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1. Introduction

It is the purpose of this paper to study the mathematical formalism related
to the evolution of a population, each of whose members has an associated
numerical characteristic. It is convenient to refer to the members of the pop-
ulation as particles and to their characteristics as energy, since this language
describes one of the important applications--namely, the cascade process.
Another example is a biological population of cells, with a characteristic such
as the size or weight of a cell.

It is assumed that the process originates at time 0 with a single parent
particle of energy X0, which after a time T splits into N resultant particles of
energies X1,..., XN respectively. Each of the resultant particles then
behaves as if it were itself a parent particle, the behavior being assumed inde-
pendent of any other particles existing at the time. The quantities
T, N, X1,..., XN are random variables. Let G(t) P{T <- t} be the
distribution function of T; q. P{N j} the probability function of N; and
j(xl, xjlXo) PIX <-_ x, X <- xlXo} the conditional ioint

distribution function of X, X, given that a parent of energy X0 has
given rise to j offspring. It will be seen that these distributions are suffi-
cient to describe the process. It is assumed that an offspring cannot split
instantly upon birth, i.e., that G(0) 0.
A variety of interesting questions can be asked about the evolution of such

a population. The energy distribution of particles existing at a specified time
t, i.e., the distribution function of the number of particles of energy at least x,
for any x => 0, at time t, is of particular interest. This distribution and its
moments have been the subject of considerable study in the case when G(.
is exponential, in which case the process is Markovian. It will be discussed
by the author for more general cases in a future publication.
Another quantity of interest, and the subject of this paper, is the total

energy X(t) of all particles existing at t. The study of this quantity was
initially suggested to the author by T. E. Harris in the case of the Markovian
cascade process. In the cascade process it is customary, however, to make an
assumption of conservation of energy, namely that X - X] __< X0,
while this restriction will not be made here. There will also be no restrictions
on G(.) other than G(0) 0.

If it is assumed that all particles have energy identically equal to one, then
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X(t) is simply the total number of particles existing at t. The process then
becomes what is usually called the age-dependent branching process, which
has been studied, e.g., by Bellman and Harris [1], Levinson [6], and
Sevast’yanov [11]. The present population process is thus a generalization
of this standard branching process.
To study the random variable X(t), one may start by defining it construc-

tively in terms of the random variables T, N, and X1, XN. In order
to do this rigorously, one must work with the rather complicated sample space
on which the process is defined. One can then prove that the distribution of
X(t) satisfies a basic integral equation (I.E.). This somewhat lengthy task
was performed by the author in [10] in the case of the cascade process. The
construction of probability spaces of the above kind has been carried out in
great generality by J. E. Moyal [7], [8], [9]. In [8], the state space is
stract space (as opposed to the positive real line of the present paper), but
the process is assumed Markovian. In [9] there is no such assumption, and
the constructions are obtained in complete generality; but it is not the objec-
rive to study integral equations of the kind which are the subject of this paper.
An alternative approach is to start with I.E. being formally given, and then

to proceed purely analytically to prove that the equation has a solution, that
this solution is unique among a certain class of functions, and that it is a dis-
tribution function. From I.E. one then obtains equations for the moments
of the process, and criteria for the existence and uniqueness of solutions of the
moment equations. Essentially this approach was taken by Levinson in [6]
for the case of the age-dependent branching process. It will be carried out
for the generalized process in this paper. In Section 2 it is shown that I.E.
has a unique bounded solution which is a distribution function. In Section 3
the existence, uniqueness, boundedness, and monotonicity properties of the
moments of the process are studied. Section 4 gives some examples, and
Section 5 briefly discusses the total energy of the process up to t, a quantity
closely related to X(t).

In a sequel to this paper the asymptotic properties of the process are studied
for a more restricted class of -functions. In particular, the convergence to
a random variable of X(t) divided by its mean is studied.

