LIKELIHOOD RATIOS FOR STOCHASTIC PROCESSES RELATED BY GROUPS OF TRANSFORMATIONS II

BY

T. S. PITCHER¹

We will make use of the notation established in *Likelihood Ratios for Stochastic Processes Related by Groups of Transformations*² (referred to as (I) in the following). Thus, X, S, and P are a set, a σ -algebra of subsets, and a probability measure on S. T_{α} is a one-parameter group of automorphisms of an algebra F of bounded, real-valued, S-measurable functions satisfying

- (i) T_{α} preserves bounds, and $T_{\alpha}f(x)$ has a continuous derivative $D(T_{\alpha}f)(x)$ in α which is bounded uniformly in α and x for every f in F and x in X, and
- (ii) if f_n is a uniformly bounded sequence from F with $\lim f_n(x) = 0$ for all x, then $\lim T_{\alpha} f_n(x) = 0$ for all x.

Examples of this situation will be found in (I).

We will write P_{α} for the measures which are the completions of

$$l_{\alpha}(f) = \int T_{\alpha} f \, dP,$$

 $K_{\sigma}(\alpha)$ for the Gaussian kernel $(2\pi\sigma)^{-1/2} \exp(-\alpha^2/2\sigma)$, and P_{α}^{σ} for the measures which are the completions of

$$l_{\alpha}^{\sigma}(f) = \int_{-\infty}^{\infty} K_{\sigma}(\beta) \left(\int T_{\alpha+\beta} f \, dP \right) d\beta.$$

According to Theorem 4.2 of (I) the P^{σ}_{α} with $\sigma > 0$ and any α are mutually absolutely continuous, and for each positive σ there is a ϕ^{σ} in $L_1(P^{\sigma})$ satisfying

$$\int \phi^{\sigma} T_{\alpha} f \, dP^{\sigma} = \frac{\partial}{\partial \alpha} \int T_{\alpha} f \, dP^{\sigma}$$

for f in F and

$$\log \frac{dP^{\sigma}_{\alpha}}{dP^{\sigma}} = \int_0^{\alpha} T_{-\beta} \phi^{\sigma} d\beta.$$

The theorem also asserts that the transformations $V^{\sigma}(\alpha)$ on $L_1(P^{\sigma})$ defined by the equation $V^{\sigma}(\alpha)f = (dP_{\alpha}^{\sigma}/dP^{\sigma})T_{-\alpha}f$ for f in F form a strongly continuous one-parameter group of isometries whose infinitesimal generator A^{σ} is defined on F and satisfies $A^{\sigma}f = \phi^{\sigma}f - Df$ there.

We note that \overline{F} , the set of uniform limits from F, contains the functions $f \wedge g = \min(f, g)$ and $f \vee g = \max(f, g)$ whenever it contains f and g,

Received December 3, 1962; received in revised form March 25, 1963.

¹ Lincoln Laboratory, Massachusetts Institute of Technology, operated with support from the U. S. Army, Navy, and Air Force.

² Illinois Journal of Mathematics, vol. 7 (1963), pp. 396-414.

and that T_{α} can be extended to \overline{F} . We will assume as in (I) that F is dense in $L_1(P)$ since this can always be achieved by cutting down the size of S.

THEOREM 1. If the P_{α} are mutually absolutely continuous, then T_{α} can be extended to all S-measurable finite functions, and the mappings $V(\alpha)$ on $L_1(P)$ defined by $V(\alpha)f = (dP_{\alpha}/dP)T_{-\alpha}f$ form a strongly continuous one-parameter group of isometries. The extension of T_{α} is linear and positive and satisfies the following:

(1) If f_n converges to 0 almost everywhere, so does $T_{\alpha} f_n$.

(2) $T_{\alpha}(fg) = T_{\alpha}(f)T_{\alpha}(g).$

(3) $T_{\alpha}(T_{\beta}f) = T_{\alpha+\beta}f.$

(4) $T_{\alpha} \left(dP^{\sigma}_{\beta}/dP^{\tau}_{\gamma} \right) = dP^{\sigma}_{\beta-\alpha}/dP^{\tau}_{\gamma-\alpha}$.

