
ON THE DE RHAM DECOMPOSITION THEOREM

Introduction
Let M be a d-dimensional riemann manifold with positive-definite metric,

and let q) be the holonomy group of M at m M. If q) preserves a proper sub-
space M of the tangent space Mm, and if M is complete and simply con-
nected, then de Rham’s decomposition theorem asserts that M is isometric to
the direct product of the maximal integral manifolds for the distributions ob-
tained by parallel translation of M and (M) over M. We will extend this
result to the case where the riemann metric on M is not necessarily positive-
definite, but is nondegenerate on M.

If the holonomy group of 3I satisfies this last condition, i,e., preserves a
nondegenerate proper subspace of M,, we say it is nondegenerately reducible.
The de Rham theorem for the positive-definite case has been given two

proofs: de Rham’s original proof [6], and recently one by K. Nomizu (cf. S.
Kobayashi and K. Nomizu [4]). Our proof is entirely different from theirs.
In particular, our proof does not involve "piecing together" local isometries
into a global one. The approach we have adopted is the following. By the
holonomy theorem of Ambrose-Singer [1], the condition of reducibility of the
holonomy group should be reflected in the parallel translation of curvature.
Since parallel translation of curvature determines the manifold up to local
isometry [2], we obtain the local product structure of the manifold by a simple
analysis of the curvature form. This information about parallel-translation
of curvature plus simple connectivity and completeness enable us to conclude
the desired global product structure, thanks to the theorem of Ambrose-
Hicks [3, Theorem 1, p. 244].
The paper is divided into five sections. The first two sections set up the

notation and the necessary machinery. In the third section, we prove the
local part of the theorem, and in the fourth, the global part. In the last
section, we produce an example, originally due to R. A. Holzsager, showing
that the nondegenerate reducibility assumption cannot be removed from the
decomposition theorem. We also sketch a proof of this theorem in the posi-
tive-definite case which we believe to be simple, although not elementary be-
cause it makes use of the Main Theorem of [2].
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brose first suggested to us this problem, and, were it not for his constant en-
couragement, this paper would never have seen its day.

Finally, we are indebted to the referee for numerous corrections, mathe-
matical and otherwise.

1. Preliminaries

We shall recall briefly certain definitions and conventions used in Ambrose
[2] and Hicks [3]. Let (M, ( ) be a C riemann manifold of dimension d;
( in the sequel will not be assumed to be positive-definite. Mm will de-
note the tangent space to m M. On each Mm, among all bases,
singles out a special class, the set of all orthonormal bases, i.e.,
(e M) is orthonormal if and only if (ei, e -4-., the number of minus
Signs depending on the signature of the metric. We have the bundle of ortho-
normal frames F(M), with natural projections.r F(M) -- M, fibre PO(d)
which is the group of pseudo-orthogonal matrices leaving } invariant on
each Mm. A point b e F(M) will be written as b = (m, el, ed), m e M.
The unique riemannian connection is specified by the set of one-forms (.)

defined on F(M) taking value in (C)(d), which is the Lie algebra of PO(d).
(d) will be considered as a subalgebra of the full matrix algebra gl(n).
On F(M), we have the usual Cartan equations:

(1.1) d .o o., do. i o. -b ft..
The one-forms (o) are defined as follows: Iff F(M)b, b (m, e, e),
then dr(f) o(f)e, and the two-forms ft. are the curvature forms of
this riemannian connection. Define horizontal vector fields {E} by
(E) .
From this point on, we will assume M to be complete in the sense that the

riemann connection is complete, i.e., all geodesics can be infinitely extended
in terms of the parameter. This completeness assumption allows one to de-
fine two maps:

exp:M--M and Exp:M-.B(M), "meM, /ber-l(m).
Let 0 odExpb, 0. .odExpb, 0. t.odExpb; then from
(1.1)

(1.2) d0 E 0’ 0, dO E Oik -- 0Later on, b will be fixed, and we will often write O, 0, 0 instead of O, 0,
0.. Unless there is danger of confusion, this convention will hold in what
follows.

Concerning these 0, 0, (R)i., the following basic lemmas were proved in
Ambrose [2]. Before stating them, we fix our notation: Let

b (m, e,... e) e F(M),

and let xl, x denote the dual basis of el, e on M. Then, define
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Z (El- 2"1/2
xi) ,andifExpbp (n, fl,..-,f),wewritem(p) fornand

e(p) for f, i.e., Expb p (m(p), el(p), e(p) ).

LEMM 1. (1) If is the tangent vector to the ray .(,) , c e at any
point on the ray, then

d Exp c E(b).
(2) If is a tangent vector to M, at p, then

d expm O(t)e(p).

(3) If is a tangent vector to M, at p, then

H d Expb 0i (t)E,
where H denotes the operation of talcing the horizontal component of a tangent
vector on F M

LEMMA 2. Let p c e M be such that c 1. Let.(s) sp.
Let T be the field of tangent vectors to % So T ’ ci O/Ox. Let be any
constant field on M, i.e., a(O/Ox), a e R. Then along .

(1) O(zt)(O) O, T0(zt)(O) a,
(2) TO(zt) a - ’j cj O(zt),
(3) TO(zt) O( T, zt),
(4) TO(zt) c O( T, zt).

We now introduce the curvature transformation on M, m.

DEFiNiTION. Let m M, x, y e M. Choose any

b (m, el ,... ed) F(M)

over m, and choose 4, e F(M) so that dr(g) x, dv() y. Then R is
defined to be that endomorphism of Mm for which, relative to the base
el,." ,e,

R e 2(, )e.