2. The basic integral equation

If one denotes the conditional distribution of X(t), given that X(0) x0,
by P(x, x0), then the law of total probability suggests that P(x, x0), and
/(s, x0), its Fourier-Stieltjes transform (characteristic function), satisfy
respectively the equations

P(x, Xo) [1 G(t)]Z(x Xo) + qoG(t)Z(x)

(2.1) +5=1-’ q fo dG(y) fo fo (dxl,...,dx

[P(x, y lx) P(x, y]x)],
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/3(s, x0) [1 G(t)]eiSx + qoG(t)
(2..2)

+
j--1

qj fo dG(y) fo fo ((dx dx xo) IIi= P(s, y xi),

where is the convolution operation, and Z(x) 0 for x < 0, Z(x) 1 for
x_> 0.
For purposes of the present study, the equations (2.1) and (2.2) are to be

regarded as formally given, quite independently of their probabilistic origins.

THEOREM 1. If E:=o nqn ’ < 0o, then there exist unique bounded solu-
tions P(x, Xo) and P(s, Xo) of (2.1) and (2.2) respectively. P is a dis-
tribution function, and is its characteristic function.

Proof. Define P0(s, lxo) 0, and for k _>_ 0

Pk+(s, x0) [1 G(t)]e -1- qoG(t)

(2.3)
/ qf dG(y) f ...f dxixo) IXP(s,t-yix).

j=l Jo Jo do i=l

then by (2.3),

P,+(, xo) __< [1 G(t)] + qG(t) <- 1.

Therefore by induction

(2.4) Pk(s, x0) --< 1,

Adopt the convention ]’Ih+ ah 1 for any {a}.
that

k 0,1,

Then one can show

II P(, x) II P-(, x)
i=I i=l

i--1

II P-, , x
h----i+l

Hence
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H P(, x) H P-(, )(2.6)

But Po(s, t] x0) 0, nd hence by (2.4)

(,
By induction on (2.6) it then follows that

k

where G(t) is the k-fold convolution of G(t).
Now let H(t) := ,Gn(t). Then it is easily verified that H(t) stisfies

the equation

(2.8) U(t) G(t) + Jo g(t y) dG(y).

This is the well known renewM equation (see e.g., Feller [4]), nd it is easy to
show (nd known) that H(t)
converges, and in fact since G(t) is a nondecreasing function of t, converges
uniformly for0 t’ ( . Butby (2.7),wehavethatforanym > 1

Therefore there exists a function P(s, t[ x0) such that

(.9) P(s,
uniformly for 0 t’ < . From (2.3) it also follows that P(s, t x0)
satisfies (2.2).

It will now be shown that P(s, txo) is the unique bounded solution of
(2.2). To do this, suppose that Q(s, t]xo) is another such solution. Then
by an argument similar to that which led to the inequalities (2.6), one can
show that

P(s, Xo) Q(s, t[ xo)

(2.10) <= = q fo dG(y) fo fo (dx, dx xo)

[P(s, y lx) Q(s, ylx)I.
i----1
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Let A (s, Xo) e--"t p(s, Xo) Q(s, xo) I, where a __> 0, and is to be
chosen later. Then

A (s, Xo) <= q f e-"y dG(y)
j--I

(2.11)

From (2.4) and (2.9) it follows that

(2.12) P<s, x0) 1,

and since by assumption Q(s, lx0 is bounded, it must also be that
sup{A(s,t[x0) "0 t’} B(s,t’) isbounded. Hence

(2.13) B(s,t’) B(s,t’) jq " e-" dG(y).

Since G(0) 0, (2.13) is contradicted by taking a sufficiently large, unless
B(s, t’) O. Therefore P(s, Xo) Q(s, xo), proving uniqueness for
equation (2.2).

Turning to (2.1), define the iterates Po(x, t x0) 0, and for lc 0

P+(x, Xo) [1 G(t)]Z(x Xo) @ qoG(t)Z(x)

(2.14)

[Pk(x, y Ix1) Pk(x, y lx)].