(5) If either side of the equation

$$\int T_{\alpha} h \, dP_{\beta}^{\sigma} = \int h \, dP_{\beta+\alpha}^{\sigma}$$

exists, so does the other side, and they are equal.

Proof. Let (f_n) be a decreasing sequence of nonnegative functions from \overline{F} . If $\lim_{n\to\infty} \int f_n dP = 0$, then the functions $\int T_{\alpha} f_n dP$ are uniformly bounded and converge to 0 for every α , so $\lim_{n\to\infty} \int f_n dP_{\beta}^{\sigma} = 0$ for every σ and β , so P_{β}^{σ} is absolutely continuous with respect to P and hence with respect to every P_{α} . If $\lim_{n\to\infty} \int f_n dP^{\sigma} = 0$, then $\int T_{\alpha} f_n dP$ must go to 0 for almost every α and hence for every α , so every P_{α} is absolutely continuous with respect to P_{σ}^{σ} .

The mappings $V(\alpha)$ defined on \overline{F} by $V(\alpha)f = (dP_{\alpha}/dP)T_{-\alpha}f$ clearly have isometric extensions to $L_1(P)$. $V(\alpha)(fg) = (V(\alpha)f)T_{-\alpha}g$ if f and g are in \overline{F} , and by an easy continuity argument this equation still holds if g is in \overline{F} and f is in $L_1(P)$. A similar relation holds for $V^{\sigma}(\alpha)$. If f and g are in \overline{F} , then

$$\frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}}f\right)$$

is in $L_1(P)$, and

$$\int \frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}} f\right) g \, dP = \int V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}} f\right) g \, dP^{\sigma}$$
$$= \int V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}} fT_{\alpha} g\right) dP^{\sigma} = \int \frac{dP}{dP^{\sigma}} fT_{\alpha} g \, dP^{\sigma}$$
$$= \int fT_{\alpha} g \, dP = \int V(\alpha) (fT_{\alpha} g) \, dP = \int (V(\alpha)f) g \, dP.$$

Thus

$$V(\alpha)f = \frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}}f\right)$$

if f is in \overline{F} , and by continuity this holds for all f in $L_1(P)$. We have

$$\| V(\alpha)f - f \| = \int \left| \frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}} f \right) - f \right| dP$$
$$= \int \left| V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}} f \right) - \frac{dP}{dP^{\sigma}} f \right| dP^{\sigma},$$

so the strong continuity of $V(\alpha)$ follows from the strong continuity of $V^{\sigma}(\alpha)$. Also

$$\begin{split} V(\alpha + \beta)f &= \frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha + \beta) \left(\frac{dP}{dP^{\sigma}} f \right) = \frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha) \left(V^{\sigma}(\beta) \left(\frac{dP}{dP^{\sigma}} f \right) \right) \\ &= \frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}} V(\beta) f \right) = V(\alpha) (V(\beta)f), \end{split}$$

which verifies the group property of $V(\alpha)$.

For f in $L_1(P)$ we define $T_{\alpha}f$ to be

$$V(-\alpha)f/V(-\alpha)1 = (dP/dP_{-\alpha})V(-\alpha)f.$$

Since $0 < dP/dP_{-\alpha} < \infty$ almost everywhere, this is a linear, positivitypreserving extension of T_{α} . For bounded f and g if we choose sequences (f_n) and (g_n) from F so that $V(-\alpha)(f_n g_n)$, $V(-\alpha)f_n$, and $V(-\alpha)g_n$ converge almost everywhere to $V(-\alpha)(fg)$, $V(-\alpha)f$, and $V(-\alpha)g$, we see that

$$T_{\alpha}(fg) = (dP/dP_{-\alpha})V(-\alpha)(fg) = \lim_{n \to \infty} (dP/dP_{-\alpha})V(-\alpha)(f_ng_n)$$

=
$$\lim_{n \to \infty} [(dP/dP_{-\alpha})V(-\alpha)f_n][(dP/dP_{-\alpha})V(-\alpha)g_n] = T_{\alpha}(f)T_{\alpha}(g).$$

In particular, T_{α} takes characteristic functions into characteristic functions, and disjoint characteristic functions into disjoint characteristic functions.