It is now classical that because 2 is horizontal and equivariant, R so de-
fined is independent of the choice of b and of 4, (Ambrose-Singer [1]). We
shall subsequently need the following lemma which is well known.

LEMM 3. R has the following properties:
(1) R, -t- R, 0.
(2) (R z, w} -- (z, R w} 0.
(3) Rz - Rzx -- R=y O.
(4) (R z, w} (R x, y}.

2. Statement of the theorem
Let M be a simply connected, complete, C riemann manifold. We denote

the holonomy group of M based at b F(M) by, or if there is no danger of
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confusion, by q, (Ambose-Singer [1]). Now suppose at a point, m
proper subspaceM of Mm is left invariant by 9, and suppose also that (
when restricted to M, is nondegenerate, i.e., q is nondegenerately reducible,
in the terminology of the Introduction. Then we know that, if we denote the
orthogonal complement of M1 by M2 Mm M @ M, that { } when
restricted to M is nondegenerate, and that M2 is also left invariant by
We say M and M2 reduce q). Furthermore, M is clearly isometric to
M @ M when M and M2 are given the induced metric.
Now we shall define two distributions T1 and T2 on M (distributions in the

sense of Chevalley). Given n e M, then T(n) Mn is defined as follows"
Join n to m by a (broken C) curve 3’. T(n) is then the parallel translate of
M to n along 3". Similarly, T.(n) is the parallel translate of M2 to n along 3".
By definition of q, it is easily seen that parallel translation of M andM to n
is independent of 3". So T, T2 are well-defined C distributions. Because
parallel translation respects the riemann metric, T, T2 are seen to be orthog-
onal at all points, and the restriction of ( }n to T(n), i 1, 2, is non-
degenerate.
We shall show that T1, T2 are both involutive distributions. For this and

for later purposes, it is convenient to introduce the holonomy bundle H(M)
which is a subbundle of F(M). Precisely, we take a point

b (m, el,... es) eF(M)

so that e, er span Tl(m) and er+, es span T2(m). Let H(M)
be the subset of F(M) which can be joined to b by a broken C horizontal
curve. Then the Holonomy Reduction Theorem states that H(M) is a sub-
bundle of F(M) and that F(M) can be reduced to H(M) in a connection-
preserving manner, i.e., H(M) and F(M) have the same horizontal subspaces
(Ambrose-Singer [1], Nomizu [5]). The structure group of H(M) is, of
course, q), i.e., the holonomy group of M based at b.
From now on we shall work in H(M) exclusively, so we describe H(M) in

greater detail. If c (n, fl, f) H(M), then f, f span Tl(n),
and f+l, ..., fs span T2(n). Furthermore, q) is contained in the direct
product PO(r) X PO(d r)

_
PO(d). Thus, if b is the Lie algebra of

in terms of matrices this says that (a.) implies a. 0 for i _>- r d- 1,
j =< randfori<= r,j_>_ r-l- 1. Hence we obtain

LEM 4. As an algebra of endomorphisms, b leaves the distributions T
invariant (at each point of M). In particular, o 0 ) all vanish for

i >= r-4-1, j <= r and i <= r, j >= r-4-1.

We now prove Tx and T2 are involutive. Take n e M, and a neighborhood
U of n so that there is a cross-section x of U into v-(U)

_
H(M), i.e.,

x U --+ r-l(U), r x identity. (We still denote the natural projection
H(M) -- M by r.) By definition of the ’s and by the above remarks on
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H(M), T on U is described by

(.) 0 o dx 0, i r + 1, ..., d.

To show T is involutive, it suffices to show the ideal generated by
,+ dx, 0 dx is closed under exterior differentiation. We now pply
dx to the first Crtn structure equation of (1.1), and we obtain

d dx ::( o dx)( dx) (i r + 1, d})
s=d dx) (i dx)::i (. dx)( o dx) =,+ (. o o

=d=+, ( dx)( dx) (Lemm8 4).

So T is involutive. Similsrly T= is involutive. Thus through esch point n
of M psses 8 unique msximl integral submnifold M(n) of T 8nd unique
msxim81 integral submsnifold M=(n) of T=. Now, by our ssumption that

is nondegenemtely reducible, ech integral mnifold of T nd T is equipped
with a (possibly non-positive-definite) riemann metric. We give these sub-
manifolds of M this natural riemann structure. Since T and T are obtained
by parallel translation of M and M respectively along arbitrary curves, we
see that each such integral manifold is totally geodesic. By this we mean
that a geodesic in the submanifold is also a geodesic in M. In particular, since
M is complete, each such integral manifold of T and T2 is complete.
We now pause to say a few words about the canonical riemann structure of

a direct product of riemann manifolds. Let (M, ( )) and (M, ( )) be
two riemann manifolds, and let N M X M. Then we give N the product
metric, i.e., if v e N, and v (v, v), n (m1, m), then

l (v1, ,vv> + (v

by definition. Thus, M andM considered as subspaces of N are defined
to be orthogonal. Since the holonomy group of N is clearly reduced by the
tangent subspaces to M and M at each point, we apply the Holonomy Re-
ductio Theorem as aboe. So we shall only consider, from now on, he
holonomy bundle H(N) rather than the frame bundle F(N) in case N is a
direct product. Actually it is easy to see that H(N) itself is the direct product
H(M) X H(M).

Suppose we denote the exponential maps of N, M M by ex exp, exp:
and Exp, Exp1, Exp:, respectively. A little thought will show that
(exp, exp) and Exp (Exp, Exp’). For example,

x, (Ea ) (x, (E.: c. .), x,: (
where we have assumed dim M r, dim M d r. From this it follows
that each geodesic of N is a product of geodesics of M, M:, and vice ersa.
This remark will be important in the following sections.
We give one final definition. We say two riemann manifolds M and N are
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isometric if and only if there exists a diffeomorphism M -- N such that

(u, v} (d(u), and ’q u, v e M

We can now state the main result of this paper.