From (2.14) it follows by induction that Ply(x, x0), k 0, 1, 2, are
nondecreasing and right continuous functions of x which are 0 for x negative.
Comparison of (2.3) and (2.14) shows that P(s, x0) is the Fourier-Stieltjes
transform of P(x, xo) with respect to x.
Now when s 0, the constant 1 is a solution of (2.2), and hence

by the previously proved uniqueness of the solution of (2.2), and (2.9),
P(0, t[ x0) -- 1 as/ -- . Thus for sufficiently large k, Ply(0, t] x0) > 0,
and P(x, Xo)/Pk(O, Xo) is a distribution function whose characteristic
function is P(s, t[ Xo)/P(O, Xo). The latter are thus continuous in
s, and hence since Pk(s, Xo)/Pk(O, Xo) -- P(s, Xo) uniformly for
0 <= <-_ t’ < , P(s, Ix0) is continuous at s 0. Therefore by the con-
tinuity theorem for characteristic functions (see e.g., Cramr [2]),
lim_, P(x, Xo)/P(O, Xo) =- P(x, Xo) exists, is a distribution function,
and has P(s, t] x0) as its characteristic function. Since P(0, t[ x0) -- 1, it
follows that Pk(x, Xo) --) P(x, t[ Xo), and going to the limit in (2.14), one
sees that P(x, Xo) is a solution of (2.1). The uniqueness theorem for
characteristic functions (see e.g., Cramr [2]), and the previously proved
uniqueness of the solution of (2.2), then imply the uniqueness result for (2.1).
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3. Moments
In this section the existence and properties of

(3.1) tt(’)(t xo) xnP(dx, Xo)
i Os

P(O, Xo)

will be studied. (Write tt(1)(t xo) t(t xo).
It is useful to define an associated discrete process which is derived from

the original process by setting G(t) Z(t 1), i.e., requiring that each
particle live for exactly one time unit. Then one may speak of the/cth genera-
tion of the process as consisting of the particles existing at time /c. This
is simply the model of the standard discrete branching process (see Harris
[5]), generalized to include consideration of the associated characteristic
or energy.
The mean energy of the first generation, i.e., of the offspring of an initial

particle of energy x0 is clearly

Ml(xo) / (dx xo)x,
.O

(3.2)

where

(3.3)

(3.3.1)

(R)(x Ix0) Ix0),

  (xlxo) ..., Ix0),
the x being the ih component.

The mean energy of the kth generation, say Mk(xo), can be computed for
k > 1 in terms of the iterates

Mk(xo) Jo q(dx xo)M-x(x).

It will be convenient to write Mo(xo) xo. Let

-o M(xo)[G(t) G+(t)]. m(t xo),

provided the series converges.

LEMMA 1. m(t xo) is a solution of the equation

(3.4) m(t xo) [1 G(t)]xo "4- Jo dG(y) Jo q(dx xo)m(t y Ix).

Proof. Substitute -oM(x)[G(t- y) G+(t- y)] into the right
side of (3.4), and the latter becomes

[1 G(t)]xo -4- =oMk+.(x)[G+(t) G+(t)]

which is m(tixo), proving the lemma.
It will also be necessary to consider the higher moments of the associated

discrete process. To derive these, let F(x Xo) be the conditional distribution
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of the total energy of the kh generation, given that the initial particle had
energy x0, and let/Ok(six0) be its characteristic function. Then

Fk(x[xo) qoZ(x) +--q fo fo i(dx,’",dx
[/-(x x) /-(x x)],

and

(3.5) (s Xo) qo + -IZ q (dx, dx Xo) -(s x).

Let M()(Xo) be the nh moment of F(xlxo), provided the latter exists.
Then differentiation of (3,5) yields

M("_)(x)... M("_z)(x)
where (1..".) is the multinomial coefficient, andM() (x0) --- 1. If one adopts
the convention M(on)(xo) x, then (3.6) holds for all/ > 0.