Let f be a measurable function, ξ and ζ the characteristic functions of the sets where f > 0 and where f < 0, and χ_n a sequence of characteristic functions increasing to 1 for which each $f\chi_n$ is in $L_1(P)$. Then

$$T_{\alpha}(f\xi\chi_n) = T_{\alpha}(f\chi_n)T_{\alpha}(\xi\chi_n) \text{ and } -T_{\alpha}(f\zeta\chi_n) = -T_{\alpha}(f\chi_n)T_{\alpha}(\zeta\chi_n)$$

are nondecreasing sequences of functions whose supports are disjoint, so $T_{\alpha}(j\chi_n)$ is almost everywhere convergent. If η_n is any other sequence with the same properties and we set $\omega_n = (1 - \chi_n) \vee (1 - \eta_n)$, then

$$|T_{\alpha}(f\chi_n - f\eta_n)| \leq 2T_{\alpha}(|f|\omega_n),$$

so the support of the difference is contained in the support of $T_{\alpha} \omega_n$. Since ω_n decreases to 0, $V(-\alpha)(\omega_n)$ decreases to 0 in $L_1(P)$ and hence almost everywhere, so $T_{\alpha} \omega_n$ decreases to 0, proving that $\lim_{n\to\infty} T_{\alpha}(f\chi_n)$ is independent of the particular sequence used.

We define $T_{\alpha}(f)$ to be $\lim_{n\to\infty} T_{\alpha}(f\chi_n)$ for any sequence χ_n having the prop-

erties given above. Clearly this is a positivity-preserving extension of T_{α} . If we choose χ_n so that both $f\chi_n$ and $g\chi_n$ are bounded, then

$$T_{\alpha}(af + bg) = \lim_{n \to \infty} T_{\alpha}(af\chi_n + bg\chi_n)$$

= $\lim_{n \to \infty} (aT_{\alpha}(f\chi_n) + bT_{\alpha}(g\chi_n))$
= $aT_{\alpha}(f) + bT_{\alpha}(g)$,

so T_{α} is linear, and

$$T_{\alpha}(fg) = \lim_{n \to \infty} T_{\alpha}(fg\chi_n) = \lim_{n \to \infty} (T_{\alpha}(f\chi_n)T_{\alpha}(g\chi_n)) = T_{\alpha}(f)T_{\alpha}(g)$$

so (3) is also satisfied. If the support of f is contained in a set with characteristic function χ , then the support of $T_{\alpha}f$ is contained in the set whose characteristic function is $T_{\alpha}\chi$. Hence, if f_n converges to 0 and χ_n is the characteristic function of the set where $\sup_{m\geq n} |f_m(x)| \geq \varepsilon$, then

$$|T_{\alpha}(f_n)| \leq T_{\alpha}(\varepsilon \chi_n + |f_n|(1-\chi_n)) \leq \varepsilon + g_n$$

where g_n converges to 0 since its support is contained in $T_{\alpha}(1 - \chi_n)$. This gives $\lim \sup_{n \to \infty} |T_{\alpha} f_n| \leq \varepsilon$ for any ε and thus proves (1).

It will be sufficient to prove (5) for nonnegative h. If h is in \overline{F} , the equation holds. If h is bounded, we can find a bounded sequence h_n from \overline{F} converging almost everywhere to h and with $V(-\alpha)h_n$ converging almost everywhere to $V(-\alpha)h$, so that $T_{\alpha}h_n$ converges almost everywhere to $T_{\alpha}h$, and then the equation holds for h by continuity. Finally, by choosing χ_n so that $h\chi_n$ is bounded,

$$\int T_{\alpha} h \, dP_{\beta}^{\sigma} = \lim_{n \to \infty} \int T_{\alpha}(h\chi_n) \, dP_{\beta}^{\sigma} = \lim_{n \to \infty} \int h\chi_n \, dP_{\beta+\alpha}^{\sigma} \, ,$$

which proves (5). (4) now follows from

$$\int f T_{\alpha} \frac{dP_{\beta}^{\sigma}}{dP_{\gamma}^{\tau}} dP_{\gamma-\alpha}^{\tau} = \int T_{-\alpha} f \frac{dP_{\beta}^{\sigma}}{dP_{\gamma}^{\tau}} dP_{\gamma}^{\tau} = \int f dP_{\beta-\alpha}^{\sigma} .$$

