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BETTI NUMBERS OF ALMOST COMPLETE
INTERSECTIONS

DANIEL DUGGER

ABSTRACT. We investigate the minimal free resolutions of cyclic modules R/I, where I is an almost
complete intersection in the local ring R. Our results concern various binomial lower bounds for the Betti
numbers of the resolution. For example, we show that the sum of the Betti numbers is at least 2a where d
is the dimension of R.

Introduction

Throughout this paper (R, m, k) will denote a local ring with maximal ideal m and
residue field k. If M is a finitely-generated module over R, then one can consider the
minimal free resolution of M,

The ranks of the modules appearing in this resolution are called the Betti numbers
of M; the th Betti number is bi. It is easy to see that one has the formula bi
dimk Tori (M, k).

The question to be considered in this paper, attributed to Horrocks, is the following
(see [Ha]):
When R is a regular local ring of dimension n and M is a module of finite length,

is it necessarily the case that be(M) >_ (7) for all values of i?
If we let ri(M) denote the rank of the th map in a minimal free resolution of

n-1M, a stronger question would ask whether ri(M) > (i-1)" This is stronger because
in any free resolution one must have ri + ri+l bi, thanks to the Buchsbaum-
Eisenbud acyclicity criterion [BE4]. On the other hand, a weaker question asks
whether n 2ni=o bi(M) > These are all known (and relatively easy) when n < 4,
when {0, 1, n 1, n}, as well as in several special cases (cf. [BE1], [Ch], [EG1],
[EG2], [Sa], for instance).
Now we will restrict our attention in particular to the case where M is a cyclic

module R/I and I is m-primary. Note that this implies/z(1) > htI htm
dim R n, where/z(l) is the minimal number of generators of I. If/z(I) is actually
equal to n then I is generated by a regular sequence (i.e., I is a complete intersection),
and the conjectured lower bounds are actually obtained because R/I is resolved by
the Koszul complex.

Received December 21, 1998" received in final form December 15, 1999.
1991 Mathematics Subject Classification. Primary 13D02; Secondary 13D25.

(C) 2000 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

531



532 DANIEL DUGGER

In this paper we begin an investigation of the case where/z(1) n + 1, which is
when I is a so-called almost complete intersection. Our attention will not be limited
only to regular rings, however. We show in the first section that the conjectured
lower bounds hold for at least half of the betti numbers and at least half of the ranks,
and we establish the conjectured bound on the sum of the betti numbers. This is all
done by exploiting a kind of ’almost duality’ which is enjoyed by almost complete
intersections.

In the second section we introduce some new combinatorial arguments which
rule out the existence of certain resolutions. These techniques are very elementary,
depending only on general position arguments and counting. We do have to make
use of a little linkage theory, but this is not at all difficult. In the last section we list
some open problems.

This work was done several years ago, while the author was at the University of
Michigan. I would like to thank Mel Hochster for introducing me to the problem, as
well as for much guidance and encouragement during the actual research.

Preliminaries

If I is a proper ideal, depth R denotes the length of a maximal regular sequence
contained in I. The ideal is said to be perfect ifpd R/I depthl R, in which case the
type of I is defined to be value ofthe last (nonzero) betti number of R/I. Perfect ideals
of type 1 are called Gorenstein. Complete intersections are ideals for which/z(I)
depth1 R (which are necessarily perfect, being resolved by the Koszul complex) and
almost complete intersections are perfect ideals for which/x(l) depth R + 1. Be
advised that some authors use slightly different definitions. It should be remembered
that almost complete intersections are never Gorenstein--this is proven in both [BE2]
and [Ku] for the case in which the ring is regular, but that assumption can easily be
eliminated.

Also note that if f: Rn --+ Rm then It (f) denotes the ideal generated by the size
minors of any matrix for f, and that the rank of f is the largest for which It(f) O.
If x xn R then Ko(x Xn R) denotes the Koszul complex on the x’s.

