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1. Introduction
Suppose the regular space X is the union of a collection of metrizable

subsets. A number of conditions for X to be metrizable under these cir-
cumstances are known, but in all of them the elements of 9 are either open
[8], [10], or closed [7], [10], or separable with X compact [9]. In this paper
we consider the case where 9 is countable, and where each M 9r is a dense
subset of-an open set; such sets M will be called locally dense.
Now let the regular space X be the union of a countable collection i) of

metrizable, locally dense subsets Mn. As Example 6.5 shows, these assump-
tions alone do not imply that X is metrizable, even if has only two ele-
ments. Further conditions are needed to insure metrizability, and they fall
into two classes: On the one hand, our assumptions imply that X has a
point-countable base, and this has two immediate consequences. First,
if X is separable, it has a countable base and is therefore metrizable; second,
if X is compact, it is metrizable by a theorem of A. Mishchenko [6]. On
the other hand, it will be shown that X is metrizable if it is normal and there
are generalized F (in X) sets An c Mn which cover X. Some of the principal
consequences of these facts are summarized in the following theorem.

THEOREM 1.1. If the normal space X is the union of a countable collection
9 of locally dense, metrizable subsets Mn, then X is metrizable if it satisfies
any of the following conditions:

(a) X is separable (in particular, each Mn is separable).
(b) X is locally compact.
c X is a-compact.
d Every open set in X is an F.
e There exist F,-sets A,, c M,, which cover X.

Received January 20, 1963.
Supported by an N. S. F. contract.
In our terminology, regular, completely regular, and normal spaces are assumed

to be T1.
The justification for the terminology is that M is locally dense in X if and only if

each x M has a neighborhood U in X such that M fl U is dense in U. (Another char-
acterization- M M.) Note that all open (but not all closed) sets are locally dense.

A space is separable if it has a countable, dense subset.
A is a generalized F in X if, whenever U is an open set in X containing A, then

there exists an F-set F in X such that A F U.
For (a)-(c), it suffices if X is regular. For (d)-(h), Example 6.6 shows that nor-

mality is needed.
A space is a-compact if it is the union of countably many compact subsets.
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(f)
(g)
(h)

is finite, and there exist G-sets A, Mn which cover X.
is finite, and there exist completely metrizable A, M, which cover X.
has onlytwo elements, and X is an absolute G .s

It is not known whether "z-compact" can be weakened to "LindelSf" in
(c), or whether the first requirement is really needed in (h).
As a special case of Theorem 1.1(e), we .obtain the following corollary,

which the second author needs in the proof of [5; Proposition 11.1].

COnOLLAnY 1.2. If the normal space X is the union of two metrizable subsets,
of which one is dense and the other an open F then X is metrizable.

The proofs of Theorem 1.1(g)-(h) use the following result, which was
known (see, for instance, [3; Problem K, p. 207]) if A M.

PROPOSITION 1.3. Let X be a Hausdorff space, and M a dense, metrizable
subset of X. Then any completely metrizable subset A of M is a G in X.

Section 2 deals with point-countable bases, and offers an alternative proof
of Mishchenko’s theorem. Section 3 proves Proposition 1.3. Section 4 out-
lines the proof of Theorem 1.1 and related results, and Section 5 deals with
analogous results on paracompactness. Section 6 is devoted to assorted
examples, some of which are known.
We are grateful to the referee for numerous helpful comments.

2. Point-countable bases
In [6], A. Mishchenko proved the following result. (The proof given here,

which is based on ideas of M. E. Rudin, is different from Mishchenko’s,
and shows, incidentally, that the result remains true for countably compact
spaces.

PROPOSITION 2.1 (Mishchenko).
Tl-space X is countable.