LEMMA. If there is a ϕ in $L_1(dP)$ satisfying

(*)
$$\int \phi T_{\alpha} f \, dP = \frac{\partial}{\partial \alpha} \int T_{\alpha} f \, dP$$

for all f in F, then each P_{α} is absolutely continuous with respect to each P_{β}^{σ} , and

$$\phi^{\sigma} = \int_{-\infty}^{\infty} K_{\sigma}(\beta) V^{\sigma}(\beta) \left(rac{dP}{dP^{\sigma}} \phi
ight) deta.$$

Proof. The existence of $dP_{\alpha}/dP_{\beta}^{\sigma}$ is proved in Theorem 4.2 of (I). For f in F,

$$\int T_{\alpha} f\left(\int_{-\infty}^{\infty} K_{\sigma}(\beta) V^{\sigma}(\beta) \left(\frac{dP}{dP^{\sigma}} \phi\right) d\beta\right) dP^{\sigma}$$
$$= \int_{-\infty}^{\infty} K_{\sigma}(\beta) \left(\int T_{\alpha} f V^{\sigma}(\beta) \left(\frac{dP}{dP^{\sigma}} \phi\right) dP^{\sigma}\right) d\beta$$

$$= \int_{-\infty}^{\infty} K_{\sigma}(\beta) \left(\int T_{\alpha} f T_{-\beta} \left(\frac{dP}{dP^{\sigma}} \phi \right) dP_{\beta}^{\sigma} \right) d\beta$$
$$= \int_{-\infty}^{\infty} K_{\sigma}(\beta) \left(\int \phi T_{\alpha+\beta} f \, dP \right) d\beta$$
$$= \int_{-\infty}^{\infty} K_{\sigma}(\beta) \left(\frac{\partial}{\partial \alpha} \int T_{\alpha+\beta} f \, dP \right) d\beta$$
$$= \frac{\partial}{\partial \alpha} \int T_{\alpha} f \, dP^{\sigma}.$$

THEOREM 2. If the P_{α} are mutually absolutely continuous and there is a ϕ in $L_1(P)$ satisfying (*), then the generator A of $V(\alpha)$ contains F in its domain and is defined there by $Af = \phi f - Df$. $(dP_{\alpha}/dP)T_{-\alpha} \phi$ is almost always integrable on every finite interval, and the equation

$$\frac{dP_{\alpha}}{dP} = 1 + \int_{0}^{\alpha} \frac{dP_{\beta}}{dP} T_{-\beta} \phi \, d\beta$$

defines a continuous version of the stochastic process dP_{α}/dP .

Proof. From the fact that

$$V(\alpha)f = \frac{dP^{\sigma}}{dP} V^{\sigma}(\alpha) \left(\frac{dP}{dP^{\sigma}}f\right)$$

.

and the above lemma we get

$$\phi^{\sigma} = \frac{dP}{dP^{\sigma}} \int_{-\infty}^{\infty} K_{\sigma}(\beta) V(\beta) \phi \ d\beta.$$

Also f is in the domain of A, and

$$Af = \frac{dP^{\sigma}}{dP} A^{\sigma} \left(\frac{dP}{dP^{\sigma}} f\right)$$

whenever $(dP/dP^{\sigma})f$ is in the domain of A^{σ} . In particular, if f is in F,

$$A\left(\frac{dP^{\sigma}}{dP}f\right) = \frac{dP^{\sigma}}{dP}\left(\phi^{\sigma}f - Df\right).$$