THE DECOMPOSITION THEOREM OF DE RHAM. Let M be a complete simply
connected manifold whose metric may be indefinite. Suppose the holonomy
group of M at m is nondegenerately reducible; let M and M M " be the
subspaces of Mm left invariant by . Then M is naturally isometric to the direct
product of the maximal integral manifolds of the distributions T1 and T., ob-
tained by parallel translation ofM and M over M. More precisely, let M be
the integral manifold of T through m, i 1, 2. Then there exists an isometry

" M X M M which maps (M1, m) identically onto M and (m, M)
identically onto M.

3. Local isometry
In this section nd the next, we dopt special convention on subscripts

and superscripts. Small Greek indices a, , /, will run from 1 to r, small
Latin indices i, j,... will run from r 1 to d, and capital Latin indices
A, B, C, D, will be allowed to vary from 1 to d.
We now fix our notation for the rest of this section. We fix m e M,

b (m, el,.-., e)eH(M), and the orthogonal decomposition M
M @ M so that e, e span M and er/l e span M M will
be the maximal integral manifold of T through m, and M that of T. through m
also. Note that T(m) M, T:(m) M2. We proceed to prove the
existence of a neighborhood U of m in M isometric to a neighborhood of
(m, m) in M X M.
We begin with an important observation"

(3.1) t.(E, E") 0, ,(E, E) 0.

(The , and , are, of course, considered as forms defined on H(M) only.)
To prove (3.1) we need the full force of our assumption of the nondegenerate

reducibility of q. Take c (n, f, f) H(M), and we must show
2(E, E")(c) 2.(E, Ei) (c) 0. For convenience, we shall write R,
for R((c))((c)) =- Rss. By definition

R.f ))(E, E")(c)f)

Since (f, f) is orthonormal, it suffices to show

(3.1)’ (R,f, f) O.

By (3) of Lemma 3, it is equivalent to proving

<R.fx, f,> + <Rf,, f,> 0.

Conversations with J. Simons have greatly influenced the presentation of materials
in this section.
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But (4) of Lemma 3 implies (R.fa, f) (R.f., f). So (3.1)’ is again
equivalent to

(Rf f} + (Rf f) O.

Now by Lemm 4, the curvature transformation leaves invrint T(n).
Since f e T(n) and f,, f. e T2(n), und T(n) is orthogonM to T(n), we see
that ech term of the bove is zero. Hence (E, E)(c) 0; similarly,
2(E, E)(c) O. This proves (3.1)’ nd hence (3.1).

PROPOSITION 1. Let be a constant vectorfield on M. with as O/OX.
then (t) O. Similarly, if a O/OX then 0a(t1) 0.

Proof. We use the same notation as in Lemma 2. By (4) of that lemma,
T 0(zt) -. ca O(T, zt). By (1) and (3) of Lemma 1, we have

V(zt) c. .( ’, c E’, ) O)(zt)E))

,, c c, (E", E))O)(zt) (by Lemma 4)

c c (E, E)O(zt) (by (3.1)).

T O(zt) c c (E, E)O(zt) O.(3.2)

We now claim that (3.2) implies O(t) 0. For (1) of Lemma 2 implies that
O(zt) TO(zt) 0 at the origin. Thus (3.2) is a system of linear homoge-
neous differential equations in O(zt), i e {r + 1, d} with zero initial data
along each ray ,(s). By uniqueness of solution O(zt) 0 at all points. So
O(t) 0; similarly O, (t) 0, Q.E.D.

PROPOSITION 2. Let , a, O/OX, be a constant vector field on M,.
Suppose p, p e M, are such that p - ca ea p , c, e, (i.e., p is
the projection of p on M); then O.(t)(p) O.(t)(p). Similarly, if
tl Zi a O/OX and p2 ce then O(ti)(p) O(t)(p2).

Proof. We prove only the first statement. It clearly suffices to prove

(.) (O/OX)O,(t) O, Xt j e {r + 1, d}.

Consider the following C map of the unit square into H(M),

p [0, 1] X [0, 1] -+ S(M) Exp h,

where h [0, 1 )< [0, 1] -+M is defined by h(u, v) , u(a, e,) + v (e.).
Clearly, dh(O/Ou) and dh (O/Ov) O/OX Now evaluate both sides of
the first structure equation (1.2) on (O/Ou, O/Ov); we get, using
[a/au, a/av] o,

tO,,(O/OX,)
(3.3)
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By Proposition 1, the first and last terms vanish. We claim the third term
also vanishes. To show this, we will prove O,.(O/OXi) O, which is equiva-
lent to showing O,(O/OXi) 0 by virtue of Lemma 4. For this, we use (3)
of Lemma 2 and the same notation as in that lemma.

TO.a(z O/OX,) 0.8( T, z

.(. c. E’, _. O(z O/OX)E) by Proposition 1., c. O(z O/OX).(E’, S) 0 (by (3.1)).

So TO.(z O/OX) 0 along any ray, while O.(z O/OX)(O) 0. Hence
O.(O/OX) 0. Thus (3.3) reducesto (O/OX)O.(t) 0. This is precisely
what we set out to prove.
We now give the geometric content of the above two propositions. By

using (2) of Lemma 1 and the fact that the integral manifold of an involutive
distribution is locally unique, Proposition 1 says the image under exp of the
various slices in M"

(Xl, Xr Cr+i Cd), (el, cr Xr+l Xd), CA R,

are precisely the integral manifolds of T1 and T2. (Actually, the above is
only true if we restrict ourselves to a neighborhood of 0 in Mm on which expm
is a diffeomorphism). Proposition 2 says, furthermore, that these images of
the various slices inM are in fact isometric to each other. They combine to
say that each m has a neighborhood which is isometric to a direct product.
We proceed to make these rather vague statements more precise.

