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ON THE EQUILIBRIUM MEASURE AND THE CAPACITY
OF CERTAIN CONDENSERS

DIMITRIOS BETSAKOS

ABSTRACT. We prove some geometric estimates for the equilibrium measure and the capacity of certain
condensers. The proofs are based on the interpretation of the equilibrium measure as the distributional
Laplacian of the corresponding potential, on a formula of T. Bagby, and on a method of Beurling and
Nevanlinna that involves the transport of the Riesz mass of a superharmonic function.

1. Introduction

A condenser is a triple (R, A, B), where R is a domain in the extended complex
plane C, whose complement C\R is the union of the nonempty, disjoint compact
sets A and B. If R C C the capacity of (R, A, B) is defined by

(1.1) cap(R, A, B) cap R inuffR IVul9 dm,

where dm denotes the Lebesgue area measure and the infimum is taken over all
continuously differentiable functions u on R with boundary values 0 on A and
on B.

It follows from classical results of Ahlfors and Beurling [Ahl, p. 65] that the
capacity of the condenser (R, A, B) is equal to the module of the family of curves
that lie in R and join A and B. In particular, cap R is conformally invariant. The
capacity ofan arbitrary condenser (R C Co) may be defined by means ofan auxiliary
M6bius transformation.

Let $(R) denote the family of signed Borel measures of the form a o"a O’B,

where O"A is a unit measure on A and aB is a unit measure on B. The energy (or
transfinite modulus) of the condenser (R, A, B) with cx 0R (cf. [Bag, p. 318]) is
defined by

(1.2)

where

(R) inf l(a),
aeS(R)

(1.3) l(a)=fA fA log
u u Iz ;I

da(z)da(().
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If g(R) < cxz, then the infimum in (1.2) is attained uniquely for a signed measure
r S(R) which is called the equilibrium measure of the condenser [Bag, Lemma 4].
The logarithmic potential u of z, defined by

(1.4) u(z)
u8

log iz (i dz((),

is called the equilibrium potential of the condenser (R, A, B).
By Theorems and 2 of [Bag], if (R) < oo and R is regular for the Dirichlet

problem, then u is continuous on Coo, harmonic in R, and there exist finite constants
V8 <_ 0 <_ VA such that

(1.5) Va <_ u(z) <_ VA, Z

(1.6) u(z)=VA, zA,

(1.7) u(z) Va, z B,

(1.8) oe(R) VA- V.
The fundamental theorem of T. Bagby [Bag, Theorem 3] asserts that

27f
(1.9) ,f(R)

cap R
Geometric estimates for the capacity of condensers have been proved by various

authors including H. Gr6tzsch, O. Teichmiiler, G. P61ya, G. Szeg6, V. Wolontis, and
V. N. Dubinin. Our purpose is to use Bagby’s identity (1.9) to prove inequalities
which do not follow from the polarization and symmetrization results presented in
[P6Sz, Note A], [Dub].

Our first result concerns the equilibrium measure of certain condensers. Before
stating it, we need to introduce some notation. If F C Coo we denote by F the set
symmetric to F with respecto the real axis R, i.e., F {: z 6 F}; if o 6 F,
it is understood thatx 6 F. For( Cwewrite(F {(z: z 6 F}. Also
F+={zeF: 53z>0},F_={zeF: 3z<0}and-F={-z: z6F}.

THEOREM 1. Let A, B be two disjoint, compact sets in Coo such that

(a) C a_,
(b) B_ c B+,
(c) R := Coo\(A t.) B) is a domain regularfor the Dirichletproblem with cx q 0 R.

Let z A 7JB be the equilibrium measure of the condenser (R, A, B). Then

(1.10) "CA(E) > "CA(E), for E C A+
and

(1.11) rn(F) > rn(F), for F C B_.
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Figure 1. An illustration for Theorem 1.

Theorem has an electrostatic interpretation. Assume for simplicity that A is
symmetric, i.e., A+ A_, and that B lies in the upper half-plane, i.e., B_ 0. Then,
since the negative,charge -rB attracts the positive charge "t’A, the set E C A+ has
more charge than E has. The components of A and B are assumed to be connected by
very thin wires so that the charge can move from one component to the other towards
equilibrium.