Section 1

Suppose that... ---> F. - F1 Y- F0 is a free resolution of a finitely generated
module M (but not necessarily a minimal resolution!) We want to explain how to
recover the betti numbers ofM from the information in this complex. It is well known,
of course, that Fo decomposes into Go Qo, where Go is a minimal resolution
of M and Qo is a split-exact resolution of zero. Thus, Qo remains exact when
we tensor with the residue field k. So if qi denotes the ith map in Qo, we have
rank ai rank(q/(R) idk) + rank(qi+l (R) idk).
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To simplify things, let us adopt the notation rankk h for rank(h (R) idk), and refer to
it as the k-rank of the map h. (Notice that this is also equal to the largest value of
for which It(h) R). We have shown, then, that

rank Fi rank Gi -+- rank Qi bi(M) -Jr- rankk qi -{- rankk qi+l.

However, it follows from the nature of our decomposition of Fo, and in particular
from the fact that G is a minimal resolution, that rankk qi rankk f/; thus we may
write

bi(M) rank Fi (rankk fi + rankk fi+l)"

This is the relation we were after, and it will be an important tool in the proof of our
main result:

(1.1) THEOREM. Let I be an almost complete intersection ofdepth d. Then there
exist nonnegative integers I’j, 0 < j < d + 1, such that

(d+l)(a) max{O, bj-, j ,} < Fj < bj,
(b) bj + bd-j+l Fj + l"j+l + (d.l),
(c) rj + rd-j+2 1-’j + (jdl),_
(d) Fj rd-j+2.

Proof. Choose a minimal set ofgenerators xl Xd_l_ for I suchthatxl Xd
is a regular sequence, and write K instead of K(Xl Xd+l; R). It follows from
the depth-sensitivity of the Koszul complex that K has homology only in degrees 0
and 1. We further note that

(Xl Xd) I
H1 (Xl Xd+l; R) H1 (Xd+l; g/(xl Xd)

(Xl,... ,Xd)-- Hom(R/I, R/(Xl Xd))

Extd(R/I, R).

(The first and last isomorphisms arise from homological shifting.) Now if F -+

R/I -+ 0 is the minimal resolution of R/I, then it is a consequence of the perfection
of I that F.* (the dual of F) is the minimal resolution for Extd (R/I, R) - H1 (x; R).

An augmentation Fff - H1 (x; R) induces in the natural way a map F, - Zl,

where Z1 is the module of one-cycles in the Koszul complex, and it follows that
lifts to a comparison map of complexes:

0-- Kd+l --+ Kd-- Kd-1 ’’.-- K2 --+ KI -- Ko--+ R/I

T T >-, T
0--+ Fo --+ F1 --’ F2 --+’"--+ Fd-l--+ Fd.
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If Co denotes the mapping cone, then the long exact sequence for a mapping cone
shows readily that C is a resolution of R/I (almost all the terms in the sequence
are zero). Moreover, since the boundary maps for Ko and F all have k-rank zero
(i.e., the matrices for the maps have entries in the maximal ideal) it’s easy to see that
the k-rank of the th map in the mapping cone is equal to the k-rank of aPa+a-i. The
remark preceding the proposition now shows that bi rank Ci (rankk a+a-i +
rankk Pa+ 1-i). So if we set ri rank/7,. rankk lpi and use the fact that rank Ci
rank Ki -+- rank Fd+a-i, we obtain

bi rank Ki --1- rank Fa+.-i + (Fd+2-i rank Fd+2_i) t_ (Fd+l_ rank Fd+l_i)

(d-)_ bd+-i + r’d+-i + Fd+-i.

And now by interchanging and d + this can be rewritten in the slightly simpler
form

bi + bd+l-i + ri --Substituting this into the identity ri bi bi+l --"""--
Fi + (i d-1); an immediate consequence is that F

(1.2) Remark. An alternative (dual) approach to proving the result is as follows:
Let Z1 and B1 be the 1-cycles and 1-boundaries in the Koszul complex on xl Xd+l.
Then 0 --+ Kn+l --+ K2 is the minimal resolution of B1, and 0 --+ Fn --+

--+ F2 is the minimal resolution of Z. The inclusion map B1 ’- Z1 lifts to a
comparison map ofcomplexes, the mapping cone ofwhich then gives a free-resolution
of H (x__; R). But F.* is the minimal resolution of H1 (x; R), so it splits off from this
mapping cone.