By Theorem 4.2 of (I),

$$\int \left| \frac{dP^{\sigma}}{dP} - 1 \right| dP = \int \left| \frac{dP}{dP^{\sigma}} - 1 \right| dP^{\sigma} \leq \left(\frac{2\sigma}{\pi} \right)^{1/2} \| \phi \|,$$

and f and Df are bounded, by hypothesis, so $(dP^{\sigma}/dP)f$ and $(dP^{\sigma}/dP)Df$ converge to f and Df in $L_1(P)$. Finally,

$$\left\|\frac{dP^{\sigma}}{dP}\phi^{\sigma}f - \phi f\right\| \leq C \left\|\frac{dP^{\sigma}}{dP}\phi^{\sigma} - \phi\right\| \leq C \int_{-\infty}^{\infty} K_{\sigma}(\beta) \|V(\beta)\phi - \phi\| d\beta \to 0$$

as $\sigma \to 0$, proving the first assertion. Taking f = 1 we have

$$\frac{dP_{\alpha}}{dP} = V(\alpha)(1) = 1 + \int_0^{\alpha} V(\beta)(\phi) \, d\beta = 1 + \int_0^{\alpha} \frac{dP_{\beta}}{dP} \, T_{-\beta} \phi \, d\beta.$$

By Fubini's theorem and the L_1 continuity of the integrand, $(dP_{\theta}/dP)T_{-\theta}\phi$ is almost always integrable on $[0, \alpha]$, and its integral is equal to the L_1 integral almost everywhere. Hence, almost every $(dP_{\beta}/dP)T_{-\beta}\phi$ is integrable on every finite β interval, and

$$1 + \int_0^\alpha \frac{dP_\beta}{dP} T_{-\beta} \phi \ d\beta = \frac{dP_\alpha}{dP} \qquad \text{for almost every } \alpha,$$

i.e., the pointwise integral is a version of $(dP_{\alpha}/dP - 1)$.

Theorem 2 asserts the continuity and almost everywhere differentiability of the "sample functions" dP_{α}/dP . The following example shows that no such smoothness can be expected in general.

X, S, and P are the real line, the Borel sets, and the measure p(x) dx for any almost everywhere positive p of integral 1. T_{α} represents translation by α , and F is any algebra of sufficiently smooth functions. Here

$$\left(dP_{\alpha}/dP\right)(x) = p\left(x - \alpha\right)/p\left(x\right)$$

which has no smoothness properties at all. The assumption of Theorem 2 is equivalent here to the existence of a derivative of p which is in $L_1(dx)$, and, in this case, $\phi(x) = -p'(x)/p(x)$.

If we set

$$p(x) = c \exp(-1/(1 - x^2)) \text{ for } |x| < 1,$$

$$p(x) = 0 \text{ for } |x| \ge 1,$$

and replace T_{α} by translation mod 2, the assumptions of Theorem 2 are satisfied. $T_{-\alpha}\phi$ is not integrable on any interval [0, α], however, so that the equation of the theorem cannot be replaced by

$$rac{dP_{lpha}}{dP} = \exp \int_0^{lpha} T_{-eta} \phi \ deta.$$

If there is a solution ϕ of (*) in $L_1(P)$, then it is uniquely determined in $L_1(P)$ but not necessarily in $L_1(P^{\sigma})$. According to Theorem 4.2 of (I), if a ϕ exists in $L_1(P)$, then P is absolutely continuous with respect to P^{σ} . We will call ϕ a normalized solution of (*) if it also vanishes almost everywhere (P^{σ}) on the set where dP/dP^{σ} vanishes. Any solution of (*) can obviously be normalized. Since the P^{σ}_{α} are mutually absolutely continuous, Theorem 1 implies that T_{α} can be extended to all S-measurable functions.

