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INTERPOLATION BY BLOCH FUNCTIONS

ALEXANDER P. SCHUSTER

ABSTRACT. A new interpolation problem is defined for the Bloch space and some partial results are
obtained.

I. Introduction

For f analytic in the unit disk D {z: Izl < }, let

Ilfll sup(1 -Izl2)lf’(z)l

and define the Bloch space to be the space of analytic functions satisfying
Ilfll < . Clearly, this is not a norm since the constant functions have the
property that Ilfll 0. The Bloch space becomes a normed space if we let
Ilfll If(0)l + Ilfll. When discussing linear space properties of, it is this norm
we will have in mind.

Let F {Zn be an infinite sequence of distinct points in/I) having no accumulation
points in/1). For technical reasons we will consider only 1" with Izn > 5" We will
show later that there is no loss of generality in doing this. To this sequence, we
associate the space e (F), which consists of all sequences {an having the property
that

sup < (X).

n log l_lz,,12

Given F, we consider the linear operator T, which maps an analytic function f to
the sequence {f(Zn)}n. We say that F is a set of interpolation for the Bloch space if
T maps onto e (F).

Our ultimate goal, which we fall short of in this paper, is to find a complete
geometric characterization of sets of interpolation. We do obtain some necessary and
sufficient conditions, as well as discover some important properties of these sets.

The paper is organized as follows: Section 2 contains some background material
and basic facts about the Bloch space. In Section 3 we examine interpolation in
other spaces of analytic functions and motivate our definition for interpolation in .
Sections 4 and 5 contain some necessary and sufficient conditions, respectively, and
in Section 6 we examine sets of sampling for the Bloch space.
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2. The Bloch space

For (, z 6 D, consider the M6bius transformation

4’ (Z)
-(z

An important property of the Bloch space is its M/Sbius invariance. It follows from
the identity

-I(z)l2

-Izl 2 --I’(z)l
that f o p I1 f I1 for all f 6 ] and 6 D.

The pseudo-hyperbolic metric p is defined by

p(z, () I(z)l,

One can easily check that p((z), p(w)) p(z, w) for all z, w, ( 6 D. The
following proposition is basic and can be found in many papers on the Bloch space.
The proofbelow is taken directly from Zhu 19] and is included here for completeness.

PROPOSITION 2.1. Let f lt and z, w I. Then

If(z)- f(w)l < Ilfll log
-t- p(z, w)
--p(Z,W)

Proof

If(z)- f(O)l z f’(zt)dt
dt + lzl_< Izlllfll 1-Izl2t2 ll/lllog 1--IZ’’-[

Replacing f by f o tPz, z by Pz(w) and by the M6bius invatiance of I1 and the
pseudo-hyperbolic metric, we obtain the desired result.

There are some immediate consequences of this result. First, letting w 0, we
see the existence of a constant C such that

(1) If(z)l CIIfll log
-Izl2

for all Izl , which means that point evaluation is a bounded linear functional
on the Bloch space. This, together with the maximum principle, implies that if a
sequence of functions converges in the Bloch norm, then it does so locally uniformly.
In particular, if a family of Bloch functions {f,,} satisfies IIf,,ll _< K, then there is
a subsequence which converges locally uniformly to a function f in . Another
consequence of (1) is that the Bloch space is contained in every Bergman space.
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It follows from an application of Schwarz’ lemma and the MObius invariance that
every bounded analytic function is in the Bloch space. However, there are unbounded
Bloch functions, for example .f(z) log(l z). For details, see Zhu [19].

For 0 < p < c, the Bergman space A’ is the set of functions f analytic in the
unit disk with

fn If(z)lP dA(z) <

where dA denotes Lebesgue area measure.
In the following sense, the Bloch space may be seen as the limit of A t’ as p

approaches infinity.
For f and g analytic in D, consider the pairing defined by

(f, g) lim f(z)g(z) dA(z).
t-*l 7r

For < p < cx, the dual of A t’ may be identified with Aq (where p and q are
conjugate indices), while the dual of A can be identified with the Bloch space and
the dual of the little Bloch space, to be defined later, is identified with A All of
these results can be found in Axler [2].