Said differently, if ?,: Ko F is a map of complexes such that ?’0 ?’1 idR,
then the mapping cone of the following diagram is a resolution for H1 (x; R):

Thus, the mapping cone for the dual of this diagram is a resolution for R/I, and the
1-’i’s appearing in the proposition are simply the k-nullities of the yi*’s. This is often
the best way to ’remember’ the result, and it connects strongly to ideas from linkage
theory which will be discussed in the next section. Notice that part (c) now states that
the k-nullities of Yi* and Yd*--i+2 are equal, for all iIit’s natural to wonder whether
there’s a more direct way to see this.
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The following easy corollary gives the promised lower bounds for the betti
numbers"

(1.3) COROLLARY.
ri(R/I).

Let I and d be as above, and write bi bi(R/!), ri

d(a) lfO < k < d then either bk > (dk) or bd+l-k >_ (d+-k)"
d-1 d-I(b) lf <_ k <_ d then either rk >_ (k-l)or rd+2-k >_ (d-t-l-k)"

(c) When d 2m + 1, bm+l >_ (rod+l); when d 2m, rm+l > (dl).
(d) Y=o bi >_ 2d.

Proof. Using the positivity of the coefficients l"i, parts (b) and (c) of (1.1) yield
d+limmediately that bk + bd-k+ > ( k ) and rk + rd-+2 > (gd_l)whenever 0 _< k _<

d + 1. This gives (a) and (b), from which (c) follows immediately. If the first
inequality is summed over all k, one obtains

d+l d+l

2E bk > E (dl) 2d+l.
k=0 k=0

After remembering that bd+ 0, we obtain (d).

Section 2

If I is an almost complete intersection of depth 5, then the Horrocks bounds can
now be shown to hold for all of the betti numbers of R/I except for b2 (the bound for
b3 is obtained from (1.3), and the others are trivial). In this section that bound will be
established as well in the case where type(l) _< 5. We do this by some elementary
counting arguments, making use of general position and linkage theory.

The following lemma recalls some of the basic facts from the theory of linkage
(to be found in [HU], for instance). We go ahead and include the proofs because our
situation is slightly different from that usually found in the literature, and because the
same ideas will shortly be used elsewhere. Note that when I and J are ideals of R
thenl" Jdenotes{r R’rJC_l}.

(2.1) LEMMA. Let I be aperfect ideal ofdepth d and let X1 Xd be a (maximal)
regular sequence contained in I such that (Xl Xd) I. Set J (x) I. Then:

(a) J is perfect, ofdepth d.
(b) Extd(R/J, R) - I/(y.).
(c) (x_) J I.
(d) Type(J) </x(I). Moreover, if the x’s are part ofa minimal set ofgenerators

for I, then type(J) =/z(l) d (= the so-called deviation of I).
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Proof. (a) Let 0 --> Fa --> F0 ---> R/I be the minimal resolution of R/I,
and write Ko for Ko(Xl xa; R) (which is the minimal resolution for R/(x)). The
projection R/(x) --> R/I lifts to a map of complexes zr: K --> F. It is well known
that a resolution for R/J can be obtained from the following diagram by dualizing
and then taking the mapping cone (see [PS], for instance):

T
0 Ka Kd-1 K2 K1.

It is then immediate that pd R/J < d. However it is always true that pd R/J >

depthj R, and the fact that X xa is a regular sequence contained in J shows that
depthj R d. Thus pd R/J depth R d.

(b) Since taking the mapping cone after dualizing gives a resolution of R/J which
has minimal length (namely d), taking the mapping cone before dualizing must give
a resolution of Exta(R/J, R) (this uses the fact that J is perfect). Yet the top row of
the above diagram is a resolution of I and the bottow row is a resolution of (&), so
that the mapping cone is a resolution of I/().

(c) Let Q () J. By (a) we know that Q is perfect of depth d, and from (b) it
follows that

Exta(R/Q, R)
J () I

Z Hom(R/l, R/()) Exta(R/l, R).
() ()

But since both Q and I are perfect we have R/Q Exta(Exta(R/Q, R), R) and
R/I Exta(Exta(R/l, R), R), so R/Q R/I; hence Q I.

(d) In analogy to the argument given in (1.1) we see that

type(J) bd(R/J) rank F1 rankk 7t" /z(l) rankk 7gl <: /Z(I).

If the x’s actually form part of a minimal set of generators for 1, then this means that
Zrl is split; that is, ranks, 7rl d, and so type(J) =/z(l) d. El

(2.2) Remarks. (i) When the x’s form part of a minimal set of generators for I,
parts (a) and (d) of the lemma show that if I is an almost complete intersection then
(x_) I is Gorenstein. Conversely, it’s not hard to show using the same ideas that if I
is Gorenstein then (x__) I is an almost complete intersection.

(ii) Two perfect ideals I and J are said to be linked if there is a maximal regular
sequence x Xd in I N J such that J (x) :/--part (c) of the lemma guarantees
the symmetry of this condition. The following proposition makes use of the fact that
the property of being ’linked to a complete intersection’ is particularly nice. While
the result is possibly known to the experts, we do not know of a proof appearing in
the literature and so one is included here.
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(2.3) PROPOSITION. If I is a perfect ideal ofdepth d which is linked to a complete
intersection, then bi(R/I) >_ (di) + (dis).

Proof. The assumption on I is that it contains a regular seqence X1 Xd such
that (x Xd) I is a complete intersectionmthat is, it is generated by some regular
sequence yl Yd. We’ll write Ko and/C for Ko(y; R) and Ko(x; R), respectively.
We can lift the identity on R to a map p: K1 /C1, and then this extends in a natural
way to a comparison map of complexes as follows:

(we are now thinking of the Koszul complex in terms of the exterior algebra model).
The lemma shows that, after dualizing, the mapping cone of this diagram gives a
resolution of R/((y.) (y)), which is precisely R/I by the symmetry of linkage.
Arguing again as in (1.1), we discover that

b (R/I) rank/Cd_i+ - rank Kd_i rankk

But if we set p rankk then has a matrix of the form ( ) where Ip denotes
the p p identity matrix and M is a matrix with entries in the maximal ideal of R. It
is then easy to see that, for any choice of t, rankk/’ (tP). Using this to simplify
the above equation, we find that

(d+l)_ p+lbi(R/I) (d_,a.+l)+ (da_i) (d-+) (dr---i) kd-/+l)"

In particular note that d + lz(1) b, (R/l) d + (P-’), which implies that

(p-l) 0. Hence d > p + 1, and it then follows that

bi(R/I) > (d/+l)_ d-1 d d-1 d-1(d-i+1) (td") -+- (’-1) ["]--(d-i+l) (td’) "t-(’-1)"

(2.4) Discussion. We now return our attention to the betti numbers of R/I, where
I is an almost complete intersection of depth d. We may restrict to the case where I
is not linked to a complete intersection, since otherwise the desired lower bounds are
provided by (2.3). Perhaps the first question to settle is whether this case even occurs!
From (2.1 d) we see that if I were linked to a complete intersection then we must have
type(l) < d, and so it will suffice to find almost complete intersections with type
larger than d. But note that if we had a Gorenstein ideal J with/z(J) d + and we
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chose a regular sequence xl xa which is part of a minimal set ofgenerators for J,
then by Remark (2.2i) the ideal (x_.) I would be an almost complete intersection of
type t. So we have reduced the problem to that of finding Gorenstein ideals requiring
more that 2d generators. However, in [BEll, Gorenstein ideals requiring arbitrarily
large numbers of generators are constructed in rings ofdimension 3, and of course we
can get examples in larger dimension rings simply by deforming (that is, by adding
indeterminates).

Having come to the conclusion that this case really does need to be considered,
let us proceed. The first step is to choose a minimal set of generators fl fa+l
for I which are in general positionui.e., such that any d of them form a regular
sequence (Lemma 8.2 of [BE3] gives a proof that this is always possible). It follows
as in (1.1) that Hl(fl fd+l; R) Extd(R/l, R), and the minimal number of
generators for the latter module is precisely the type of/--call this number t. We
may then pick relations vi (Uil Ui.d-t-1), <_ <_ t, so that the homology
classes represented by vl vt form a minimal set of generators for H(f; R).
It follows that the vi, together with the Koszul relations on the f’s, generate all
of the relations on the f’s, and it’s not hard to see that the t)i’s must be minimal
among these relations. Thus, there exist Koszul relations pl Pro such that the
vi’s together with the/gj’s form a minimal basis for the entire module of relations
on the f’s. (Of course this implies that b(R/I) + w). Said differently, if
we let

Ull Ult )
\Ud+l.1 Ud+l,tl

then there is a (d + 1) x (b2 t) matrix V, all of whose columns are Koszul relations
on the f’s, such that R/I has a minimal resolution beginning as follows:

.’-+ Rb Rd+l R -- R/I - 0
(UIV) (fl fd+l)

(matrices act on the left).
Now it is apparent that the elements in the jth row of (U V) generate the ideal

(fl j fd+) I, which we will denote by lj (note that 3 means 3 is

omitted). Since the f’s were chosen to be in general position, fl fd+l
is a regular sequence (for any choice of j). Thus, by the first remark of (2.2),
each Ij is Gorenstein, of depth d. However, it was assumed from the start that I is
not linked to a complete intersection, and therefore no lj is generated by a regular
sequence. Moreover, we will never have tx(lj) d + --otherwise lj would
be an almost complete intersection, and therefore could not be Gorenstein. Hence
lz(Ij) > d + 2 for all j, and so each row of the matrix (U V) has at least d + 2
nonzero entries.
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If we now suppose further that < d + 2, then each row of V must have at
least d -t- 2 nonzero entries. Since V has d + rows, there must be at least
(d + 1)(d + 2- t) nonzero entries in the matrix. And yet each column of V
is a Koszul relation on the f’s, which will have precisely 2 nonzero entries, and
so it follows that V must have at least (d + 1)(d + 2 t) columns. We now
recall that the number of columns of V is b2 t, and thus obtain the inequal-
ity

b2>_t+
(d + 1)(d + 2 t)

We have therefore proven:

7(d2 + 3d- (d- 1)t + 2).
z

(2.5) PROPOSITION. Let I be an almost complete intersection of depth d, let
be the type of I, and assume that I is not linked to a complete intersection. Then

if t < d + 2, b2 > [d2 + 3d (d 1)t] + 1. In particular, if type(l) < 4 and’

depth/R >_ 2 then b2 R/I > (2) + 3.

(2.6) Remark. The above proposition can be used to answer a question raised by
Avramov and Buchweitz [AB]. In a footnote at the end of their paper, they point
out that the smallest possible sequence of Betti numbers they cannot rule out has
the form (b0, bl bs) (1,6, 9, 10, 8, 2) over a dimension 5 ring. Note that
a module with such a resolution must be of the form R/l, where I is an almost
complete intersection of type 2. Clearly I cannot be linked to a complete intersec-
tion, or else the betti numbers would have to be much higher by (2.3). The above
proposition now tells us that b2 must be at least 13, and so no such resolution can
exist.

(2.7) Discussion. Now suppose that I is an almost complete intersection of depth
5rowe are only lacking the lower bound for b2, and the above proposition gives it
to us when type(l) < 5. Moreover, the line of reasoning given in (2.4) shows that
bz >_ type(l) always, and so we obtain the bound on b2 when type(I) >_ 10. The
Buchsbaum-Eisenbud acyclicity criterion tells us that a resolution of R/I must have
the following form (the numbers below the maps indicate their ranks):

0 R Rt+a Ra+b R5+b P2 R6 P
R "+ R/I.

a b 5

The Syzygy Theorem, in the cases where it is known, immediately gives b > 3;
however this can also be obtained in general using other methods.

Note additionally that (1.3) says a + b > 10, and that (2.5) gives b > 4 in
the case 6. Based on this, the ’simplest’ possible counterexample to Hor-
rocks’ question which we cannot ruleout at the moment would have a resolution of
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the form

0--+ g6 --+ Ra+6 Ra+4 R9 --+ R6 --+ R where a > 6.

Section 3

We now indicate some open problems. Unless otherwise stated, R is simply an
arbitrary local ring; however, the main case of interest is always when R is regular.

(1) There seem to be no known examples of almost complete intersections for
which the strong bounds given in (2.3) do not hold.

(2) If I is an ideal which is linked to a complete intersection, then it’s easy to
see that type(R/l) < depth/R. It would be useful to have a collection of
counterexamples to the converse, if they exist (especially when I is an almost
complete intersection).

(3) Questions abound even for almost complete intersections of depth 4. The
Buchsbaum-Eisenbud acyclicity criterion, together with (1.1), shows that a
resolution must have the form

0 Ra Ra+b Rb+4 --+ R5 --+ R

where a > 2, b > 3, and a 4 < b < a + 6. It seems very likely, however,
that there should be much stronger relations between a and b. Although a can
probably take on any value in the specified range, it’s doubtful whether the
pair (a, b) can take on all of these values. What additional restrictions can be
put on a and b?
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