THEOREM 2. Let 0 <_ p <_ b <_ b’ < b’ <_ b2 < al < a2 < oo and consider
the sets A [-a2,--al] 1.3 [al,a2] and S {z Izl _< }, For 0 [0, zr/2],
let Io ei[bl, b2] t3 ei(+r)[b’, b’2] and Ro Coo\(A U Io t.J S). The function
f(0) :- cap(R0, A, S t3 Io) is strictly decreasing on [0, zr/2].

For the proof of Theorem 2 we will need an inequality for harmonic measure. Let
a(z, K, D) denote the harmonic measure of a Borel set K C C with respect to a
domain D C Coo at the point z D\K; i.e., o(z, K, D) is the Perron solution in
D\K of the Dirichlet problem for the Laplacian with boundary values on K and 0
on OD\K.

Figure 2. The condenser (R0, A, S t3 Io) of Theorem 2.
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THEOREM 3. Let A, S, Io, Ro be as in Theorem 2. For z Ro, define w(z)
co(z, A, Ro). Then

(1.12) w(iy) < w(-iy), y > O,

(1.13) w(x) < w(-x), x > O, x Ro,

(1.14) w(g + w( < w(-g + w(-g ), Ro, t >0.

For the proof of Theorem 1 in Section 2 we will use the fact that the equilibrium
measure of a condenser is given by the distributional Laplacian of the equilibrium
potential. Theorem 3 will be proved in Section 3. It is a simple consequence of the
Markov property of harmonic measure. The main tool in the proof of Theorem 2 (in
Section 4) is Bagby’s identity (1.9). We will also use Theorem 3 and a method of
Beurling and Nevanlinna that involves the transport of the equilibrium measure.
We conclude this section with some comments on higher dimensional extensions

of our results. The necessary theory for the equilibrium potential of space condensers
has been developed in [AV1] and [PoSt, pp.194-195]. Theorem 1 holds in Rn, n >_ 3,
without any essential change: one only needs to replace the assumptions (a) and
(b) with assumptions involving reflection with respect to an (n 1)-dimensional
plane. With some obvious modifications Theorem 3 also holds in higher dimensions.
Apropos of Theorem 2, we note that there are (at least) two different notions of
capacity in Rn, n > 3, the Newtonian capacity and the conformal capacity. A weaker
version of Theorem 2 for conformal capacity has been proved in [Be2]. The proof of
Theorem 2 can be modified to give monotonicity results for the Newtonian capacity
or the ot-moduli [AV2] of certain space condensers.

2. Proof of Theorem I

We will prove (1.10). The proof of (1.11) is similar. Let u be the equilibrium
potential of the condenser (R, A, B). Since u is harmonic in R and satisfies (1.5),
(1.6), it is superharmonic in D := R tO A. Let/, be the Riesz mass of u (that is, the
measure appearing in the Riesz decomposition theorem for superharmonic functions;
see [Lan, ch. 1, {}5]).

LEMMA 1. /z "CA

For now we assume that Lemma is true and we defer its proof to the end of this
section. From the proof of the Riesz theorem in [Lan] it follows that/x Au/(2zr),
where Au is the distributional Laplacian of u. For r > 0, we consider the functions
ArU defined in a neighborhood V of A by

(2.1) ZXrU(Z) - u(z)- u(z + r dt
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Then [Lan, p. 102]

(2.2) ArU 2rr /z,

in the sense [Lan, ch. 1, that

limfvf/Xrudm=2Zrfvfdzr---O

for all real, continuous functions f with compact support in V.
By Lemma and (2.2), it suffices to prove that

(2.3) fe /Xru dm >_ fF/Xru dm
for all sufficiently small r and all Borel sets E C A+.

Taking into account (1.5), (1.6), and (2.1), we see that it suffices to show that

(2.4) u(() _< u() for ( R+.
This inequality follows at once from the maximum principle applied to the function
u(() u() on the domain R+\_.

Therefore it remains only to prove Lemma 1.

ProofofLemma 1. By the Riesz decomposition theorem [Lan, Theorem 1.22’],

d/z(() + hi(z), z(2.5) u(z) log
[z (1

where f2 is a neighborhood of A in D and h is a function harmonic in
On the other hand, by definition,

fA ’1 dA(() f lg d(()’ z(2.6) u(z) log
[z (1 [z (1

Since B N f2 0, the function h2(z) fn log Iz (Idrn(() is harmonic in
Setting v =/z ZA, we infer from (2.5) and (2.6) that the potential

dr(()v(z) log
Iz (I

is equal to the harmonic function h2 h in f2, and hence [Lan, Th. 1.13] v 0.
Thus the lemma is proved.

3. Proof of Theorem 3

First we prove (1.12). Let I ei[bl, b2],/2 ei(+rr)[btl b], 13 (-ll)\h,
and G Ro\I3. By the strong Markov property of harmonic measure (e.g., see
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[Be ]) we have

(3.1) w(iy) w(iy, A, G) + f w(iy, d, G)w(, A, Ro)

and similarly

(3.2) w(-iy) w(-iy, A, G) 4- ft w(-iy, d, G)o9(, A, Re).

Because of the symmetries G -G and A -A,

(3.3) oo(iy, A, G) w(-iy, A, G).

Also, by the Markov property again, for every interval E C I3,

(3.4) E, G) l w(iy, dt, G+)w(t, E, G)
\A

and

(3.5) w(-iy, , G) w(-iy, , G_) + I w(-iy, dt, G_)w(t, , G).
\A

By symmetry, for every interval T C R\A,

(3.6) o(iy, T, G+) + w(iy, -T, G+) w(-iy, T, G_) + w(-iy, -T, G_).

From (3.4), (3.5), and (3.6) we obtain

(3.7) w(iy, , G) < w(-iy, , G).

Finally, (1.12) follows from (3.1), (3.2), (3.3), and (3.7).
The proof of (1.13) is similar to the proof of (1.12). To prove (1.14) we apply the

maximum principle to the function w(’) -4- w() w(-’) w(-). Then (1.14)
follows from (1.13).

4. Proof of Theorem 2

Let 0 < q < < zr/2. By (1.4), it suffices to show that

(4.1) E(R) > E(R).
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Let r rl r2 be the equilibrium measure of (R, A, S U I), and let u be
the corresponding equilibrium potential. As in the proof of Theorem 1, we have
r -Au/(2zr) in the sense of distributions. Because of properties (1.5)-(1.7) of
u, we have

(4.2) oo(z, A, Ro)
u(z)- V

for all z Ro and some constants V1 < 0 < V2.
Theorem 3 and (4.2) imply

(4.3) u() + u() _< u(-) + u(-), g0, >_ 0.

Using (4.3) and the method of proof of Theorem we obtain

(4.4) z(-E) < rl(E), E C A fq {z" z > 0}.

We define the signed measure " ’l ’2 on A U S U I as follows:

(4.5) ’(K) rl(K) for KcA,

(4.6) ’2(L) zff(L) for L C S,

(4.7) f(L) r2(ei-)L) for L C I.
A similar transport of the Riesz mass occurs in the proof of the Beurling-Nevanlinna
projection theorem for harmonic measure; see [Nev, ch. IV, 5].
We will prove that

(4.8) I (-r ’/’) >_ I (?).

Note that I() > 8(Ro) by the definition of 8(Ro). Hence (4.8) implies (4.1), and
therefore it remains only to prove (4.8).

By the definition of I (r) we have

l(r) fa fa log dr(z)dz(()
UIc,US UI,I, US IZ (I

fA fA log dz(z)dz(()
us us Iz 1

us us Iz 1

fA ft, dz(z)dr2((-2 lg IZ’ (I

=: V + V -:s(.
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Similarly, for I (f) we have

fA fA d(z) d(()l(f)
us uslgiz’(I

+ft+ f/, log d2(z)d2(()
s s Iz"l

2 log
Iz (i dl (z) d2(()

=: J + J2 2J3.
By (4.5) and (4.6) we have J1 J1 and J[ 2. Therefore, to prove (4.8), it

suffices to show that

(4.9)
We use (4.4) to write

(4.10) ] dZl (x) dz-t-log
[x (I

+ S+log dcr(x)dz((),
l.a2] Ix ’1

where cr is a positive measure on [al, a.].
Also, by (4.7) and a change of variables,

(4.11) J3 log
ei(4_)

nt- log
,a2] I-x ]Ix Ce

+fa f/+ log dcr(x)dr2((),
,.a] Ix (ei(’-)l

Now (4.9) follows from (4.10), (4.11), and the following lemma whose elementary
proof is omitted.

LEMMA 2. Let 0 < < x. For 0 [0, zr/2]. Define
1

gl(O) log
I-x teil + log

Ix teil’

g2(0) log
Ix teil

Thefunctions gl, g2 are both strictly decreasing.
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