First we make some comments about the various forms on H(N) of a direct
product N M X M2.

Convention. We shall put a bar above all the canonical maps, vector fields,
and forms associated with a direct product N M X M, e.g.,
a., a., , exp, Exp. As in 2, we shall assume dim M r,
dim M d r. Then we have the analogue of (3.1)"

a,(E, o, .( P) o.(3.) - "
Now letg (n, gl,... ,ga) eF(N). Letn (ml,ms) be fixed inN. If

P acAgaeNn,andpt ,c,g,,i5 cgarethe projections
of/5 into MI, M (considered as subspaces of N), let , a, 0/02,,

a 0/02 be arbitrary constant vector fields on Nn then by using
remarks in 2 about the exponential maps, it is immediate that

(3.6) a(i1) ,(t) O.

We now resume the proof of local isometry. We have m M, integral mani-
folds M, M of T, T through m with the induced riemann structure. As
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above, let N M X M, (m, m). If b (m, el,..., ed) H(M)
as before, then (el,’’’, er) is a frame in M1, and (er+l, ed) is a
frame in M2. So, we consider (, ,..., ) e H(N), where each
6 e, but is now regarded as a tangent vector to N at n. Denote by I
the canonical isometry I Mm -- N such that I(e) . Finally, since
we have observed that M and M are totally geodesic submani-
folds of M, it is then clear that expm maps M Span(o,..., er)
and M2 Span(er+, ed) into M and M respectively.
Now it is well known that exp is nonsingular at the origin 0 of M, and

so there is a neighborhood U of 0 on which exp is diffeomorphic. We may
well assume U U X U, where U is a neighborhood of 0 inM (i 1, 2,).
We assert that

(3.7)
f ------ ex--- I (exp U)-1

(expm U, exp, U2) N.

is an isometry of (exp. U) onto

(Clearly, for the above to make sense, one has to make certain obvious identi-
fications of M as a subset of N, MI as subspace of N, etc.)
We now prove (3.7). f is a diffeomorphism by choice, so we prove df pre-

serves the metric at each tangent space. We convert U into a new manifold
(U, ( )’) by defining the new metric"

]lt ]l’ [i Z o.(t)(p)e.(p) II I1 . o.(t)(p)e. II
for p e U, e (M).
Then (2) of Lemma 1 shows U, ( }’) is isometric to exp U under exp.

Similarly we define a new manifold structure on U X U by

II II" 1[ Eo !1 + 11 II
I] E,,(t)(p). ] + ]] E (t)(p) , ]

ufor (pi, p2) e X U2, e (N) (.2). Again (2) of Lemma 1 and (3.5),
(3.6) show that exp is an isometry of U X U, ( }") withexp( U X U).
It follows that f is an isometry, by Propositions 1 and 2.
We summarize what we have proved so far in

PROeOSITON 3. Suppose M is any riemann manifold such that its restricted
holonomy group is nondegenerately reducible. Then each point of M has a
neighborhood which is isometric to a direct product. The explicit product struc-
ture is exhibited in (3.7).
CouoARV. With notation as above, let p a e be in U. Then

(3.8) Expb p EXpbl ( a e(n)) Expb2 (, a, e,(n)),
,(E Expb p), E Expb p

(3.9) ,(E Expb p), E Expb pi)
fl,(E (Expb( a ei(ni))), E (Uxp b (Zi a e(nl)))),
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where

b Exp pl (hi, o(n), e(n)),

b Exp p (n., e(n), e(n) ).

Remark.

(3.10)

Note that (3.8) includes as a special case

exp p exp( a e(n) ) exp(, a e,(n) ).
Proof. Simply observe that the corresponding statements are true for N

because of the splitting of Exl, and then apply (3.7).
Remark. In Proposition 3, we have not assumed M to be complete nor M

simply connected, so we get only a local theorem. In the following section,
we will see that as a result of these assumptions, we will get a global product
structure for M.

4. Global isometry
Our convention on subscripts and superscripts set up in 3 still holds.
For the rest of this section, we fix the following: a complete, simply-

connected riemann manifold M, the holonomy group (I) of M is nondegenerately
reducible, H(M) is the holonomy bundle. Further, for m M, we have
b (m, el, e) H(M), a decomposition Mm M M such that
M and M reduce , M Span(e, ..., er), M Span(er+l, ..., e)
If a point p Mm, pl, p will always denote the projections of p onto M and
Msm respectively. Thus, if p ’ae, then p ,a,e, and
p ai e. This notation will be used without further comment.
We find it convenient to introduce an abbreviation. We will let 2(A, B)

stand for ,(E, E’). Then the following proposition, which is the basic
result of this section, can be stated as follows:

PROPOSITION 4. Let p M,, p a. e. Let ( be the geodesic
a(t) exptp, [0, 1], and the geodesic z(t) exptp, where
i 1, 2, tel0, 1]. Then

It(a, )(Exp p) (a, )(Exp p),
It (i, j) Exp p) (i, j) (Exp p).

Remark. It will be noted that we will actually prove more than the above.
Proof. We will prove the first statement only. We fix our notation" Let

n (1) expp, n exp pl, Expb tp (a(t), O(t), e(t)). For
brevity, we write, sometimes, b(t) for Expb tp. We now construct a one-
parameter family of singly broken geodesics ,, s [0, 1], , [0, 1] -- M as
follows. The first segment of r is [0, s], a being the same as in Proposi-
tion 4. The second segment of r, is r," [0, 1 s] -- M where
r(t) r(s - t) exp()t(’, a, e,(s)).

