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CURVES OF MINIMAL DEGREE WITH PRESCRIBED
PLANAR SINGULARITIES

E. BALLICO

ABSTRACT. In this paper we study the existence of reduced and irreducible complex or real projective
curves contained in an ambient normal projective variety with prescribed singularities and with "low
degree". We consider germs ofplanar singularities ofcurves, up to topological or equisingular equivalence.
The main result is an existence theorem for plane curves with ordinary singularities which improves previous
results by Greuel, Lossen and Shustin.

Introduction

In this paper we study the existence of reduced and irreducible complex or real
projective curves contained in an ambient normal projective variety X, with pre
scribed singularities and with "low degree". We consider germs ofplanar singularities
of curves, up to topological or equisingular equivalence. In section we consider
the case X p2(C). We use [3] in an essential way and a very weak form of
the so-called Horace method [4]. Here the main result is the existence theorem 1.5
for plane curves with ordinary singularities. In Section 2 we use the results of the
first section to prove the existence of irreducible plane curves defined over R and
with singularities with prescribed real topological type in the sense of [6] (essentially
for ordinary singularities and for unibranch singularities).Fo r the general theory of
equisingularity for curve singularities on a smooth surface; see [2] and references
therein. For several strong results on the existence of plane curves with prescribed
singularities, see [6], [7], [1], [2], [3] and references therein.

The author was partially supported by MURST and GNSAGA of CNR (Italy).

1. Plane curves

In Section we work over an algebraically closed base field K with char(K) 0.
We are interested in the case K C and in Section 2 we will apply the results of
Section to the case of real algebraic curves. For every scheme Y let Yred be the
associated reduced algebraic variety and Yreg := (P Y Y is smooth at P }. Let X
be an integral projective variety, rn a positive integer and P Xreg. Set n "= dim(X);
we will use only the case n 2. The (m 1)-th infinitesimal neighborhhood of P in
X will be denoted by mP; hence mP has (Ix, p)m as ideal sheaf. Often mP is called
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a fat point; m is the multiplicity of mP and (n + m)!/(n!m!) h(mP, Omt’) its
degree. If s, m m, are integers > 0 and Pl p are distinct points of Xreg,
the zero-dimensional scheme t31 <i <,mi Pi is called a multi-jet of X with multiplicity
max{m/}, type s; m ms) and degree h(t31<_i<_smiei, 0 I.]l<i< miei). For a
fixed type (s; m m,), the set of all multi-jets of type (s; m ms) on X is
an integral variety of dimension ns. Hence we may speak of the general multi-jet of
type (s; m m.).

To find irreducible curves with prescribed singularities and no worse behaviour
we will use the so-called Castelnuovo-Mumford lemma, a very useful result, which
we will state in the following convenient way.

LEMMA 1.1 [5, p. 100]. Let X be a projective scheme of dimension n, Z a O-
dimensional subscheme, L and M line bundles on X with L very ample. Assume
h(X,M (R)Iz) Oandhi(X, M (R) L(R)(-i+1)) = Oforeveryi with2 < < n. Then
@t>oHO(X, M (R) L (R)t (R) Iz) is generated by H(X, M (R) L (R) Iz) as an algebra over
@t>_oH(X, L(R)t). In particular Z is the scheme-theoretic base locus of the linear
system IH(X, M (R) L (R) Iz)l. Furthermore, the same is true

We will use Lemma 1.1 and the general theory of [3] in the following form.

PROPOSITION 1.2. Let X be a projective normal surface and M, L Pic(X)
with L very ample. Fix an integer s > O, s general points Pl Ps ofXreg, integers
mi > O, < < s, and equisingularity types i, < < s, such that ri is associated
to a singularity scheme Zi with Zi c_ mi Pi. Let Z := (-Jl<i<sMiPi and assume
hl(X, Iz (R) M) h2(X, M (R) L*) O. Then there exists an irreducible curve
C IM (R) LI whose only singularities are the points Pi, < < s, and such thatfor
each the equisingular type ofthe germ (C, Pi) is ri.

Proof. ByLemma 1.1 and Bertini’s theorem, ageneral C IH(X, M(R)L(R)Iz)I
is smooth outside Z. Since H (X, M(R) L (R)Iz)l has no base components and contains
all curves of the form C’ t3 C" with C’ IH(X, M (R) Iz)l and C" IH(X, L)I,
we see that a general C e IH(X, M (R) L (R) Iz)l is irreducible. By Lemma 1.1, the
evaluation map H(X, M (R) L (R) Iz) (R) Ox Iz)l is surjective. Hence we conclude
the proof by the general theory of the singularity schemes introduced in [3] (see in
particular [3], Lemmas 2.4, 2.5 and 5.1).

Remark 1.3. Assume X p2. By the proof of [5], Lemma 6.6, instead of the
condition Z mi Pi we may use the condition S(’fi) <_ mi 1, where S(15i) is the
minimal degree, d, such that there exists an irreducible plane curve D ofdegree d with
a unique singular point, P, with equisingular type ri and such that the equisingular
stratum of (D,P) (among the plane curves of degree d) is smooth at P. We have
S(’Ci) <_ (’i) where tr (ri) is explicitly computed in [5], Lemma 6.2. For instance we
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have

O’(’t’i) [(2)l/2mult(vi)]-
if z’i is ordinary and

tr(ri) [(1 + (2)l/2)(deg(Zi) + mult(ri) + 1) 1/2] + mult(ri) + 3

if all the branches of Zi (i.e., of ri) are ordinary. Furthermore, for every singularity r
we have (tr(r) + l)(tr(r) + 2) < 196/z(r), where/z(r) denotes the Milnor number
of r [5, Prop. 6.8].