LEMMA. If ϕ is a normalized solution of (*), then

$$T_{-\alpha}\left(\frac{dP_{\beta}}{dP_{\gamma}^{\sigma}}\right) = \frac{dP_{\beta+\alpha}}{dP_{\gamma+\alpha}^{\sigma}}, \qquad V^{\sigma}(\alpha)\left(\frac{dP}{dP^{\sigma}}\right) = \frac{dP_{\alpha}}{dP^{\sigma}}, \quad and \quad A^{\sigma}\left(\frac{dP}{dP^{\sigma}}\right) = \phi \frac{dP}{dP^{\sigma}}.$$

Proof. For any f in F,

$$\int f T_{-\alpha} \left(\frac{dP_{\beta}}{dP_{\gamma}^{\sigma}} \right) dP_{\gamma+\alpha}^{\sigma} = \int \left(T_{\alpha} f \right) \frac{dP_{\beta}}{dP_{\gamma}^{\sigma}} dP_{\gamma}^{\sigma} = \int f \, dP_{\beta+\alpha}$$

which proves the first assertion. The second is an immediate consequence of the first. For any f in F of absolute bound 1,

$$\begin{split} \left| \int \frac{1}{\alpha} \left(\frac{dP_{\alpha}}{dP^{\sigma}} - \frac{dP}{dP^{\sigma}} \right) - \phi \frac{dP}{dP^{\sigma}} \right\} f \, dP^{\sigma} \\ &= \left| \frac{1}{\alpha} \int_{0}^{\alpha} \left(\int \phi T_{\beta} f \, dP \right) d\beta - \int \phi f \, dP \right| \\ &= \frac{1}{\alpha} \left| \int_{0}^{\alpha} \int \left(V^{\sigma}(\beta) \left(\phi \frac{dP}{dP^{\sigma}} \right) - \phi \frac{dP}{dP^{\sigma}} \right) f \, dP^{\sigma} \, d\beta \right| \\ &\leq \frac{1}{\alpha} \int_{0}^{\alpha} \left(\int \left| V^{\sigma}(\beta) \left(\phi \frac{dP}{dP^{\sigma}} \right) - \phi \frac{dP}{dP^{\sigma}} \right| \, dP^{\sigma} \right) d\beta. \end{split}$$

The left-hand side of this inequality can be made to approach the $L_1(P^{\sigma})$ norm of $(1/\alpha) (dP_{\alpha}/dP^{\sigma} - dP/dP^{\sigma}) - \phi (dP/dP^{\sigma})$, and the right-hand side goes to 0 as α approaches 0.

THEOREM 3. Let ϕ be a normalized solution of (*). If, for some $\gamma > 0$ (or $\delta < 0$), $T_{-\beta} \phi$ is integrable on $[0, \gamma]$ (or $[\delta, 0]$) almost everywhere with respect to P^{σ} , then the P_{α} are mutually absolutely continuous, $T_{-\beta} \phi$ is almost always integrable on every finite interval, and

$$\log \frac{dP_{\alpha}}{dP} = \int_0^{\alpha} T_{-\beta} \phi \, d\beta.$$

Proof. We will only deal with the case $\gamma > 0$. Since ϕ is normalized, the previous lemma implies that

$$\frac{dP_{\alpha}}{dP^{\sigma}} = \frac{dP}{dP^{\sigma}} + \int_{0}^{\alpha} T_{-\beta} \phi \, \frac{dP_{\beta}}{dP^{\sigma}} \, d\beta.$$

 $T_{-\beta} \phi (dP_{\beta}/dP^{\sigma}) = V^{\sigma}(\beta) (\phi (dP/dP^{\sigma}))$ is L_1 -continuous, so $T_{-\beta} \phi (dP_{\beta}/dP^{\sigma})$ is integrable on $[0, \alpha]$ almost everywhere, and its pointwise integral is equal to its L_1 integral. For $\alpha \leq \gamma$,

$$Q_{\alpha} = \frac{dP}{dP^{\sigma}} \exp \int_{0}^{\alpha} T_{-\beta} \phi \, d\beta$$

is defined almost everywhere, and

$$Q_{\alpha} = \frac{dP}{dP^{\sigma}} + \int_{0}^{\alpha} T_{-\beta} \phi Q_{\beta} d\beta,$$

so by a uniqueness argument for real-valued functions

$$\frac{dP_{\alpha}}{dP^{\sigma}} = \frac{dP}{dP^{\sigma}} \exp \int_{0}^{\alpha} T_{-\beta} \phi \, d\beta \qquad \qquad \text{for } \alpha \leq \gamma.$$