Consider these three statements for a number s [0, 1]"

(A) ,(Exp p) ,(Exp() p1(8)) where p(s) a e(s).
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(B) expnl s(- a e(nl)) exp,(8) (s) where
Expbpl (n el(nl), ed(nl) ).

(C) Expb(8) pl(s) Expl s( a e(n) ) where b Exp p.
We define a set [0, 1]"

u" u e [0, 1] r u implies has properties (A), (B), (C)}.

Clearly 0 e , so is nonempty. We would like to show 1 , i.e., [0, 1].
This fact, as a special case, would prove Proposition 4. To show [0, 1],
we will show is both open and closed in [0, 1], which is clearly sufficient.
The proof is broken into two parts.

is closed.

Proof of (i). Let w w, w e , . We must show w , i.e., rw has
properties (A), (B), and (C). To do this, we have to introduce a positive-
definite riemann metric g on M. Assume this is done; define

B(x, ) {t eM g(t, t) < }.

Since the image of . is a compact set, it is well known that there exists > 0
such that exp is a diffeomorphism on B(x, ), x the image of rw. Pick
such a . Recall we denoted the second segment of rw by rw,
rw(t) rw(W + t), O 1 w. Let

Exp()t(,a,e,(w)) (r(t), e(t), e (t)), e[O, 1 w].

e(O) e(0)) ((w) e(w), e,(w))So ((0).,.. .-., ...,
Let T(M) be the tangent bundle of M with natural projection

" T(M) M. Then the positive-definite riemann metric g defines, in a
natural way, a C real-valued function g -() R. Define the compact
set C -1(rw) by

C {(x, q)" ifx r(t), 0 1 w, then

q v a e(t), where each e [-1, 1]}.

On this C, g attains a maximum, call it L. Choose g e Z so large that
L/g < /2 < 8. We now define a finite sequence of points

{y0, y, y,-l, y,}
on . as follows"

yo (w) w(W) (o),

(4.2) y exp(w)(1/g)(1 w)(,a,e,(w)) v((//g)(1 w)),

y, exp()(1--w)(,a,e,(w)) rw(1)= r(1--w).
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We observe that, by choice of t and , each

y e expy_1B(y_I, ) n expy+1B(y+, ).

Furthermore, from the elementary theory of solutions of differential equations,
’(recallif we consider the geodesic as integral curve of the vector field

(t) is the tangent to r at r(t) ), we see easily thatthat rw,

y+ exp(1/t)(1 w)(’,a,e*,((1/g)(1 w))),
(4.3)

yz- exp(--1//)(1 w)(,a,e*,((1/#)(1 w))).
Denote by B(t) M’(t) 0 <- <= 1 w, the "box""

B(t) {(r’(t), q) q (1/)( v,tae.(t)) where each el-l, 1]}.

By choice of and , we have this crucial fact"

(4.4) expels(t) is a diffeomorphism on B(t), 0 _-< -< 1 -w.

We now start toward the proof of (i). First we claim that there exists
Q e Z such that rw(w)

_
exp B(0) for all k >= Q. This is so because

((--1/#)a.(w)) (--1/#) (’_ a. e.(w)) (--1/g)( a e*(0)) e B(0).
So we pick suchak >__ Qandfix . Just as in (4.2) we define onra
finite sequence of points (x_x, x0, x, x,) as follows"

x_ (w) (w) (o),

xo ao

(4.5) x exp.(w){ (w w) Y.. a. e,,(w) "k (1/)(1 w) ,,a.e.(w)},

x exp(){ (w w) _..a.e,(w) q-- (1 w)__,.a,,e,(w)}

exp() (1 w). a.e.(w) r(1).

Just as in (4.3), we prove easily, by letting

Exp() t(,a.e,(w)) (r’(t), e**(t), e**(t))

that if 1,... g,

x+ expt(1/t)(1 w)(’ a,e*,*((1/g)(1 w))),
(4.6)

xz_l exp,(--1/#)(1 w)( a,e*,*(1/t)(1 w)).
We claim

x_ exP,0{-- (w w) aa e**(0)},
x0 exp,0{--(w w) ". ai e*(0)}.

For, by (4.4) and Proposition 3, exp0(B(0)) has a product structure. Then
the second follows from (4.5) and a trivial variant of (3.10). The first is
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obvious, proving (4.7). Now (4.7) and (3.9) together imply that

(4.8) 2(a, )(b(w)) (a, f)(Expb(wk)(w wk),ae*,*(O)).
Next, still considering the product structure on exp.0 (B (0)), by (4.3) and
(4.6) one sees easily that

xl expyll-(w wk)ae*i((1/)(l- w))}.

In other words

xl expy0[ (1/,) (1 w) ( a e,*(0)) (w w) a e*(0)}.
So, using (3.9) (or a variant of it) and (4.8), we have

(a, )(Expb(w)(1/.)(E. e.*(0)))
(a, )(Exp(1/t)(.a.e,((w w) + (1/t)(1 w)))),

where (x0, e** (w w), e**(w w) ). Observing that

Exp(1/) (. a. e.( (w w) - (1/)(1 w) )
nxp(w)[(w- wk).a.e*.*(O)+ (1/)(1- w).a.e*.*(O)}

we obtain, combining the above,

(4.9) (a, )(Exp()(1/t)(-.a.e*.(O))) 2(a, )(b(w, 1/t)),

where we have introduced the abbreviation:

b(w, ,/)

--= Exp(k){(w- w)’:,a,e*,*(O) + (/)(1 --w),a,e*,*(O)}
or e Z. (Geometrically, b(w, ,/) is nothing other than the frame over
x obtained by parallel-translating (e**(0), ..., e**(0)) along r’.) It is
now clear that we can pass from Xl to x2, from yl to y2 and obtain equality on
2(a, ) of type (4.9). This is done essentially as above, by observing that
we have a product structure on exp (B((1/) 1 w) ), and then applying
(3.9) and (3.8). Repeating this operation, we obtain, after -steps

ft(,/) (Exp(w)(/t)(. e.*(0))) t(, )(b(w, t/t)).

