|x2+r2x|)n;
- k)
(xl’x2,x3) € G9 (2”], 2n2’ 2n3) € Nv (r]’r27 r3) €Y.

As in Example 3.5 we identify H'(G, H'(N, C(Y, T)) with H'(G, C(Y, N)) =
H'(Z*, C(R?, T?)) to get

PTAN)((x1, x2, x3), (r1, 72, 13))

(2 2(rax3traxy)  2mi2(rix3—rax)) ,—2mi-2(ryx2+rax)
= (e , € 9 )

e
(x1, %2, x3) € Z3, (ry, 12, 13) e R = 7.
Now define f: R?> — T3 by
F 1y 12y r3) = (271003 | g 2mi2nry
Again, one checks that

PrQ) - df ((x1, X2, X3), (11, 12, 13)) = (1, X230 1),
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Then methods similar to those outlined in Example 3.5 allow one to calculate that
Fuy.cxm @ ([pfM)D) € HY(T?, 83%) = H*(T?, Z%) is identified with the element
(0, —4e; A e3,0) upon using the identification of H2(T?, Z?) with A%(Z3,Z) &
AX(Z3,7Z) ® A2(Z3,7Z). (Recall that e; A e;, €) A e3 and e, A e3 are the standard
generators for A%(Z3,Z).) Hence d([w]) = (0, —4e; A e3,0) and is also non-

trivial. Finally, one calculates do([w]) = [c,,] where c,: T> = Z%(N, T) is defined
by

4n3n'2 4n3n’, 4n2n'I

Co(21, 22, 23)((2n1, 2n2, 2n3), 21}, 2n5,2n%)) = 2, 7, 'Z3

(2n1, 2n3, 2n3), (20}, 2n4,2n%) € N, (21,22, 23) € Z = T°.
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