 P_{α} is thus absolutely continuous with respect to P for $0 \leq \alpha \leq \alpha_0$, but since

 $T_{-\varepsilon}(dP_{\alpha}/dP) = dP_{\alpha+\varepsilon}/dP_{\varepsilon}$, P_{α} is absolutely continuous with respect to P_{β} for all α and β . Integrability of $T_{-\alpha} \phi$ follows from

$$\int_{a}^{b} | T_{-\beta} \phi | d\beta = \sum_{n=0}^{N-1} T_{-a-(n/N)(b-a)} \int_{0}^{\alpha/N} T_{-\beta} \phi d\beta,$$

and the final equation from

$$\log \frac{dP_{\alpha}}{dP} = \sum_{n=0}^{N-1} \log \frac{dP_{((n+1)/N)\alpha}}{dP_{(n/N)\alpha}} = \sum_{n=0}^{N-1} T_{-(n/N)\alpha} \log \frac{dP_{\alpha/N}}{dP} \qquad \text{for } \alpha > 0,$$

$$\log \frac{dP_{\alpha}}{dP} = -T_{-\alpha} \log \frac{dP_{-\alpha}}{dP} \qquad \text{for } \alpha < 0.$$

The final theorem is a version of the Cramer-Rao inequality.

THEOREM 4. Suppose the P_{α} are mutually absolutely continuous and that a ϕ exists in $L_2(P)$ satisfying (*). If e is any random variable with

$$\int_{J} \left[\int e^{2} dP_{\alpha} \right]^{1/2} d\alpha < \infty$$

for some interval J containing the origin, and if we define the bias $b(\alpha)$ of the estimate e by $\alpha + b(\alpha) = \int e dP_{\alpha}$, then at almost every point of J, $b(\alpha)$ has a derivative, and

$$\int (e - \alpha)^2 dP_{\alpha} \ge \left(1 + \frac{db}{d\alpha}\right) / \int \phi^2 dP_{\alpha}$$

If, in addition, $T_{\beta}e$ is continuous in $L_2(P)$ on J, then $b(\alpha)$ has a continuous derivative and satisfies the inequality at every point.

Proof. Suppose first that e is bounded. Then

$$\alpha + b(\alpha) = \int e \, dP_{\alpha} = \int eV(\alpha) 1 \, dP = \int_{0}^{\alpha} \left(\int eV(\beta)\phi \, dP \right) d\beta$$

and, since

$$\int V(\alpha)\phi \, dP = \frac{\partial}{\partial \alpha} \int V(\alpha) 1 \, dP = 0,$$

we have

$$\left(1+\frac{db}{d\alpha}\right)^2 = \left(\int (e-\alpha)V(\alpha)\phi \, dP\right)^2 \leq \int (e-\alpha)^2 \, dP_\alpha \int (T_{-\alpha}\phi)^2 \, dP_\alpha,$$

which proves the theorem in this case. In general, if we define e_N to be e when $|e| \leq N$ and 0 elsewhere, then

$$\alpha + b(\alpha) = \alpha + \lim b_N(\alpha) = \lim \int e_N dP_\alpha = \lim \int_0^\alpha \left(\int e_N V(\beta) \phi \, dP \right) d\beta$$
$$= \lim \int_0^\alpha \left(\int T_\beta e_N \phi \, dP \right) d\beta = \int_0^\alpha \left(\int T_\beta e \phi \, dP \right) d\beta.$$

Hence b has a derivative equal to $\lim (db_N/d\alpha)$ at almost every point in J, and

$$\int (e - \alpha)^2 dP_{\alpha} \ge \lim \left(1 + \frac{db_N}{d\alpha}\right)^2 / \int \phi^2 dP = \left(1 + \frac{db}{d\alpha}\right)^2 / \int \phi^2 dP$$

there. If $T_{\beta} e$ is L_2 continuous, both sides of the inequality are continuous, which completes the proof.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS