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ON MEROMORPHIC SOLUTIONS OF
A LINEAR DIFFERENTIAL EQUATION

WITH DOUBLY PERIODIC COEFFICIENTS

SHUN SHIMOMURA

ABSTRACT. In this paper we treat a linear differential equation with doubly periodic coefficients. We
examine value distribution properties ofmeromorphic solutions. Some examples are presented to illustrate
our results.

1. Introduction

Consider an equation of the form

(En) W(n)nt-pn_l(Z)W(n-1)-I "nt-pl(Z)W’-t-pO(Z)tO 0 (’= d/dz, n a.. N),

where the coefficients po(z) (7 0), Pl (z) Pn-1 (z) are doubly periodic mero-
morphic functions with the common periods o9, o (Im(of/o) 0). Denote by
(0 < k < n 1) the set of all the poles of pk(z), and put

n-1

7 U c c.
k=O

Throughout this paper we suppose that every point a 6 79 is a regular singular point
of (En) with the properties:

(P1) All the characteristic exponents q(a, j) (j n) are integers.
(P2) There exist linearly independent solutions expressible in theform

q)a.j(Z) (Z a)q(a’J)ha.j(Z),

where ha.j(z) is analytic around z a and satisfies ha.j(a) 1.

Let w (z) be an arbitrary solution of (En) analytic around the point z z0
C 79. For every curve C(zo, z l) C C 79 starting from zo and ending at z l, the
solution (z) is continued analytically along C(zo, zl). If the endpoint z Zl is near
a point a 79, then, in the disk Iz Zll < la zll, the analytic continuation of (z)

nis expressible in the form -j=l cjq)a.j(z) for some cj C, which implies that P(z)
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is meromorphic at z a. Therefore, all the solutions of(En) are meromorphic in the
whole complex plane. (For basic facts concerning linear differential equations and
singular points of them; see [4].) In particular, every a 6 79 of (E2) with Pl(Z) 0
possesses the properties (P1) and (P2) if the coefficient po(z) is a doubly periodic
meromorphic function such that, around every pole z a 6 790 79,

(1.1) po(z) (z a)-2 bl(z a)l,
/=0

where the coefficients bt (l > 0) have the following properties:
(a) bo -q(a)(q(a) + 1), where q(a) is a positive integer.
(b) The set of bt (l 2q (a) + 1) satisfies

(1.2) D(a)

/Zl 0 0 b

bl //’2 "’. (0) b2

b2 bl "’. "’. b3

b2q(a)-I b2q(a)-2 bl /-/,2q(a) b2q(a)
b2q(a) b2q(a)-I b2 bl b2q(a)+l

=0,

/Z
2 (2q(a) + 1)/ (1 _< < 2q(a))

(see [6], [7]). This is regarded as a generalization of Lam6’s equation

(1.3) w"-(q(q+l)go(z)+B)w=O, q6N, B6C,

where go(z) is Weierstrass’ go-function (see [8]). (Examples of equation (En) other
than (1.3) are given in Section 4. All the solutions of them are meromorphic in C.) In
general, for linear differential equations with meromorphic coefficients, meromorphic
solutions are not studied so much (see [2], [7]).

The purpose of this paper is to clarify value distribution properties of meromor-
phic solutions of equation (En). Throughout this paper, we use basic facts in the
value distribution theory and the standard notation such as re(r, f), N(r, f), T(r, f),
Nl(r, f) N(r, f) N(r, f) (see [5], [6]); in addition, for functions g(r) and
h(r) (r > ro), we write g(r) h(r), if g(r) O(h(r)) and h(r) O(g(r))
simultaneously hold as r cxz.

Let 4(z) be an arbitrary meromorphic solution of (En). Our results are stated as
follows.

THEOREM 1.1. m(r, q) O(r), T(r, q) O(r2).

THEOREM 1.2. For every a C- {0}, m(r, 1/(- c)) O(logr), and
m(r, O(r).
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THEOREM 1.3. We have

(1.4) m(r, ) + m(r, 1/q) + N(r, 1/q’) + Nl(r, qb) 2T(r, ) + O(logr).

THEOREM 1.4. Ifthere exists a point ao 79 such that

(1.5) P0 lim (z ao)n po(z) # O,
z-->ao

then

(1.6) T(r, dp) r2,

(1.7) N (r, ) r2,

andfor every ot C,

(1.8) N(r, 1/(q- or)) r2.

Remark 1. Estimates (1.6) and (1.8) imply that the growth order and the exponent
of convergence of zeros are finite:

log T(r, ) log N(r, 1/q)
cr(q) lim sup 2, )(b) limsup 2.

r-*c log r r-*oo log r

These properties are quite different from those of equations with simply periodic
entire coefficients (cf. ], [3]).