3. Interpolation in other spaces

A sequence F {z,, is said to be a set of interpolation for the Bergman space AI’
if T(AP)

_
ep(r), where ep(r’) consists of those sequences {a,,} such that

-(1 -Iz,,l)Zla,,I p < .
ll

These sets of interpolation have been described completely by Seip [14]. (See
also [11] for a proof of the general case 0 < p < o and [12] for a different
characterization.) In order to discuss his theorem, we first require several definitions.

The sequence F is said to be uniformly discrete if the points of F do not get to
close to each other in the pseudo-hyperbolic metric, that is,

(F) inf P(Zi, zk) > O.
jk

For F uniformly discrete and r < 1, let

ff’lz,,l<r (1 Iz.,, l)
D(F, r)

log

and

D+ (1-’) lim sup sup D(tp (F), r).
EI

Seip’s characterization is then as follows:



680 ALEXANDER P. SCHUSTER

THEOREM 3.1. A sequence F is a set of interpolation for Ap ifand only if F is
uniformly discrete and D+ (1-’) < 7"

A natural question concerns the value p o. In other words, we would like
to find a space of functions Jr, such that the interpolation sets for .A are described
precisely by the condition 1-’ is uniformly discrete and D+(F) 0. One candi-
date might be H, the space of bounded analytic functions. Here I" is defined
to be a set of interpolation if T(H) _D o, the set of bounded sequences. This
problem was solved by Cadeson [5], who showed that F is a set of interpolation
if and only if it is uniformly separated, that is, there is a positive constant such
that

for every k.
One can easily show (see for example [10]) that if F is uniformly separated, then

F is uniformly discrete and D+ (F) 0. However, the converse does not hold, so it
appears that H is too small for our purposes.

Since the Bloch space lies between H and every Bergman space, it might seem
to be a natural candidate. The fact that, by duality, 1 is a limit of the Ap spaces
provides more evidence in that direction. A natural conjecture is thus that F is a
set of interpolation for the Bloch space if and only if is uniformly discrete and
D+ (r) 0.

It remains to determine an appropriate definition of interpolation in this case.
This means finding a sequence space W, which we require to be contained in the
range of T. Since we are dealing with the case p , it seems reasonable to let
W e. In fact, this case has been studied by Xiao 17], who has obtained partial
results.

In the Bergman space, we have

T(Ap) p(F) == T(Ap) ---ep(l"),

a fact which is enormously useful. A similar result holds in H, but for ev-
ery infinite sequence F, one can find a Bloch function f, which has the property
that limsuPn__, If(zn)l o. Therefore, it can never be the case that T() c_

By (1), we have T (I$) c_ e (F). We then say that F is a set of interpolation for
if T() (F).

It turns out that the condition D+(F) 0 is not sufficient for interpolation using
this definition, while we still believe the condition to be natural with the definition
used in 17].
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4. Some necessary conditions

The little Bloch space ]0 consists of functions analytic in D, which have the
property that

lim sup(1 -Izl2)lf’(z)l--O.
r Izl=r

The little Bloch space is contained in and, in fact, it is the closure of the polynomials
in the Bloch norm. It does not, however, have any containment relationship with H.

Given 1-’, let (F) be the space of sequences {an such that

lanl
n--, log l_lz,,12’

Zhu 18] has shown that for a little Bloch function f,

( )If(z)l is o log
-Izl2

as Izl 1, so we may conclude automatically that T(0) c_ e(l"). We then say
that 1-’ is a set of interpolation for 0 if T(0) (1-’).

Our first result, the proof of which is based on an idea of Bruna and Pascuas [3], is
that the interpolation sets for the Bloch space are the same as those for the little Bloch
space. We will use the following functional analysis results, which may be found in
[9].

THEOREM 4.1. Let L: X Y be a bounded linear operator between Banach
spaces X and Y. Then L is surjective if and only if its adjoint L*, acting on the
dual Y* of Y, is bounded below. Similarly, L* maps Y* onto X* if and only if L is
bounded below. (We say that L is bounded below if there is a constant C such that
IIx _< C Lx for all x X.)

This allows us to prove the next result.

THEOREM 4.2.
polationfor ]o.