To construct 0-dimensional subschemes of p2 with good cohomology we will use
the so-called Horace method [6] in the more naive and simple way.

THEOREM 1.4. Fix positive integers t, s, ml m.. Set m maxl<i<s{mi}
andassume (t +2)(t + 1)/2 > t(m 1)-I- ,l<i<s mi(mi --I- 1)/2. Thenfora general
multi-jet Z := 1.31<i<smiPi oftype (s; ml m) in p2 we have h(P2, Iz(t)) 0.

Proof. We use induction on t. Fix a line D C p2. Take a general multi-jet W of
type (s; m m) with length(D f’l W) < + and with length(D N W) as large
as possible with this constraint. Note that + length(D fq W) < m 1. Let E
be the union of W and + length(D W) general points of D. It is sufficient
to show the vanishing of h(P2, IE(t)). Let E" := Reso(E) be the residual scheme
of E with respect to D. If P (Wred) O D and W has multiplicity mi at P, then E"
is a multi-jet which has multiplicity mi at P. Since length(D q E) + we
have H (p2, le (t)) H (p2, Ie,, (t )) and h (p2, Ie (t)) h (p2, Ie,, (t )).
Hence it is sufficient to show that the general multi-jet B with the same type as
has h (p2, It(t 1)) 0. This follows from the inductive assumption on t.

Theorem 1.4 and Proposition 1.2 prove the following result.

THEOREM 1.5. Fix positive integers d, s, ml m. Set m maxl<i<s{mi}
and assume d(d-t- 1)/2 > (d- l)(m- 1)+ l<_i<_s(mi W l)(mi-+-2)/2. Then

for a general multi-jet Z "= Ul<_i<_smi Pi of type (s; m ms) in p2 there is an
irreducible integral curve C C p2 with deg(C) d and with each Pi, < < s,
as ordinary multiple point with multiplicity mi. Furthermore, for all we may take
branches of C at Pi which have mi arbitrary distinct tangents fixed arbitrarily in
advance. Furthermore, the equisingular stratum ofC at the multigerm P Ps
is smooth and ofthe expected dimension (d2 + 3d)/2 mi (mi d- 1)/2 + 2s.

Theorem 1.5 is especially good if all m are small with respect to d. In such cases
it is about two times better than the corresponding case proved in [2], Section 3.3,
while the result in [2] is better for a few singularities with mi . d/4 and many nodes.
(Of course, in [3] also arbitrary singularities are treated.)
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2. Real curves

In this section we discuss the existence of real curves with singularities with
prescribed real topological type. All our results fit in the following framework. We
have a projective variety X defined over R, a real line bundle M Pic(X)(R) and a
0-dimensional subscheme Z of Xreg. We assume that Z is invariant under complex
conjugation or. This is allowable since the singularity schemes defined in [3] at a
real point may be chosen invariant by conjugation and at a non real point P of Z the
conjugate 0-dimensional subscheme supported by tr (P) may be taken as singularity
scheme. Hence all our linear systems may be taken defined over R and in particular
invariant under the induced action, again called or, of the complex conjugation. We
fix a smooth, connected projective surface X defined over R and with X (R) - 0
(hence with X(R) Zariski dense in X(C)). Note that for every A Pic(X)(R) and
every cr-invariant 0-dimensional subscheme Z of X (C) the complex vector space
H(X, A (R) Iz) is the complexification of a real vector space. This observation and
the Zariski density of both X(R) and X(C)\X(R) in X(C) immediately give the
following remark.

Remark 2.1. Consider the statement of 1.5 with respect to a real line bundle. Then
there is an irreduciblecurve C defined over R, with the prescribed singularities and
such that the number, multiplicity and complex topological type of the singularities
supported at points of X (R) is arbitrary.

Let r be a singularity or singularity type which is cr-invariant and represented by a
germ (C,P) with C a real curve in X’and P C(R); the real type (or real topological
type) of r in the sense of [8] is the topological type of the triad (U, U N C(C), U q

C(R)) with U a small ball in X(C) containing P.

Remark/Definition 2.2. In the particular case in which the resolution tree of a
singularity r is a chain (i.e., r as well as all of its strict transform are unibranch) we
can say much more, because the tangent cone to r is given by a real line and the
same occurs for the sequence of strict transforms of r. We would like to call such
singularities strongly unibranch. Hence there is a unique real topological type for r.
Thus under any of the assumptions considered in Remark 2.1 we construct C such
that the real topological type of each strongly unibranch singularity is the assigned
one, just prescribing that the support of r is a point of X (R).

Since P2(R) - 0 (and hence it is Zariski dense in P2(C)) we obtain the following
corollary of Theorem 1.5.

THEOREM 2.3. Fix positive integers d, s, ml ms. Set m "= maxl<i<s{mi}
andassume d(d + 1)/2 > (d- 1)(m 1)+ _,l<i<s(mi-I- l)(mi-+- 2)/2. Fixasubset
A of{l s}. For every A fix an integer ri with 0 < ri < mi and mi- ri even.
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Thenfor a general tr-invariant multi-jet Z := LJl<_i<_smi Pi oftype (s; ml ms) in
p2 with Pj e p2(R) if and only if j A there is an irreducible integral real curve
C C p2 with deg(C) d, with each Pi, < < s, as ordinary multiple point with
multiplicity mi and such thatfor every j A C has exactly rj real branches at Pj.

Remark 2.4. Obviously we may combine Theorem 2.3 and Remark/Definition 2.2
to obtain existence theorems for real curves with prescribed strongly unibranch or
ordinary singularities.
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