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Let x (t, /) be a stochastic process over a probability space, F, which takes
its values in I, the unit interval, and has a parameter set T, the unit interval
provided with a regular Borel measure . Let 2 be the space of all/-valued
functions over T. With the product topology, 2 is a compact Hausdorff
space. The Kolmogoroff representation theorem gives a unique Borel
measure on having the property that, considering finitely many t’s, the
distributions generated by x(t, .) and (t, ) (t) are the same. By
Kakutani’s version of a stochastic process we mean that version (t, o) in
which the probability space is taken to be all functions from T to I pro-
vided with the product topology; the Borel field is taken to be all Borel sets
with the extended Kolmogoroff measure, Pr; and (t, ) 0 (t). For more
details of this construction and some of its properties see [4].

DEFINITION. By a measurable modification of the stochastic process,
x (t, ,), we mean a measurable stochastic process, y (t, /) such that x (t,
y (t, almost everywhere with respect to the measure of the probability
space for each t.

Thus a measurable modification of (t, 0) 0 (t) is a function ] (t, 0) such
that ] (t, (t, a.e. [Pr] for every t. As a stochastic process, ] and f
give the same finite distribution. The existence of a measurable modification
for one version of a stochastic process implies the existence of a measurable
modification for every version.
The problem, first raised by Doob in [2], as to whether Kakutani’s version

of a process x (t, 0) is jointly measurable when, say, x (s, converges to x (t,
in measure as s goes to t, or, more generally, whether the existence of a measur-
able modification implies the measurability of Kakutani’s version, was raised
again in [4]. Conditions under which a process has a measurable modification
are known (see [1]). The purpose of this paper is to prove the following

THnOnnM. If X (t, ") has a measurable modification, then (t, oo), the Kalcu-
tani version, is measurable in the completed product measure.

In the proof of the theorem we will use the following lemmas.

LEMA 1. If T is an uncountable parameter set, Ir I, k is a prob-
ability measure on the Borel sets of , and is a measurable function on , then
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] is equal a.e. [h] to a function f which depends on only countably many coordi-
nates.

Proof. By Lusin’s theorem (see [3]), for every n there exists a compact
set Cn c such that (Cn) > 1 1In and ], restricted to Ca, is continuous.
We may assume Cn+l Cn. By the Tietze extension theorem ] restricted
to C may be extended to a continuous function g on . Clearly {gn} con-
verges a.e. [hi to ]. Each g depends on only countably many coordinates,
and hence the sequence of functions g} depends on a countable set S c T of
coordinates. The function f defined byf (0) lim g () if/g () converges
and f() 0 otherwise is a function depending on only countably many co-
ordinates which is equal a.e. [hi to ]().

Returning to a stochastic process which takes its values in the unit interval,
we express T X t as HtTij{a} X since T is the unit interval and let X Pr.
Lemma 1 implies that the measurable modification-, ] (t, ), of (t, 0) is equal
a.e. [hi to a function f(t, o) which depends on only countably many coordi-
nates, a} t S. Thus, except in a set To of v-measure 0, we have f (t,
(t, .) a.e. [Pr]. We may assume that the countable parameter set
S T1- T-- To. For ifseS, then we can set f (s, (s,) (s),
and the resulting function still depends on only countably many coordinates.
For the rest of this paper f (t, 0) refers to this function; let t’ IItrl I have
the quotient measure Pr’ coming from Pr.

LEMA 2. For every Borel measurable function on T X ’ and every n there
exists a measurable function f, on T X ’ which depends on only countably many
coordinates such that on a subset F, of T X ’ having measure greater than
1 1In, fn (t, o’) f(t, 0’) a.e. [9 X er’]. Further if

c? {’. A (t, ’) ’ (t)},

then (C 1 where tn i8 the Kolmogoroff measure on ’ determined byf (t,

Proof. The functionf depends on only countably many coordinates/a} S
and hence may be considered as a measurable function on T X fs. By
Lusin’s theorem there exists a compact subset F of T s such that the
restriction of f to/ is continuous in both variables together and for which
X Prs (F) >- 1 1/.n. By the Tietze extension theorem f restricted to
/ may be extended to a function ] continuous on all of T t2s. Extend
] to a function in on T X f’ by ] (t, 0’) ] (t, r0’) where r is the projection
of 2’ -- t2s Let -p F where p T X t2’ -- T X t2s is the natural map.
Then F (T X f’). Define f on T X t2’ by

f,(t,w’) =],(t,o’) if eT1-- S,

f,(t, o/) o’(t) if

This is the required function.
Considering fn (t, os) aS a stochastic process over ts with Prs as measure,
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we can apply Theorem I of [4] to give a measure on 2’ which we call t We
will now show that # (C) i for each e T1. This is clear for S since
then C 2p.
Suppose e T1 S. Note that since f (t, is continuous for each

e T S and depends only on S coordinates, C is a compact (S t {t} )-
cylinder. We will look at the finite joint distributions of the stochastic process
f (t, cos) from a different point of view in order to see that t (C$) 1. For
each finite set K c T1, define C l ts C. For any K-cylinder B, let
(B) Prs(r(B n CK)). The #: are consistent, that is, if K c K2 and
B is a K-cylinder, then #1 (B) # (B). Further, the : are merely the
finite joint distributions of f (t, cos). Indeed if B (co’ co’ (t) < },t, K},
then

t (B) ers (r (B n C)

Prs(-({co’ co’ (t) < ),t, e K} n {co’ co’ (t) f (t, o’), K}))

Prs(r{co’ co’ (t) f, (t, co’) < ,t, e K}

Prs ({cox" f (t, cos) < },t, e K} ),

which is the value given by the joint distribution of the random variables in-
dexed by K. To get the last equality, note that if coP is in the set on the left,
it is clearly in the set on the right, while if cos is in the set on the right, one
can construct an cop such that co’ cos and rco’ is in the set on the left. Ap-
plying Theorem 1 of [4] to the l:} we get the measure t on P. From this
it is clear that t (C?) 1 for if B is any K-cylinder containing C?, then

(B) Prs (r (S n C:) ->_ Prs (r (C: n C
Prs (r ( tKul tl C) Prs (fs) 1.

(Given an arbitrary cox e s it is simple to construct an co’ e tul tl C such
that rco’ cos.) This completes the proof of Lemma 2.

Proof of the theorem. Let j(t, co) be the measurable modification of the
Kakutani canonical version, and f (t, co) the related function which depends
on only countably many coordinates. It is sufficient to show that (t, co’)
co’ (t), defined on Tt X ft’, is measurable where the notation is that of Lemma
2.
We can assume that the sets F, of Lemma 2 are increasing. Also, D
trl C is a compact set having t-measure one. Indeed, if # (Dn) < 1,

then there is an open set U D D such that #, (U) < 1. Then C U is
compact, and the collection has the finite intersection property. Hence the
complete intersection is not empty. This is a contradiction.
Now on T1 X D,,f (t, co’) co’ (t) everywhere. Hence on F n (T1 D)

this equation holds. Since t (D) 1,

X Izn(Fifl (T X Dn)) , X ttn(Fi).
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But Fiisan ({a} u S)-eylinder; therefore (v X )(F) ( X Pr’)(F) for all
n >= i. Let A {(t, o’); (t, ’) e Fn (T1 X 2’) andf(t, o’) o’(t)}.
Sincef(t, o’) is equaltofn (t, o’) if (t, o’) eFandn -> i,A c F- (TI X D)
for all n >- i. Hence (, X ) (A) 0 for all n _>- i. If this would imply
( X Pr’) (A) 0, then, on F,

f(t, o’) f, (t, 0’) o’ (t) a.e. [u X Pr’],

and this implies the measurability of
We will use a Fubini theorem to prove (u X Pr) (Ai) 0. Let

T. {t e T u( (A)t) 0;n->- i; and X(Fn)t --* l [er]}.

Clearly u(T:) 1. The following lemma and Fubini’s theorem complete
the proof. We letF’n F,u Urns{t} X 2’.

LEMMA 3. Let F, be a monotonically increasing family of measurable subsets
of T X , and let f, be a sequence of functions such that

(1) x(Frn)t0 1 a.e. [Pr’];
(2) f,/F f/Fr everywhere;
(3) (Fn)t e’ for all te S.

Then if, is the measure on ’ induced by Pr’ with f, (t, o’) and A is a ({to} t S)-
cylinder in ’ such that (A ---> 0, then Pr’ (A) 0.

Proof. Let > 0 be given. Choose n large enough so that Pr’ ((F) to)
1 /2 and (A) < /4. Let B A be a finite or countable K-cylinder
such that (B) < e/2. We can suppose that to K and K c {to} u S. Let
E 91t, (F’,)t (F’,)t0. Let

C {o;f(t, o) erS} and D {o;f,(t, o) ertB},

where rt is the projection into the h coordinate. Then g, (B) Pr’ (D),
andPr’(B) Pr’(C). Also note that CnE DnE. Hence

Pr’ (C) Pr’ (C n E) A- Pr’ (C n E’)

Pr’ (D n E) A- Pr’ (C n E’) -< e/2 -f- e/2.

Hence Pr’ (A) _-< e, but e is arbitrary.
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