Remark 2. Theorem 1.4 is applicable to (E2) whose coefficients satisfy pl (Z) =-- 0
and (1.1) with (a), (b), especially to the equations of Examples 4.1 through 4.3, and
also to that of Example 4.4.

Remark 3. If every a 6 79 satisfies limza(Z -a)n po(z) 0, then in some cases
there exists a solution bo such that T (r, b0) r, and in other cases every solution b
satisfies T (r, b) r2 (cf. Examples 4.5 and 4.6).

2. Preliminaries

We use the following notation in this section.
(1) For a matrix A (aij) Mn(C) (1 _< < n, <_ j < n), we write

IIAII maxl_<i_<n(.=l [aijl). Then for A, B e M,(C), IIABII _< IIAIIIIBII.
(2) For a set S, SI denotes the cardinal number of it.
Let j(z) (j n) be arbitrary linearly independent solutions of (En).

Consider the row vector function P(z)= (Pl gtn). By M1, M2 GL(n, C)we
denote Floquet matrices given by

(2.1) q(z + co) q(z)Ml, (z + w’) q(z)M2.
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Since every entry of (z) is meromorphic,

(2.2) M1 M2 M2M1 O.

LEMMA 2.1. re(r, j) O(r) (j n).

Proof By (2.1) and (2.2), for every pair of integers (/z, v) 6 Z,
q(z +/zw + vw’) (z)MM.

We putA {aw+rw’ 0 < g < 1,0 < r < 1},A(/z,v) {z+lzw+vw’
z 6 A }. Cover the circle 1-’r {z Izl r with the smallest number of these sets;
Ir C U(Iz,v)l(r) A(/L, V) with I (r) {(/z, v) 6 Z2 A(/z, v) fq I’r 0}. Then

(i) (lz, v) . l(r) implies Itzl / Ivl-- O(r);
(ii) [l(r)[ O(r).

Since each parallelogram A (/z, v) is congruent with A,
(iii) for every (lz, v) . l(r), [the length ofthe arc I’r f’) A(lz, v)] _< Iol / Io’1 /

O(1/r)---- O(1).
In A, the solutions j (z) (j n) are written in the form

x(j)

j (z) Oj (z) H(z aj.)-l,
cr=l

where aj.. (1 < a < to(j)) are the poles of @j in A, each counted according to
its multiplicity, and rlj(z) (j 1 n) are functions analytic and bounded in
A. Suppose that Fr fq A(/z, v) 13. Every point on Fr (q A(/z, v) is written as
s rei z + lZW + vco’ (Z A). Then, using (2.3), we have

(2.4) log Iq/j(rei)[ < log Ij(z)l IIMMII <_ p(z) + ’0(lzl + I1),
j=l

+ tc(j +
p(z) log Ir/j(z)[ + log

j=l )Iz aj.
+logn,

+
where logx max{logx, 0}, ?’o max{log(llMkll + IIM-III) k 1,2}. Putting
(R)(r, lz, v) {0 rei I’r fq A(/z,v), 0 < 0 < 2yr}, l-’r(/z,v,A) {Z
S --/Z.O Va)’ S 1-’r C’I A(N, v)} C A, and using (i), (iii), (2.4), we have

r log laPj(rei)l dO <
(r,u,v) r(#,v,A)

p(z) Idzl+o(lll+lvl)L Idsl
rCIA(/Z,v)

<__ K(l+rfrCIA(#,v)
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where K is a positive constant independent of r and (/z, v). This inequality and (ii)
yield

fo + K ([l(r)l/f .dsl)---O(r).m(r, pj)=- log lapj(rei) dO=- r
(Iz.v)l (r) (r.lz,v)

Thus the lemma is verified.

LEMMA 2.2. Let r (z) be an arbitrary doubly periodic meromorphic function
with periods w, o’. Then, m(r, r) O(1), N(r, r) Cwr + O(r), where Cw is
a positive constant.

Proof For every (/z, v) 6 Z2, r(z +/zw + wo’) r(z). From this relation
instead of (2.3), we derive m(r, r) O(1), by the same argument as in the proof of
Lemma2.1. Recall A(/z, v) ofthe proofofLemma2.1, and write Dr {z Izl < r},
We have Dr_ C J(z.v)K_(r) /k(l, V) C Dr C J(lz.v)eK+(r) A(lz’ v) C Dr+ with
K_(r) {(/z, v)I A(/z, v) C Dr}, K+(r)= {(/z, v)I A(/x, v)fq Dr # 0}, r+/-

r 4- (Io1 / Io’1). Hence IK+/-(r)l (zr/so)r2 / O(r), where so denotes the area of
A. This implies N(r, r) Crr2 + O(r), which completes the proof. [21

LEMMA 2.3 [6, Corollary 2.3.4]. Let f be an arbitrary meromorphic function
satisfying r(f) < cx. Then, for each positive integer j, we have m(r, fJ)/f)
O(log r).

3. Proofs of theorems

3.1. ProofofTheorem 1.1. By Lemma 2.1, for an arbitrary solution q(z) of(En),

(3.1) m(r, qb) O(r).

Each pole of 4(z) is a pole of some coefficient Pk(Z) (0 < k < n 1). By the double
periodicity of pk(z), Q0 max{Iq(a, j)l a: regular singularpoint, j n}
(cf. (P2)) is bounded. By Lemma 2.2, we have

n-1

(3.2) N(r, 4) < Qo N(r, pk) O(rZ).
k=O

Thus Theorem 1.1 is verified.

3.2. ProofofTheorem 1.2. Forevery ot 6 C-{0}, the function X(z) q(z)-ot
satisfies -ot/) + (1/po)(plx’/) +... + pn-Xn-)/X + xn/x). By Lem-
mas 2.2, 2.3 and Theorem 1.1, we have

m(r, 1/(b c)) 0 log r + m(r, Pk) q- m(r, 1/po) O(logr).
k=l
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In addition to b(z), take other solutions 42(z) Cbn(Z) of (En) in such a way that
q, b2 qn are linearly independent. Note that the Wronskian determinant (z)
W(4, q2 bn) is a meromorphic function and that v 1/(z) satisfies v’-
pn-(z)v 0. By Lemma 2.1, m(r, 1/) O(r). From Theorem 1.1, Lemma 2.3

(z)

and the relation

’4"2 "rn

it follows that m(r, O(r). Thus the proof is complete.

3.3. ProofofTheorem 1.3. Observethatb/q =-(1/po)(pl+p2qb"/qb’+...+
Pn_lqb(n-1)/qb q- qb(n)/qb’). By Lemmas 2.2, 2.3 and Theorem 1.1, we have

(3.3) m(r, c/qb’) < m(r, l/p0) + (m(r, Pk-l) + m(r, q(k)/q’)) O(logr).
k=2

Since N(r, 1/4/) + N (r, q)= N(r, c’)+N (r, dp)+m(r, 4’) m(r, 1/dp’)+ O(1)
2T(r, c) 2m(r, ) + m(r, d?’) m(r, 1/qb’) + O(1), the left-hand side of (1.4) is
written in the form

(3.4) 2T(r, cb) + tr(r) + O(1)

with tr(r) -m(r, qb) + m(r, 1/q) + m(r, dp’) m(r, 1/4’). Then, or(r)<
2m(r, ’/q) O(logr), and by (3.3), -or(r) < 2m(r, b/q) O(logr). Hence
or(r) O(log r). Substitution of this estimate into (3.4) yields (1.4).

3.4. Proofof Theorem 1.4. By (P2), around z ao, the solution 4 (z) is written
in the form

)(Z) Cqgao.j(z) (Z- ao)q*ho(z), q. Z, c C,
j=l

where ho(z) is analytic at z ao and satisfies ho(ao) O. Note that the exponent q.
is a root of the equation

nk= PkZ(L 1)... (k k 4- 1) -t- Po O,
where

Pn 1, Pk lim (z ao)n-k pk(Z) (0 <_ k <_ n 1).
z--+ao

By (1.5), we have q. 6 Z {0}. This implies that, at z ao, the solution 4(z) has
either a zero or a pole. By this fact and the double periodicity of po(z), we derive

(3.5) 2T(r, 4)) > N(r, qb) + N(r, 1/q) + O(1) > (1/io)N(r, Po) + O(r),
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where io is the sum of the multiplicities of all the poles of po(z) in a period paral-
lelogram. From (3.5), Lemma 2.2 and Theorem 1.1, it follows that T(r, ok) r2.
Combining this estimate with Theorems 1.1, 1.2, we immediately obtain (1.7) and
(1.8). Thus the proof is complete.

4. Examples

Let (z) be Weierstrass’ G-function with periods 09, 09’, Im(09’/09) :/:: 0, and
let ((z) be Weierstrass’ (-function such that -(’(z) (z) (see [8]). We write
o91 09/2, 093 09’/2, 092 091 + 093, e’) 69(09")), r/’) (09")) (v 1,2, 3).
Then, around z 0,

(4.1) (z) z-2 + alz2t,
/=1

(4.2) (Z "+" 09v) 0/l Z e’),
/=0

(4.3) ((z + 09u) ((Z) --Z
-1 -" rlv (V)z21+l

l=O
fl

") e")

In what follows we call a regular singular point satisfying (P1), (P2) a non-branching
regular singularity. In Examples 4.1, 4.2, 4.3 below, we consider equation (E2) with

Pl (z) --= 0, po(z) -p(z).

Example 4.1. For arbitrary qo, q’) N (v 1, 2, 3), and for arbitrary B C,
put

+ 1) (z) + q’)(q’) + 1)Ko (z + 09,)) + B.p(z) qo(qo
v=l

By (4.1) and (4.2), the poles z 0, -09") (v 1, 2, 3) are non-branching regular sin-
gularities with the characteristic exponents {-qo, qo + }, {-q’), q’) + respectively.

Example 4.2. For qo,/z e N such that qo </z, and for arbitrary B C, put

p(z) qo(qo + 1)(z) + Ka(z/2) + B, K (/z(/z + 1)- qo(qo + 1)),

which has the periods 209 4091, 209’ 4093. By (4.1) and (4.2), the pole z 0 is a
non-branching regular singularity with the characteristic exponents -/z, /z + 1, and
the poles z 09, 09’, 09 + 09t are ones with the characteristic exponents -qo, qo + 1.
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Example 4.3. For arbitrary q0 6 N, and for arbitrary B C, put

p(z) qo(qo + 1)(K (z) -q- K(z -+- 0)1)) -+- ?’(((z -q- 0)1) ((z)) q- B.

If ?, is an arbitrary root of a certain algebraic equation of degree 2q0 depending on
B, at, O[1), fll) (0 __< --< q0 1), then Z 0 and z -0)1 are non-branching
regular singularities. For instance, consider the case where qo 1. It is easy to see
that p(z) has the periods 0), 0)’. By (4.1), (4.2) and (4.3), near z 0 we have

p(z) 2z-2 ?’z
-1 + (2el + ?’r]l + B) ?’elz -t- O(Z2),

and near z -0)1,

p(z) 2(z -" O)l)-2 - ?’(Z "-" 0)1) -1 +(2el + ?’/l "- B)+ ?’el(z +0)1) + O((z -" 0)1)2).

Then D(0) -D(-0)I) ?’(?’2 4017, 4(el + B)) (cf. (1.2)). Hence, if ?’
satisfies ?’2 4r]l ?’ 4(el q- B) 0, then z 0 and z -0)1 are non-branching
regular singularities.

Example 4.4. Let p(z) be one of the doubly periodic functions given above, and
let wl, w2 be linearly independent solutions of (E2) with pl (z) -= 0, po(z) -p(z).
Then every pole of p(z) is a non-branching regular singularity of (E3) with p2(z)
0, Pl (z) -4p(z), po(z) -2p’(z), which has linearly independent meromorphic
solutions w, wlw2, w.

It is quite easy to construct equation (E2) such that there exists no point a e 79
satisfying (1.5).

Example 4.5.
(E.) with

For an arbitrary nontrivial doubly periodic function zr (z), equation

Po(Z) (:r(z) zr’(z))’/(zr(z) zr’(z)), pl(z) -1 po(z)

has linearly independent solutions tPo ez, tPl rr(z). Clearly every point a 79
is a non-branching regular singularity and is a simple pole of po(z).

Example 4.6. The functions (z) and (z + 0)1 are linearly independent solu-
tions of equation (E2) with

p(z) -w((z), (z + o))’/w((z), (z + o)),

"(z) ’(z) "(z + o)
po(z) pl(z) pl (z)

(z) (z) (z + o)

W(f, g) fg’- f’g,

’O(Z "+"

Now take the periods 0), 0)’ of go (z) so that (0)1) 0, ’9 (0)1/2) 7 0, K0 (0)1/2 +
0)3) - 0. Then (z) and (z + 0)1) do not simultaneously vanish. Hence every
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pole or every zero of these solutions belongs to 7 and is at most a simple pole of
po(z). Suppose that there exists a point a e 7 other than a pole or a zero of these
solutions. Then, W( (a), (a + o9)) 0, so that there exists a solution of the form
(z)-c(z +o9) O((z-a)2) (c : 0) around z a. Since (z) and (z
satisfy w" 6w g:z/2, we have (z) co (z + o), which is a contradiction.
Therefore every point a e 79 is a non-branching regular singularity and is at most a
simple pole of po(z).
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