This expression, when we refer back to our definitions, becomes

2(a, )(Expb()(1 w) -. e.*(0))
(4.10)

t(a, )(Exp()(1 wk) -.. a. e.**(0) ).

Now rw has property (A) by hypothesis. So (4.10) says . also has property
(A). To finish the proof of (i), we need only to show r has properties (B)
and (C). We first show ru has property (B). So we must show (1) lies
on expl s(_ a e(nl)). In the same manner that one proves (4.7), one
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gets by iterating the same process -times

(4.11)
rk(1 x, expy,{--(w w1)_,ae*(1 w)}

expw(1){--(w wk)

_
ai e*(1 w)}.

The relation (4.11) is true for every r10 if K >= Q, so all such rwk (1) lie in
the geodesic ," [0, 1] -- M such that

,(t) expw(1){-(w wo.) _, ai e*(1 w)}.

By assumption, all such r., (1) lie on exp s( a e(n) ). Now observe
that

1 e expw(i) B(1 w)

if K _>_ Q (recall that by choice, rw(Wk) expy B(0)). Since there exists
only one geodesic in exp(i)B(1 w) that joins rw(1) to any other point
of exp() B(1 w), we see that

,(t)

_
exp s(E a e(n) )

set-theoretically. But /(0) r.(1), so .(1) exp w( a e(n)).
This shows rw has property (B).

Finally to show r has property (C), we merely have to note that on each
exp B((1Its) (1 w) there is a product structure. Each r for K >__ Q
has property (C). Then an obvious application of (3.8) plus the fact that
r has been shown to have property (B) yield the desired conclusion. The
proof of (i) is complete.

(ii) is open.

Proof of (ii). If w (R), we must show there exists e > 0 such that
(w + e) . Using notation as in (i), what we have to do is to choose an
e R so small that exp,(t) is a diffeomorphism on B(t), where B(t) is defined

in essentially the same way as in the proof of (i) cf. discussion preceding (4.4).
Then take e < l, and we have to show each r+t for e [0, 1] has properties
(A), (B), (C). This can be done in the same manner as in (i) with trivial
modifications, so we leave out the details.

COROLLARY. With notation as in the preceding proposition,

(4.12) Exp p Exp (_, a e(n)) Exp (__,, a, e,(n,)),
where we denote by b b the elements of H(M)"

bl Exp( a, e) (nl e(n), e(nl)),

b Exp(-_ a e) (n e(n), e(n.) ).

In particular,

(4.13) expm p expn (E a e(nl) ) exp (E, a, e,(n) ).
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Proof. (4.13) and (4.12) merely state that rl z has properties (B)
and (C).
We now deduce a slightly more general fact from Proposition 4. Consider

a singly broken geodesic in M, such that the first segment of , is

[0, 1]-- M, (t) expm tp

(notation as in Proposition 4). Let the second segment r of , be repre-
sented by

[0, 1] --+ M, r(t) exp t(E c e(1)),

where Exp p (n, e1(1), e(1) as usual. Corresponding to -y, we
have for M, M respectively, singly broken geodesics ’1, /, defined as follows:
The first segment of , is

1 [0, 1] M1, 1 (t) exp, tp,
the second segment of "Y1 is 71,

1 [0, 1] M1, rl(t) exp t(, c, e,(nl)),
where Exp pl (nl, el(n1), e,(nl) as usual. is defined similarly.
We assert that Proposition 4 implies that

2(a, )(Expl) c e(1)) 2(a, )(Expf".,c,e,(nl)),
(4.14)

(i, j)(Expb(1)Y c e(1) (i, j)(Expb. c e(n2) ),

where b(1) Expbp, bl Expbpl, b2 Expp. To prove (4.14), first
note that we can join nl to (1) n by p [0, 1] -- M, with

p(t) exp t(Ei ai ei(nl) ).
This is (4.13). So consider the singly broken geodesic ’ with first segment
equal to p, second segment equal to r. Let

Exp(Yae(nl)) b’(1) (n, e’(1), ..., e;(1)).
Exactly the same technique used to prove Proposition 4 proves, for the
geodesics and 1, the following"

2(a, )(Exp,(1) a e(1)) (a, )(Exp,c,e,(nl)).
But according to (4.12), b’(1) b(1), and according to (4.1),

(a, 3) (Expb p) (a, ) (Expb pX).

Combining these three facts, one has the first statement of (4.14). The
second follows similarly.

The min idea of our proof of the de Rham theorem is, of course, to be
able to apply the Ambrose-Hicks theorem [2], [3, Theorem 1]. To do that,
we need to know the meaning of "parallel translation of curvature is the same
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along finitely broken geodesics in two different manifolds." A precise and
complete definition of this term has been very nicely done in Hicks [3]. So
we only explain the term in the special case of our M and N M X M
and only for singly broken geodesics. For complete details, we refer to
Hicks [3].
We continue our convention about putting bars above maps, forms, and

fields of the product manifold N M X M2. So we have chosen

b (m, e,..., ed) eH(M), b (z, 1,’", ) e H(N)

(with (m, m)), the canonical isometry I’M, -- N,, I(e)
All these were previously defined in 3 and will be fixed once and for all.

Consider, as before, the once-broken geodesic ,, with first segment equal
to a, a(t) exp, tp, second segment equal to r, r(t) exp t(’ c e(1)).
All parameters run from 0 to 1, i.e., [0, 1], where

Expbp (n, e(1),..., e(!).

The isometry I of Mm to N gives us a corresponding geodesic in N as
follows. The first segment a of is a(t) e tp (i.e.,/5 - a )
and the second segment of is (t) ex-- t(c (1)), where
Exp p (fi, (1), g(1) ). We now say that parallel translation of
curvature is the same in M and N, with respect to b and , if for every such, and

A,(Ec, E’) (Expb() (E c e(1)))
(4.15)

,(/c, T’)(--(1)( c (1) )),
where clearly b(1) Exp p, (1) Exp
We assert that (4.14) already implies

(4.16) Parallel translation of curvature is the same in M and N with respect
to b and b along singly broken geodesics.

Proof of (4.16). We first consider the
is completely determined by ft.(E, E’), i.e., knowing the latter for all
A, B, implies we know the former for all A, B, C, D. This is classical, and
we shall not give a proof. So we only need to consider ft(A, B). Now (3.1)
is trivially equivalent to

f](E, E) 0, "" a e {1,... r}, i {r -t- 1,... d}.

So, for M, all we need to know is the parallel translation of 2(a, f) and (i,j).
By virtue of (3.4), similarly, we only need consider (a,/) and (i,j). Now
if we identify (M, m) and (m, M) in the canonical wy, account being
taken of the splitting of ex--- and - (as remarked in 2), one sees without
difficulty that the content of (4.14) is precisely (4.16), Q.E.D.

It is now clear that the technique employed in proving (4.14), which is the
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heart of (4.16), can be extended immediately to cover the case of geodesics
with any number of breaks. One finally reaches the conclusion"

(4.17) Parallel translation of curvature of M and N with respect to b and is
the same along finitely broken geodesics.

Proof of the de Rham Decomposition Theorem. Take the universal covering
s of Ms, a 1, 2. Let /lr ’. We first show . isometric to M.
To apply the Ambrose-Hicks theorem, we need to know parallel translation
of torsion and curvature to be the same in ] and M (with respect to $ and b,
where $ is now any element that covers in N). Torsion being zero for
riemann connections, the first part is trivial. Since N and N are locally
isometric, parallel translation of curvature is the same in N and N, relative
to and $. So, the second part is taken care of by (4.17). Then, according
to Ambrose-Hicks, there is a connection-preserving diffeomorphism of N
onto M, such that (d) I. But since induces the isometry I at , we
see that is actually a global isometry. The fact that (d) I also shows
immediately that maps (1, m) onto M

___
M, (m, 2) onto M

_
M.

But being 1" 1, (/1, m) and el(m, 2) are in fact global isometries.
Hence M (a 1, 2) is already simply connected to start with, and
’M X M2M, Q.E.D.

5. Concluding remarks
(1) It is ntuml to ask the following question" Does there exist similar

decomposition theorem for a general affinely connected manifold? We shall
formulate precisely one version of this problem. Let M be a d-dimensional
manifold with a torsionless connection such that its holonomy group at m
preserves a pair of supplementary proper subspaces M, M of M. Then
define as before the holonomy bundle H(M), distributions T, T, and their
maximal integral manifolds M1, M2. We say two manifolds are CP-diffeo-
morphic if there is a diffeomorphism between them that preserves the connec-
tion. Then the problem can be stated as follows"

(5.1) With M as above, is M locally CP-diffeomorphic to M ( M?
We remark that since the global part of our proof is independent of our

connection being riemannian (inasmuch as the theorem of Ambrose-Hicks
does not depend on that fact), once we have established a local product struc-
ture for M, simple-connectivity plus completeness will always give us a global
result.

(2) It may be interesting to note that there exists a necessary and suffi-
cient condition on the curvature form for (5.1) to admit an affirmative answer
(which is what one expects).

(,) M is CP-locally-diffeomorphic to M X M if and only if (Es, E) 0
on H M), for all a {1, r}, for all i e {r + 1, d}.
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(3) We turn to examples in which the answer to (5.1) is negative. In
the case where the connection is not riemaanian, H. Ozeki has shown that
the answer to (5.1) is negative. He constructed a torsionlsss linear connec-
tion on the plane R with reducible holonomy; but R does not admit a local
product structure in that connection. The case where the connection is
riemannian was first suggested to us by J. A. Wolf. One naturally tries to
prove the condition in (.). It can be seen that the proof of (3.1), which
corresponds to 2(E", E) 0, breaks down precisely when is not non-
degenerately reducible. So one may suspect that without the nondegenerate
reducibility condition, the answer to (5.1) is negative too. That this is
indeed the case is shown by the following example. (We are indebted to
Holzsager for this.) Equip R with the Lorentz metric: Relative to the
canonical coordinates,

gl(X, x) cos x, g(x, x) -cos x,

gl(xl x2) g2(xl x) sinxl.

At the origin 0 of R2, the null directions are (1, 1), (-1, 1). (We have
identified R) with R:.) Let S Span(l, 1), S Span(-1, 1). R
being simply connected, the holonomy group lies in the identity component
of PO(2), and so each element of q) has determinant +1. Since PO(2),

either (a) leaves invariant S, S, or (b) flips S onto S and vice versa. If
A e PO(2) does (b), it has determinant -1. So q) leaves invariant S, S.
To finish our counterexample, one can either compute t(l, :) 0 directly

(, being horizontal lifts of (1, 1) and (-1, 1)), or else observe that
M X M is flat (M being the null geodesic tangent to Si, i 1, 2) while
R in that metric is not.

(4) The rather complicated proof of Proposition 4 can be considerably
simplified in the case of a positive-definite metric. We sketch it here.

7113
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For convenience, we define the "a-projection" of a geodesic a" If a(t)
exp, t( a cA), then the a-projection of a is the geodesic al, ql(t)
exp, t(, a, e,). (As usual, A runs through 1 to d, while a runs only from
1 to r; cf. beginning of 3 for all notation.)
Now, given a geodesic segment a, let al be its a-projection. We wish to

show parallel translation of 2(, /) (-- ,(E", E) to be the same along
a and al Let B be a sphere of radius twice the length of , and let 8 > 0 be
chosen so that exp is a diffeomorphism on every ball of radius 8, for all x B.
Divide a into two pieces of equal length ("two" for simplicity) so that each
piece is of length < 8/2 < 8. Call these (mln22), (n22m33) as indi-
cated in the diagram. Divide into two equal pieces also; call these
(m11 m12), (m2 mla). Now because of local product structure, (cf. (3.7)),
n22 is joinable to m12 by a unique geodesic (m2 m), and furthermore, parallel
translation of 2(a,/) along (m11 m22) is the same as along (m mi), and is the
same as along (m m12) followed by (m m::). Take the a-projection of
(m2. m3); call it (m: m:). Agaia because of local product structure, m: is
joinable to m by a unique geodesic (ma mu), and parallel translation of
2(a, ) from ml to m: along (n12 m2:) through (m m:) is the same as along
(m ma) through (ml m:.). Combined with the ubove, parallel translation
of 2(a, f) from ml to m: is the same along (m11 m22) and (m: m) as along z.
Again, maa is joinable to m2 by a unique geodesic (m3 m3), and prallel
translation of (a, ) along (m2 m) is the same as along (m: m) and
(ma ma). Thus together with the last statement, we have parallel transla-
tion of 2(a, /) along is the same as along o1 and the same as along , then
up through (ma m) and (m:. m3).

It will be observed that (mi m), (m ?n3) together form an unbroken
geodesic.
Note that in the above, we had to use the notion of the global riemann dis-

tance on M to make sure we were legally operating entirely inside the compact
set B (and thus we had a uniform lower bound on the size of the local product
neighborhood via the choice of 8). We do not know how to do this, or to
sy something similar to this, when the metric is indefinite.

(5) In conclusion, we list here a number of results the proofs of which
either are immediate from our main theorem, or can be modelled closely after
the corresponding facts in the positive-definite case. Hence, we omit the
details. (We are indebted to the referee who pointed out to us most of these
results.
We will have to assume throughout, except for (B) below, that M satisfies

the following condition:

(ES) IfM is the maximal subspace of M, on which the holonomy group of
M acts trivially, then the metric, ( , on M is nondegenerate.

We have not been able to settle just how restrictive is this condition (ES).
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We hope to be able to return to this question in a later publication. We
have to make one more definition.

DEFINITION. A subspaceM of Mm is an irreducible subspace if and only
if (i) }m on M is nondegenerate; (ii) the holonomy group q) preserves
M1. and preserves no proper subspace of Mlm on which }m is nondegenerate.
If M M, we say acts irreducibly on M, and that M is an irreducible
manifold.

(A) With notation and hypothesis as in the de Rham theorem (end of
2), M admits a decomposition into mutually orthogonal subspaces which is
unique up to order" M M @ M @ M such that M is the
maximal subspace on which ) acts trivially and M, 1 =< i _<_ p, are ir-
reducible. Then M is isometric to a direct product M0 X M1 X X M,
where each Mi, 0 =< i <= p, is the maximal integral manifold for the dis-
tribution obtained by parallel-translating M: over M. Moreover, M0 is
flat, and each Mi, 1 =< i =< p, is irreducible. Finally ) is the direct product
X X, where each is the holonomy group of M and acts trivially

onMforj i.
(B) If M is symmetric, then each factor M is symmetric. For, each

factor being totally geodesic, parallel translation of curvature is still constant
within each factor.

(C) If M is real analytic, each M is real analytic, and the isometry be-
tween M and M0 X ix X X M is also analytic. Cf. Hicks [3,
Theorem 4].

(D) If M is indefinite-metric kahlerian, then so is each factor. Cf.
J. Hano and Y. Matsushima, Nagoya Math. J., vol. 11 (1957), pp. 77-92,
Theorem 1.

(E) If M is homogeneous, then each factor is homogeneous. Cf. K.
Nomizu, Nagoya Math. J., vol. 9 (1955), pp. 43-56, Theorem 3.

(F) Suppose M is such that each , 1 __< i <= p, leaves invariant no
proper subspace whatsoever; then if q) lies inside the isotropy group at each
point, M is symmetric. Cf. K. Nomizu, Nagoya Math. J., vol. 9 (1955),
pp. 57-66 and vol. 11 (1957), pp. 111-114. Again we leave open the question
of whether this is true without the above assumption on the i.

Note. After the completion of this paper, M. Berger called to our attention
the paper by Kashiwabara [7] which also contains an extension of the de Rham
Theorem. Using homotopy methods, he proved the tollowing result" If
(5.1) has an affirmative answer, and M is connected and simoly connected,
then M is globally CP-diffeomorphic to M X M.
Added November 13, 1963. Materials in 5, (1), (3), and (5) are treated

more fully in a forthcoming paper, Some remarks on holonomy. In particular,
the assumption (ES) of (5) cannot be dropped, and a more convincing
counterexample to (5.1) will also be given.
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