Rather than working directly with the momentsM(n) (x0), which are defined
iteratively by a nonlinear operation, it will be easier to work with upper
bounds which are defined iteratively by a linear operation. Define

(3.7)

and for/c _> 1

(3.s)

where

(3.8.1)

No(n)(xo) Mo(n)(xo) x,

(n)(x XO) E--ljn--q =_(x Xo)

andcI).(x Xo) is as defined in (3.3.1).

LEMMA 2. For any set of nonnegative, finite, real numbers a ak and
any positive integer n, (= a) -=a For any set of nonnegative
random variables Z,..., Z with finite nt moments,

E[E= Z,]" < "-E
Proof. The first inequality is a consequence of Jensen’s inequality (see

e.g., Doob [3, p. 33]) and the fact that x is a convex continuous function of x.
The second inequality is a trivial consequence of the first.

LEMMA 3. For all n > 1, > 1, M")(xo) < (xo). For n 1 equality
holds.
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Proof. We use induction on k. For 1 1 the result follows from the first
inequality of Lemma 2. Assume it is true for some 1. Then by the second
inequality ,of Lemma 2

Xq f f(R) (dx ax lxo)k+l )Z (nl’’’nj
l-t-" "-t-n i--n

ni>_O

M(knl) (Xl) M(’) (x.)

<__

_
j-q (dx, ..., dx Xo)[M() (x) -t- -I- M()(x)]

< N)+(xo) by (3.8) and the induction hypothesis.

Define oN)(Xo)[G(t) G+(t)] m()(t[xo), and let

(xo) (xo)Y kl

LEM 4. If for any particular n 1, )(xo) is bounded in k, say by
()(Xo) < , then there are a function ()(xo) < and a constant c such
that m()(t xo) is bounded by c x exp {t()(Xo)}. If, in additi, ()(xo)
is bounded in Xo then ()(Xo) may be chosen bounded in xo. If (n) (Xo) < 1

1 ), then there exists a negative (nonpositive) m() (xo).

Proof. Let _o [()(xo)][G(t) G+(t)] ’mo (t). Then byhy-
m()(t). It can be verified by direct substitutionpothesis m()(t Xo) < xo o

(n)that mo (t) satisfies the equation

m()( [1 G(t)] + ()(xo) mo(E)(t y) dG(y).

But this is again the standard renewal equation, and the conclusions of the
lemma can be drawn from well known properties of the renewal function (see
Feller [4]).

OM 2.
(a)(i) If the functions ’)(Xo) are bounded in k, say by ’)(Xo), for

n 1, r, then the moments (n) (t XO), n 1, r exist and are bounded
by functis of the form c x exp {tc)(Xo)}, n 1,..., r, where c and
() (xo) are finite.

(ii) If c)(Xo) is bounded in xo, then e may take )(xo) bounded.
If ()(xo) < 1 1), then e may talce () (xo) < 0 0).

(iii) The moments, provided they exist, are solutis of the equations

(’)(t xo) [1 G(t)]x

(3.9) +
1=I

q dG(y) (dXl, ..., dx Xo)

niO
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(b) If /(n)(xo) i8 bounded in Xo for n 1, ..., r, then
n 1,..., r, are the unique solutions of (3.9) among the class of functions
of exponential order in t, i.e., functions bounded by functions of the form c, ekE for
some constants cn Ion.

(c) If M(xo) is bounded in xo then (t Xo) m(t Xo).

Remark. It will be pointed out later that the condition that 21(n)(xo) be
bounded in x0 will be satisfied in the important special cases of the process.

Proof. (a) By Lemma 4

(3.10) LoNn)(xo)[Gi(t) Gi+l(t)] < .
If n 1, then by (2.3)

o P (s, _<_ [1 G(t)lxo.

Hence one may differentiate (2.3) with/ 1 under the integral with respect
to s, and obtain

o xo) -< [1 G(t)]xo + [G(t) G(t)]M(xo).