F is a set of interpolation for if and only if F is a set of inter-

Proof. Let 1(1-’) consist of sequences {a,,} such that

Elan log
IZn 12 < cxz.

n

It is not difficult to check that the dual of e(r’) can be identified with 1 (1") and that
the dual of e (F) can be identified with e (1-’) with respect to the pairing

((an}, (bn})-- E anb’.
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For ( D, let

r (z) ( z)-be the Bergman kernel function. An important property is that

(f, K. f(()

for all f 6 A (See Axler [2].)
Throughout this proof, we will denote the operator T acting on the little Bloch

space by t. Now consider the map s, which maps an e(r) sequence {an} to the
function n an Kz,, (z).
A calculation shows that

Z an Kz,, (z)
n

dA(z) <_ lanl f II-z1-2 dA(z) <_ C lanl log
n n --IZnl2’

which implies that s is a bounded map from e (F) to A
We first show that t* s. Let f 0 N H and {an (F). Then

(f,s({an})) lim-- f(z) anKz,,(z)dA(z)
t--- 7t" n--2 lira f(z)Kz.(z)dA(z)
n

t--- 7g

-d"f(zn) (t(f), {an}).
n

The second equality is valid because f 6 0 f3 H. Since ]0 H is dense in 0,
we see that t* s. By Theorem 4.1, F is a set of interpolation for 0 if and only if
there is a constant C such that

(2) [an log
IZn 12

C
n

for all {an} 6 el(F).
To show that s* T, we prove that for any f 6 , the n-th entry of the sequence

s*(f) is equal to f(Zn). Denoting by n) the sequence having a in the n-th position
and zeroes everywhere else, we obtain

(s*-(f), n)) (f, s(in))) lim f(z)Kz. (z) dA(z) f(Zn).
t--- 7(

This shows that s* T and so F is a set of interpolation for if and only if s* is
onto, which by Theorem 4.1 means precisely that (2) holds.
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This characterization of interpolation sets merits being called a proposition.

PROPOSITION 4.3.
C such that

for all {an e (F).

F is a set ofinterpolationforI ifand only ifthere is a constant

n

lanllog
l--lZnl2

<C

At several times in this paper we would like to, without loss of generality, take
away finitely many points from a set of interpolation. At this point we prove that this
is justified. By Theorem 4.2 it suffices to do this for the little Bloch space.

LEMMA 4.4. Let F be a set ofinterpolationfor 1o and suppose ( \ F. Then
F t_J {( is also a set of interpolationfor o.

Proof Note first that if f 6 D0, then so is the function defined by (z a)f(z)
for any a C.

Let {an 1,0 }. Then there is a nontrivial function in D0 which vanishes on
F \ {z l} and, by the above remark, we can find a0 function f which vanishes on F.

Suppose f has a zero of order n at (. It is not difficult to show that
g(z) [(z)

(z-C)" is in 1o, vanishes on F and satisfies g(’) O.
Let now {an} LI {b} t(F U {’}). Then {an} t(F), so there is an h D0

such that h(Zn) an for all n. Let

(b-h())
l(z) h(z) q- g(z).

e,()

It is clear that this is a function which performs the interpolation.

Sets of interpolation for the Bergman space have to be uniformly discrete. In the
case of the Bloch space, we can say a little bit more.

THEOREM 4.5. Let F be a set of interpolation for lt. Then there is a positive
constant L such thatfor every k and every j 5 k,

+ p(zj, zk)
> L log i.(3) log

p(zj, Zk) -Iz

Proof. By a standard argument involving the closed graph theorem, if F is a set
of interpolation, there is a constant M(F) such that given {an e (F), there is an

f I satisfying f(zn) an with f _< M(F) SUPn log
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For each k, let {alk) {6jk and let fk be the solution to this interpolation problem.
By Proposition 2.1,

IA(z) A(zj)l _< M(F)log + p(zj, z,)
log

P(Zj, Zk) --Izkl2

which implies that

+ p(zj, zk)
> log i.log

p(zj, Zk) M(F) Izk

We obtain several results which follow directly from Theorem 4.5.

COROLLARY 4.6. If F is a set of interpolation for 1 and 0 < K < 1, there is a

finite subset F of F such that

8(r \ F) > K.

COROLLARY 4.7.
and D+ (1-’) 0.

If F is a set of interpolationfor ], then F is uniformly discrete

In our proof of this corollary we will use the following theorem of Rochberg [8].

THEOREM 4.8. Let p > O. There is a constant Ko(p) such that F is a set of
interpolationfor Ap whenever 3(F) >_ Ko.

ProofofCorollary 4.7. It is clear that sets of interpolation for ] must be uni-
formly discrete.
Now suppose that e > 0 and let K0() be the constant from Rochberg’s theorem, so

that, by Corollary 4.6, there is a finite set F, such that F \ F is a set of interpolation for
A 7. Therefore, F is a set of interpolation for A and so, by Theorem 3.1, D+ (F) < e.

We remark that it is also possible to prove Corollary 4.7 directly, using the definition
of D+ (F).

It seems unlikely that the condition given in Theorem 4.5 will be sufficient for
interpolation. It is not difficult to show that if (3) holds with L > 2, then the
sequence F {zk} must be finite, thus giving a trivial analogue of Rochberg’s
theorem for the Bloch space, since every finite sequence is an interpolation sequence.
A more interesting result would be the existence of a constant K < 2 which has the
property that if (3) is satisfied for K < L < 2, then F is not necessarily finite but still
interpolating for ]. We will discuss a partial result of this type in 5.

One can easily prove that Rochberg’s result does not hold in the Bloch space. In
other words, there is no constant K < such that 3(1’) > K implies that F is an inter-
polation sequence for . Consider the following example constructed by Seip 13].
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Leta > l,b>0andlet

A(a, b) {am(bn + i)}m.nZ,

where Z is the set of integers. A(a, b) is a sequence of points in ]HI+, the upper
half-plane. An analytic isomorphism from/I) to ]I-]I+ is given by

(z)
1-z

and we define

F(a, b) p-l(A(a, b)),

so F (a, b) is a sequence of distinct points in D. In fact, F (a, b) is uniformly discrete
and Seip 13] shows that

2zr
D+(F(a,b))

b log a

He also shows that if..2, > +/-, then F(a, b) is a set of uniqueness for Ap, that is,ooa p
the only Ap function vanishing on F(a, b) is the zero function. It is also not difficult
to prove that

,(r(a, b)) min l a -1 b}a + l’ /b2 + 4
Suppose now that there is a constant K0 such that 8(I") > K0 implies is inter-

polating for the Bloch space. We choose a and b such that 8(F(a, b)) > K0. If p
2rsatisfies > 7’ then F (a, b) is a set of uniqueness for AP and since c_ AP,

a set of umqueness for I. This is a contradiction, since sets of interpolation for I
necessarily admit nontrivial Bloch functions which vanish on it, as can be seen by the
proof of Lemma 4.4.

Another important result which pertains to Bergman space interpolation is the
following theorem of Amar ].

THEOREM 4.9. Every uniformly discrete sequence is a finite union of sets of
interpolationfor AP.

It is easy to see that this cannot hold for the Bloch space. Take any uniformly
discrete set 1" with D+ (F) > 0. There are plenty of examples of this. Seip’s example
discussed above is one. If 1-’ t_J.n Fi where l" is interpolating for, Corollary 4.7/--1

would imply

D+ (1-’) < D+ (I"i) 0,
i=1

a contradiction.
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The necessary condition given by Corollary 4.6 allows us to find an example
of a uniformly separated sequence which is not a set of interpolation for 1. Let
z,, z,_,. A calculation shows that

p(z,,, z,,+t)=
3(2,,_)_ I’

which does not approach as n co, as would be necessary by Corollary 4.6.
Consider now the question of perturbing sets of interpolation. We remark that the

proof of the following theorem is based on the proof of Lemma 2 in [4], p. 35 I.

THEOREM 4.10. Suppose F {z,, is a set of interpolation for . There is a
> 0 such that t.’f A {X,, is such that

+ p (z,,, ,k,,) /loglog p(z,,(X,,) -Iz,,I z < ’
then A is a set of interpolation for .

Proo.f. Let w,, 6 oo (A). Now,

(I- Iz,,I) 2
log

(1 Iz,, 12)(1 IX,, 12)
log I z,--Sz.,, I: log

(I -Iz,,12)(l -IL, 2) /92(,n,zn)

+ p(Ln, z,,)
< log

p(X,,, z,,)
< 6 log

Iz,,I 2"

Therefore,

-19,,I 2 > (1 -Iz.,,12) -Iz,,I
-+- Iz,,l’

and it can be shown that the last quantity is greater than or equal to (I [z,, [2)5+,5 as
long as Iz,, > 7. Thus,

w,, w,, log -Ix,, 12S sup sup __< (3 + 5)sup
log i_lz,,iz n log l_lX,,iz log i_lz,,12 n log

< oo,

so that {w,,} 6 e(F). Therefore, there is an f 6 such that .f(z,,) w,1 and

IIf _< aM(I’).
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Let w,) w,, -f (),,). By Proposition 2.1,

f (z,,) f (,,,)

loglog i_lz,,’12 i_lz,,l log i_lz,,12

+ p(z,,, ),,)
< SM(F)3.< II.fi log

p(z,,, .,,) log _lz.,,I

Therefore, there is an f2 such that f2(z,,) w, with Ill211 _< SM(F)3M(F).
Similarly, we let w,2 w, -f2(,,) and find an f3 such that f3(z,,) w,2 with

Ill311 _< SM(F)(3M(F))2.
In general, we let w,) w,k-l)- fk(),,) and obtain an .f+ such that .f+ (z,,)

w and II.f/l _< SM(F)(3M(F)). Let f(z) Y= f(z). If 3 is chosen so that
3 < --, then the series will converge to a Bloch function, which, by construction,
solves the interpolation problem.

COROLLARY 4.1 1. Suppose F {z,, is a set of interpolation. If A {),, is
such that p(z,,, ),,) < K < for some K, then A is also interpolating.

Proof. Choose R < such that

+ K //loglog
I-K I-R2 <3’

where 3 is the constant from Theorem 4.10. There is an N such that n > N implies
that z,, > R. Let A’ {,k,,} {z ZN-, )N, N+ }. Then

l+p(),,,z,,)/log_l l+K/loglog
p(.,, z,,) -Iz,,I 2 -< log

K R2
< 3.

Thus A’ is a set of interpolation and therefore so is {,k,,},,>_s. By Lemma 4.4, this
implies that A is interpolating.

5. A sufficient condition

In this section we will use a result of Sundberg about BMOA functions to obtain
a sufficient condition for sets of interpolation.

For g L (qI’), let

fj (eiOI (g) -1 g dO,

where J is a subarc of the unit circle and J] is its Lebesgue measure. We say that g
is in BMO if

(eiOsup Ig I (g)l dO < cx
j_q ’
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An analytic function f is said to be in BMOA if it is a member of the Hardy space
H and its boundary function is in BMO. It is not difficult to show that BMOA is
actually contained in the Bloch space. Sundberg 16] proves the following theorem
about values of BMOA functions on uniformly separated sequences.

THEOREM 5.1. Let {Zn} be uniformly separated and let {an} c_ C. There is a
BMOA function f such that f (Zn) an if and only there is a > 0 and numbers
{/(Z)}zaD such that

sup 2_ exp(Zlan (z)l)(l p(z, Zn)2) < O.
z]l) n

We then obtain:

THEOREM 5.2. Suppose F is uniformly discrete and them is a , > 0 such that

(4) supze
n
(1 IZnl2)-(l p(Z, Zn)2) < (X).

Then F is a set ofinterpolationfor .
Proof Let {an} 6 (F). Then there is a number M such that lanl <

M log ’i’ Iz,i2’ which implies in turn that exp(lanl) < (1 -Iz12)-. Letting ,k

M, we see that

supz exp(,kla, I)(1 p(z, z,)) <_ supz
n
(1 -[Zn[2)-r(l p(z, Zn)2

By Sundberg’s theorem, this implies that there is a BMOA (and hence a Bloch)
function solving the interpolation problem.

Note that since F is uniformly discrete, (4) implies that F is uniformly separated,
which justifies the application of Theorem 5.1.
We can manipulate the necessary condition given by Theorem 4.5 slightly to

illustrate the gap-between it and the sufficient condition of Theorem 5.2. If F is an
interpolation sequence, then there is a constant L such that for each k and each j # k,

p(zj, Zk)2 <_ 4(1 IZkl2) L. If L > 1, we can choose y, > 0 such that L y, >
and obtain

12 2) 12 L-(1--1Zk) y(I p(zj,zk) 4(l--lZk

which implies that

sup Z(l -Izkl2)-’(l p(zj, zk)2) 4 Z(1 -Iz12)-,
J kj k
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It is not difficult to show (see 11 ], for example) that if F is uniformly discrete, then
-k(1 Izkl2)a < o for any a > 1. We thus see that if (3) holds with L > 1, then

sup 2.(1 -IZkl2)-(l- p(z, zk)2) < oo.
J kj

One can also rewrite the necessary condition of Corollary 4.7 to say that if 1" is a
set of interpolation for , then

sup (l-p(z, Zn)2) is o(log )z]D p(z,z,,)<r
r

whereas the sufficient condition of Theorem 5.2 says that there is a , > 0 such that

sup (1 -IZnl2)-(l p(z, Zn)2) is 0(1).
Z p(z,z,,)<r

6. Sampling in the Bloch space

The sampling problem is in some sense the dual problem to interpolation. A
sequence F is a set of interpolation if T, as defined in 1, is surjective, while for
sampling sets we require that T be bounded below. Thus, F is a set of sampling for
I if there is a positive constant K such that

(5)
If(z)l

f K sup
zer log l_lz12

for all f It. Similarly, F is a set of sampling for the little Bloch space if (5) holds
for every f 0. For technical reasons, we will consider only sequences whose
members all have modulus at least 1/2.

Our first result mirrors Theorem 4.2.

THEOREM 6.1.

for ]o.
r" is a set of sampling for ifand only if F is a set ofsampling

Proof. As mentioned above, F is sampling for I whenever T is bounded below,
while it is sampling for 0 when is bounded below. We showed previously that
the map s satisfies t* s and s* T. Therefore, an application of Theorem 4.1
shows that T is bounded below if and only if s is onto if and only if is bounded
below. Thus, lV is a set of sampling for (or 0) if for every f 6 A l, there exists
{an} el(F) such that f -n anKz,,"

The most natural question about sets of sampling concerns their existence. It
tums out that there are no sets of sampling for the Bloch space, and therefore, by the
previous result, none for the little Bloch space either. We will show that there is no
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constant C such that

If(z)l
(6) f < C sup

Izl >_1/2 log

for all f E . This clearly means there are no sampling sequences.
Denote by Hlo% the set of analytic functions with

If(z)l
fllog sup < o.

Izl >_1/2 log

We see by (1) that Hlo contains I and it is clear that multiplication by any bounded
analytic function maps Hio to Hlo%. However, Zhu 18] shows that there are bounded
analytic functions not in M(), the set of multipliers of. This implies the existence
of an f in Ho, which is not in . Let {rn be any sequence tending to and define
fn(z) f(r,z). Note that Ilfnll is an unbounded sequence. If it were bounded, a
subsequence of {f,} would converge uniformly on compact sets to a Bloch function
g by the remarks in 2. Since {f, converges pointwise to f, this would imply that
f E 1, a contradiction.

It is not difficult to show that IIf IIog is bounded. Thus, the inequality (6) fails for
the family {f }.

7. Questions

The characterization of interpolation sequences given by Proposition 4.3 appears to
yield little geometric information. One would like to be able to find a more geometric
condition, such as the one obtained in Theorem 5.2.
A seemingly less difficult problem is to find the necessary and sufficient condition

on the sequence {zk} if it lies on the positive real axis.
An application of the closed graph theorem shows that if {Zk} is a set of interpo-

lation, then there is a sequence {fk} in such that

fk (Zj) jk log
]z

with Ilfkll _< C. Is this sufficient for interpolation? Similar results do hold in
H [6], Hp [15] and Ap [12], while the analogue of this does not hold in the
Dirichlet space [7].

Acknowledgement. The author would like to thank the referee for many insightful
comments and remarks.
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