A point-countable base 5 of a compact

Proof. It suffices to show that X is separable. By induction, define a
sequence of countable subsets C. of X, with C1 empty and C+ C, with
the following property" If 6t consists of those elements of 6 which intersect
C, then C.+ contains a point of X [J ff for every finite ff c 6n such that
X [J ff # 0. (Since C is countable, 6 must be countable, and hence has
only countably many finite subcollections.) Let C [J= C It suffices to
show that X .
Suppose X . Then there exists an x0 X . Let t be the collection

of elements of 6t which intersect and miss x0. Then t covers because
X is T, and t is countable because C is countable and dense in C. Since

A completely regular X is an absolute G (= topologically complete in (ech’s termi-
nology [2]) if it is a G in every completely regular space containing it as a dense subset.
If X is metrizable, (ech [2] showed that this is equivalent to being completely metriz-
able. See also Proposition 1.3.
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C is countably compact, t has a finite subcollection ff which covers C. Now
ff c 6. for n large enough. But X (J ff contains x0, and thus is not empty,
so that Cn+l contains an element of X [J ft. This contradicts the fact that
ff covers C+1, and that proves the theorem.

It follows immediately from Proposition 2.1 that a compact Hausdorff space
with point-countable base is metrizable. Somewhat more generally, we obtain
the following corollaries.

COnOLLARY 2.2. A regular space X, with a dense a-compact subset D and a
point-countable base 6, is metrizable.

Proof. Let D U:=I C, with each C compact. Since C has a point-
countable base, it is--as observed above--compact metric. Hence each
C, and therefore X, is separable. But this implies that 6 is countable, so
that X is metrizable. That completes the proof.

COnOLLARY 2.3. A locally compact Hausdorff space X with a point-count-
able base 6 is metrizable.

Proof. Since every point of X has a compact metric neighborhood, X is
covered by a subcollection 6’ of 6 whose elements are separable. Call x, y
in X equivalent if there exist B0, B e with x B0, y e B, and
Bin Bi+l for i 0, n 1. Let C be an equivalence class. Surely
C is open. Since each element of 5’ intersects only countably many others,
C is the union of a countable subcollection of , hence is separable, and thus
(since it has a point-countable base) has a countable base. Since X is
regular, C is metrizable. Hence X is the disjoint union of open, metrizable
subsets, and is thus itself metrizable. That completes the proof.
As the proof shows, Corollary 2.3 remains true if it is assumed that X is

regular and each point of X has a neighborhood with a dense a-compact sub-
set.

Mishchenko gave an example of a nonmetrizable space with point-countable
base which is paracompact, and of another which is LindelSf but not regular.
In Example 6.4 we construct such a space which is regular LindelSf and
hereditarily paracompact. An unsolved problem, suggested by Corollary 2.3,
is whether a normal (or perhaps paracompact) space X with a point-countable
base, which is an absolute G, must be metrizable. (Complete regularity
would not suffice, however, as shown by Proposition 4.2 and Example 6.6.)

3. Proof of Proposition 1.3
For A M, an outline of the proof can be found in Kelley [3; Problem K,

p. 207], and we follow the same outline in the general case. Let d be some
metric on M compatible with the topology, and let M* be the completion of
M with this metric. For each n, let U be the set of points in X which have a
neighborhood whose intersection with M has d-diameter < 1In. Let
G oo M*n----1 U Then there exists a continuous f" G -- which extends
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the identity map i M -- M. Now if x e M and y e G M, thenf(x) f(y),
because y has a closed neighborhood N which misses x, and f(y) is in the
M*-closure of f(N n M) while f(x) is not. Hence f-(A) A for any
A c M; if A is completely metrizable, then A is a G in M*, so f-(A) is
G inf-(M*) G, and hencesince G is a G in Xit follows that A f-(A)
is a G in X. That completes the proof.
We take this opportunity to record the following consequence of Proposition

1.3, which is needed in Section 6.

COROL,AY 3.1. If a metrizable space M is the union of finitely many
completely metrizable subsets, then M is completely metrizable.

Proof. Let A1, An be the completely metrizable subsets. By Proposi-
tion 1.3, each An is a G in M. Hence M is a G in M, and is therefore com-
pletely metrizable [2]. (The referee has pointed out that in this proof M
could be replaced by a metric completion of M, while replacing Proposition
1.3 and [2] by the classical result that a subset of a completely metrizable
space is completely metrizable if and only if it is a G.)

4. Proof of Theorem 1.1 and related results
LEMMA 4.1. Let M be a metrizable, locally dense subset of a regular space X.

Then there exist collections X) (i 1, 2, of open subsets of X such that
a M c U for all i.
(b) X)i is locally finite at every point of U for all i.
(c) If x e M, and U is a neighborhood of x in X, then there exists a V in

some J such that x e V U.

Proof. By the Nagata-Smirnov theorem, M has a base
where each 5i is a locally finite open covering of M. Let G be an open set
containing M as a dense subset. For each B e 5, let B’ be an open subset of
G such that B’ n M B, and note that B’ c since M is dense in G. Let
(g B’iBe (gi}, and let

L {x e X (g is locally finite at x}.

Then L is open, and Li M since M is dense in G (so that, if U and V are
open subsets of G which intersect, then U n M and V n M intersect). Now
let (IL. Clearly X) satisfies (a) and (b). To check (c), let
x e M, and let U be a neighborhood of x in X. Since X is regular, there is an
open W in X such that x e W W c U. Pick an i and a B e 5 such that
xeB (WnM). Then

xe (BP n i) - 1 c U,

and (B n L) e X). That completes the proof.

If is a collection of sets, and L U(B, then ( L denotes {B
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From Lemma 4.1, we immediately obtain

PROPOSITION 4.2. If a regular space X is the union of countably many
locally dense, metrizable subsets, then X has a point-countable base.

Call a subset M of a topological space X metrically embedded in X if there
exist locally finite collections 0i (i 1, 2, of open subsets of X satisfying
condition (c) of Lemma 4.1. From the Nagata-Smirnovmetrization theorem,
we conclude

LEMMA 4.3. If a regular space X is the union of countably many metrically
embedded subsets, then X is metrizable.

We now prove

LEMMA 4.4. If M is a metrizable, locally dense subset of a normal space X,
and if A c M is a generalized F in X, then A is metrically embedded in X.

Proof. LetX)i (i 1, 2, ...) be as inLemma 4.1, and let V= Uo.
Since A is a generalized F,, there exist closed subsets Fii (j 1, 2, of
X such that

A c U=Fi c Vi.

Since X is.normal, there exist open subsets U. of X such that F. c U. and. c V. Let X) [ Ui.. Then X) is u collection of open subsets of
X which is locally finite at every x in X. To complete the proof, let x e A,
and let U be a neighborhood of x in X. Pick i and V e X)i so that x e V c U,
and then pick j so that x e F.. Then x e (V n U.) c U, and (V n U.) e,
which completes the proof.
From Lemmas 4.3 and 4.4 we conclude

PROI’OSITION 4.5. If the normal space X is the union of countably many
metrizable, locally dense subsets M and if there exist generalized F (in X) sets
A c M, which cover X, then X is metrizable.

Proof of Theorem 1.1. Parts (a)-(c) follow immediately from Proposition
4.2 and the results of Section 2. Parts (d)-(h) follow from Proposition
4.5, as will now be verified.

(d) This implies that every subset of X is a generalized F.
(e) An F is surely a generalized F.
(f) This implies (d)" In fact, let E c X be closed. Then, for each n,

we have E n A closed in the metric space A, hence a G in A, and thus a
G in X. But there are only finitely many A, so E is the unioa of finitely
many G’s and is therefore itself a G.

(g) By Proposition 1.3, and the fact that M is locally dense, this im-
plies (f).

0 As the remark following Corollury 2.3 shows, (a)-(c) may actually be simultaneously
weakened to" each point of X bus a neighborhood with dense a-compact subset.
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(h) Here X M1 o M2. Let us show that any open U D Mlis an
F:. Since X U is a closed subset of X, it is, iust like X, an absolute
G [2].. Since X U is a subset of M2, and hence metrizable, this implies
that X U is completely metrizable [2]. From Proposition 1.3, and the
fact that M2 is locally dense, it follows that X U is a G in X, and hence U
is an F in X. It follows that M1 is a generalized F: in X, and, similarly, so
is M2. Hence X is metrizable by Proposition 4.5.

5. Paracompactness
Proposition 4.5 remains valid, with much the same proof, with metrizable

replaced by paracompact. One thus obtains

PROPOSITION 5.1. If the normal space X is the union of countably many
paracompact, locally dense subsets P and if there exist generalized F: (in X)
sets A c P which cover X, then X is paracompact.

If X is actually collectionwise normal, then one can dispense with local
denseness.

PROPOSITION 5.2. If the collectionwise normal space X is the union of
countably many paracompact, generalized F:-subsets P, then X is paracompact.

Proof. Let t be an open covering of X. By [3; Theorem 28, p. 156], it
suffices to find a z-discrete open refinement of t. For each n, let 0 U.
be a z-discrete (with respect to P,) refinement of %[P. by sets open in
P,. Let D,, be the set of points in X having a neighborhood which intersects
at most one element of .. Then D, is open, and D.. P. Since P
is a generalized F, there exist closed sets F,.,/(j 1, 2, such that

P c UF,, c D,.
Let

a,, {V n F,, V e ,}.

Then a., is discrete with respect to X, so, since X is collectionwise normal,
there exists discrete collection {W [A e a,,} of open subsets of X such
that lwys W D A. For ech A e a.. pick U in which contains A,
nd let

Then U..= .,, is z-discrete open refinement of , nd that completes
the proof.
As Example 6.7 shows, "collectionwise normal" cnaot be replaced by

"normal" in Proposition 5.2.
We conclude this section with a esy result which is needed in the next

section.
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PROPOSITION 5.3. Let E be a regular space, and A a subset which is LindelSf,
whose complement is paracompact, and such that every neighborhood of A con-
tains a closed neighborhood of A. Then E is paracompact.

Proof. Let t be an open covering of E. Since A is LindelSf, t has a
countable subcollection which covers A. Let V [J ; by assumption,
there exists an open Wsuchthat A c Wand W c V. NowE- Wis
closed in E A, and hence paracompact, so t (E W) has a locally finite,
open (with respect to E W) refinement (. Let $ (R (E W), and
let 3 u $; then 3 is a a-locally finite open refinement of t. Since E is
regular, this implies that E is paracompact [3; Theorem 28, p. 156].

6. Examples
EXAMPLE 6.1. A nonmetrizable, compact Hausdorff space, which is the

union of two metrizable subsets"
The one-point compactification of an uncountable discrete space.

EXAMPLE 6.2. A nonmetrizable, a-compact, paracompact space, which is
the union of two separable, metrizable, F-subsets"
The integers N, together with one point of fiN N.

EXAMPLE 6.3. A nonmetrizable, compact Hausdorff space which is the
union of uncountably many dense, separable, metrizable subsets"

Let X be a nonmetrizable, compact Hausdorff space which is separable and
has a countable base at each point (such as the union of the top and bottom
edges of the unit square topologized by dictionary ordering). Then every
countable subset of X has a countable base. Hence if D is a countable dense
subset, then X is the union of all the separable metrizable subsets D u {x},
with x e X.

EXAMPLE 6.4. A nonmetrizable, hereditarily paracompact, Lindel6f space
with a point-countable (in fact a-disjoint) base"

Let Y be a subset of the unit interval I which is uncountable, but all of
whose compact subsets are countable; such subsets exist by [4; Theorem 1,
p. 422]. Let X be the closure of Y in I, and let M X Y. Denote the
usual topology on X by a. Let r be the topology on X for which open sets
are of the form U u S, where U is a a-open subset of X and S Y. Then
(X, r) is the required space" Regularity is easily checked. If E c (X, r),
then E is paracompact by Proposition 5.3 (with A E n M); hence (X, r)
is hereditarily paracompact. That (X, r) is LindelSf follows from the fact
that it has a separable metric subset, namely (M, r) (M, a), with the
property that every open set N containing it has a countable complement.
(This is so because N U u S, where U is a-open and S c Y; thus U M,
and X U is a compact--and thus countable--subset of (Y, a).) Finally,
(X, r) is not metrizable because every G containing M has countable com-
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plement, while M has uncountable complement, so that the closed set M
is not a G. (Another argument is that, if (X, r) were metrizable, then all
its subsets would be separable, whereas (Y, r) is an uucountable discrete
space.

EXAMPLE 6.5. A nonmetrizable, hereditarily paracompact space, which is the
union of two dense, metrizable subsets (one of which is open), and which is also
the union of countably many dense, completely metrizable, G-subsets S,:

Let R denote the reals, Q the rationals, and Y the irrationals. Let X
be the subset of R R defined by

X (Q {0})u (Y X R).

Topologize X by taking as a base all ordinary open sets and all sets of the
form Y} X V, with y e Y and V open in R.

Regularity of X is easily checked. If E c X, then E is paracompact by
Proposition 5.3 (with A E n (Q X t0} ), so X is hereditarily paracompact.
Since Q is not a G in R, the closed set Q X /0} isnot a G in X, so X is not
metrizable.
The two dense metrizable subsets are Y X R (which is open) and

(Q X /0}) u (Y X (R 10})). That the latter set is metrizable follows
from Lemmas 4.3 and 4.4, since Q X /0} is clearly metrically embedded in
X, while Y X (R {0/) is a metrizable open F in X.
To define the Sn, write Q as a sequence {xn}=l, and let S be Y X R

together with the point x X {0}. Then S. is metrizable by Lemmas 4.3
and 4.4 (since x X {0} has a countable base of neighborhoods in X, and
Y X R is a metrizable open F in X), so S is completely metrizable by
Corollary 3.1. (It is noel hard, by the way, to describe a complete metric
on S explicitly.) Since S is the union of two G-subsets of X, it is itself
a G in X, and that completes the proof.

EXAMPLE 6.6. A nonnormal, completely regular, absolute G space X, all

of whose open subsets are F which is the union of two dense, open, completely
metrizable subsets:

Let X consist of all points (x, y) in the plane with either x irrational and
y _>- 0, or with x r (where rl, r., is an enumeration of the rationals)
and 0 < y <= 1In. A basic neighborhood of (x, y) in X is a vertical interval
about (x, y) if x is irrational, and is an ordinary plane neighborhood of (x, y)
in X if x is rational. It is easy to check that this defines a completely regular
topology on X.
IfA (x, y) X x rational andB (x, y) eX y 0},thenAand

B are disjoint and closed in X. To show that X is not normal, let U be an
open set about A, and let us show that intersects B. Let Y be the x-axis
in the plane, and let Q (x, 0) e Y x rational}. If

U (x, O) Y (x, y) e U for some y < 1In},
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then each U is a neighborhood of Q in Y for the ordinary topology on Y.
Since Q is not a G in Y for this topology, there is a point (x0, 0) of
Y Q B which lies in every U, so that (x0,0) n B.
The open, dense, completely metrizable subsets of X which cover X are

G X A and H X B. The only nontrivial assertion here is that
H is completely metrizable. Let us verify that.
To prove H metrizable, it suffices to find a a-locally finite base. Now

H (HnA) u(H A). Let Cbea countable base forHwith the plane
topology; this will provide a base in H (given topology) at every point of
H n A. As for H A, note that A is closed in the upper half plane (exclud-
ing the x-axis) in the plane topology, and hence H A is the union of count-
ably manyopen (in H) subsets Hn whose closures (in H) miss A. Now H A
is metrizable, so each/ has a a-locally finite base 5n If now (’ 5 H
for all n, then C u ((J:=l (B’)n is a a-locally finite base for H.

Since A is closed in the upper half plane, it is completely metrizable in the
plane topology, which is also the topology it inherits as a subset of X.
Furthermore H A, as a disjoint union of lines, is also completely metriz-
able. Hence H is completely metrizable by Corollary 3.1.
That X is an absolute G follows from the fact that G and H--and hence

their union XAare dense G’s in X.
Suppose, finally, that V is open in X. Since B and H are metrizable

F-subsets of X, the relatively open subsets V n B and V n H are also F in
X, and hence so is their union V.

EXAMPLE 6.7. A nonparacompact perfectly normal space, which is the
union of two metrizable F-subsets"
The space F described by R. H. Bing in [1; Example H] has the required

properties. It is perfectly normal but not collectionwise normal, and hence
not paracompact. The subset Fv is closed and metrizable, while F Fv
is a metrizable, open F.
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