Proceeding by induction on (2.3) one obtains for k 1, 2, that

0 P(s, x0) <-_ Mi(xo)[G(t) G+(t)].
i-----0

Hence

o P (o, x0)

exists, and one verifies directly from (2.3) that

(3.11) (t xo) -_oM(xo)[G(t) Gi+(t)] < .
A similar expression will be obtained for higher moments but with the

equality of (3.11) replaced by inequality. By (2.3),- P(s, x0) -<_ [1 G(t)]x,

and if for n 1, no,

(3.12) -/(s, Xo)
k

<-- E Nn)(xo)[Gi(t) G+(t)]
iO

(< o by (3.10)),

then for any n -< no
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(3.13)

where

But

P+(s, Xo) -< [1 G(t)]x

f f+ -" q fo dG(y) (3.(dxl,..., dx3.1Xo) _, (1...,)
3"=1 nl+" "+nn

nO

P’)(s, y[x) P’)(s, y lx)l

P()(s, Xo) Os-- Pk(s, Xo).

P()(s, Xo) <- fo xPk(dx’ Xo) #(n)(t X0)

and hence by Lemma 2

nl+’"
niO

2n--lr (n) n)
Therefore (a.la)

i0 hl

[G(t- y) G+t(t y)]

=< [1 G(t)] x + =o Ni+(Xo)[Gi+t(t) Gi+2(t)]

xT’k+l.,=o N(xo)[G(t) G+(t)].

Thus (3.12) is established by induction for all k. If we set s 0 in (3.12),
it follows that

t(’(t xo) <= m(’)(t xo) < .
But by Theorem 1 it follows that

A A

fot* (t Xo) lim xnP (dx, Xo) lim lim xP(dx, Xo),
A A-. k

and hence, since



326 P.E. NEY

one may conclude that for any n -> 1

(3.14) (’)(t xo) <- m(’)(t xo) < oo

This proves the first part of (a) (i). The second part of (a) (i) and (a) (ii)
follow at once from Lemma 4 and (3.14).
To show (a)(iii) simply note that (3.14) allows one to differentiate (2.2)

with respect to s under the integral. This yields (3.9).
(b) This proof is by induction on r. First let r 1. Then (3.9) reads

(3.15) (t xo) [1 G(t)]xo -{- Jo dG(y) f (dx xo)(t

where is defined in (3.3). By Lemma 4 and (3.14), is of exponential
order in t. Suppose that p(tlXo is another such solution of (3.15). Let
B(tl Xo) e-"tl#(tl Xo) p(t[xo) [,.. where a is to be determined later.
Then

(3.16) (t x) <- fo e-"Y dG(y) f ((dx xo)(t

But by the hypothesis and by Lemma 4 one may take a sufficiently large so
that/(t x0) is bounded in x0. Let

(r) sup {(tlx0) "0 <- =< r, 0 =< x0 < }.

Then by (3.16),

_<_ e-" dG(y),

which is impossible for large a unless (r) 0. Since r is arbitrary, this
implies that (tl x0) 0.
Now assume the result for some r > 1, and suppose that p(n)(tlxo)

n 1, r, are functions which are all of exponential order in t, and which
simultaneously satisfy (3.9) for n 1,..., r. Then by the induction

(n)hypothesis p(n)(tlXo # (tlXo) for n 1, r. Now suppose that
(r+l)

p (tlxo) is of exponential order in and satisfies (3.9). Let
(n)(r+l)(tlX0) e-a I/z(r+i)(tlX0) P(r+I)(tlXo) I" Then since p(n) for

n 1, r, it is easy to see that (r+l)(t x0) satisfies (3.16). Hence the
same argument as before leads to the conclusion that (r+l)(t[x0) 0, com-
pleting the uniqueness proof.

(c) This result follows at once from Lemmas 1 and 4, parts (a)(iii) and
(b) of this theorem, and (3.14). This completes the proof of the theorem.
The monotonicity properties of the moments will now be investigated, the

purpose being to show that a reasonable monotonicity assumption on the
distributions (I). is reflected by a similar property in the moments.



GENERALIZED BRANCHING PROCESSES 327

DEFINITION. The distributions(xl, x. x0) will be called monotone
pt

and any j, xl, xi,if for any Xo <= xo
ff(x, x[xo) >= (x, xlxo).

This assumption says essentially that high energy parents tend to have higher
energy offspring than low energy parents.

THEOREM 3. If (n)(X0) is bounded in Xo, and the distributions j are
monotone, then for any n >= 1,

(a) t(n) xo) is a nondecreasing function of Xo
b if in addition

(dxlxo) >= 1 .forn 1,...,r,

then #(n) XO) iS nondecreasing in for n 1, r. If

: dx Xo <- 1 for n 1, r,

then t() xo) is nonincreasing in for n 1, r.

Proof. (a) This proof is by induction on n. When n 1, then by
Theorem 2, t(t xo ko Mk(xo)[G(t) G+(t)]. But the monotonicity
of the implies that M(x0) is monotone in x0, and hence so is t(t x0). Next
suppose the result proved for n 1, r.

v()(t x) q fo dG(y)

(3.17) f f

Define

nl+"
O_ni<__n--1

(l)(t y[x) t()(t y lx) - [1 G(t)]x

and let (on)(t Xo) y(n)(t Xo),

(3.18) -(’)
=V

(n) fot f+(t xo) (t xo) - de(y)

(Note that the right side of (3.17) differs from (3.9) in that one summation is
over 0 <= ni <- n 1, rather than 0 -<_ n -<_ n.) Then it is easy to verify by
the methods of the proof of Theorem 2 that lim_
exists and is a solution of (3.9); also by the uniqueness theorem that
_(n) (n)
t (t x) t (t x). By the original induction hypothesis v(n)(tl XO) is
monotone in x0 for n 1, r + 1, and hence by using (3.18) and another
induction argument on/c, it follows that 7(r+i)(t x0) is monotone in x0 for
all k; hence so is (+)(tlx0).
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(b) The argument is again by induction. For n 1 one has

t(t x) -’o M(xo)[G(t) G+(t)]

Mo(xo) -+- -0[(x0)- 1]M(xo)G+(t).

But by hypothesis

f ((dx xo)x >= Xo,

i.e., Ml(xo) >= Mo(xo). Due to the monotonicity of , this implies that
Mk+(xo) >= Mk(xo) for all k >= 1, and hence [r(Xo) 1]Mk(xo)G+(t)
is nondecreasing in t. If

f (dx xo) <= 0,

then Mk(x0) -_< 1, and the other inequalities are similarly reversed.
Suppose now that for n 1, r, (n)(t X0) are nondecreasing in t.

and define

(3.19)

and for k > 0

(n)(n)(t Xo) 1 (t xo) [1 G(t)]xo

(on)(t Xo) (n)(t Xo)

+,(t o) d(_;() dp(dx Xo) ’(n) (t-ulx)"

further define

Let

(3.21) n) (Xo) fo (:(dx Xo)Xn,

and for k > 1

(3.22) ’/r(n) (Xo) fo ((dx x)(kn)(x)IVl k+

Then

(3.23) (n)(t]Xo) E=o i()(t Xo) -4- "=o [G(t) G+(t)]l)(Xo).

By the induction hypothesis 0 (tlx0) is nondecreasing in t, and hence by
(3.20), (+l)(t x0) is also. By an argument analogous to that of the previ-
ous paragraph, it follows from the hypothesis of part (b) of the theorem that
’-_o[G(t) G+(t)]+l)(xo) is similarly monotone in t. Hence so is
_(r--l) (t]xo), and so is t(+)(tlxo).

Finally, suppose that

(dxlxo) <_ 1.
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It has been shown that then t(t x) is a nonincreasing function of t. Suppose
that t(n)(t Xo) are nonincreasing in for n 1, r. Then for such n,

(n) (n)t (t] Xo) < (0 x0) x0 and hence for t2 >- tl one has

(3.24) (r--l)(t2 Ix0) ?(r+l)(tl IX0) [G(h) G(t.)]Xo+

dG(y) (dx, ..., dxj xo) _, (1...,)

[t(n’)(t. y lx).., t(n)(t. y lx) (nl)(t y lxl).., tt(n)(t y IX1)

+ ftl dG(y) f (r+)(dx IXo)X+

-<_ [G(t.) G(t)] If (r+l)(dx Xo)Xr-l Xro+ll O.

Thus (0"+)(t ix0) is nonincreasing in t. Arguing by induction on/ in (3.18),
noting that by the induction hypothesis tz(+)(tlx0) <= xo+, and writing an
expression analogous to (3.24), one easily sees that (+1) (t x0) is nonin-
creasing in for all k. Hence so is #(r+i)(t[x0). This completes the in-
duction on r and the proof.

d. [xamples
(a) The age-dependent binary branching process. (See e.g., Bellman and

Harris [1], and Harris [5].) In this case x0 1, q 1, and (I)(x, x 1) 1
if x ->_ 1 and x: _>_ 1, . 0 otherwise. Then M(xo) 2, and M(xo) 2.
Hence the condition for the existence of the mean is satisfied (as is of course
known), and t(t x0) =0 2niGh(t) G+(t)]. If G(t) is exponential
with parameter , then t(tlx0) ext. Note that in this example, the total
energy is simply the number of particles existing at t.

(b) The age-dependent branching process. (See e.g., Levinson [6].) Here
x0 1, and forj 1, 2, ,.(x, x’l 1) 1 if x _-> 1, i 1, ,j,
(I). 0 otherwise. Let n% . Then M(x0) ,’, J(x0) . Thus
a sufficient condition for the existence of the mean is . This result is
also given in Levinson’s paper, but subject to regularity conditions on G(. ).
Similar computations of course work for higher moments.

(c) Nonexistence of the mean. TakeG(t) 1 e-t fort >- O,G(t) 0
otherwise;x0 2; q 1;(xlx0) 1 whenx 2,1 0otherwise.
ThenMn(x0) _>- (n!)and (t xo) >= e-t ! . This trivial example shows
that the moments do not always exist.

(d) Homogeneous distributions. In a sequel to this paper attention will be
limited to the important class of -distributions which are homogeneous in
the sense that (kx, kx [/x0) .(x, x. x0). (This assump-
tion is usually made in the study of cascade processes.) It will be shown
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there that all the hypotheses of the above theorems are satisfied when this
homogeneity assumption is made.

5. The total energy of the process
Another random variable closely related to X(t) is the total energy of the

entire process up to time t, say Y(t). Let R(y, lxo) be the distribution
function of Y(t), given that the initial particle had energy x0, and let
(s, t[xo) be its characteristic function. These functions can be shown to
satisfy the equations

R(y, t] x0) [1 (1 qo)G(t)]Z(y Xo)

f f(5.1) -4- f dG(r) q(dy, ..., dy xo)

and
k(s, t] x0) [1 (1 qo)G(t)]eiSx

f f(5.2)
ei"X fo- qj dG(-) (dyl dy xo) II [(s, r

Analogous to Theorem 1, there is then

THEOnEM 4. If n% < then there exist unique bounded solutions
R(y, Xo) and (s, Xo) of (5.1) and (5.2) respectively. R is a distribution
function, and is its characteristic function.

Proof. The proof is a complete analogue of the proof of Theorem 1, and it
is not necessary to write it out a second time.

Similarly, there exist close analogies between the moments of X(t) and
Y(t). In order to avoid repetition, we will be content here simply to point
out the result for the mean. Let

v(tlxo) f, yR(dy, tlxo).
Then one can show

THEOREM 5. /f the functions il(xo) are bounded, then

v(t xo) =o M(xo)G(t) <

are of exponential order in t, and among the class of the latter functions, are the
unique solutions q( the equation

(.3) ,(tixo) xo + fo () fo (R)(xlxo),(t-

Proof. Theorem 5 is proved similarly to Theorem 2.
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