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1. Balanced incomplete block designs
A blanced incomplete block design (b.i.b.) is an arrangement of v objects

into b sets of tc elements each called blocks such that every obiect occurs ex-
actly r times and every pair of objects occurs exactly ), times in a block.
Counting obiects and pairs of objects in two different ways, one obtains the
well-known equations

(1) b/c rv, )t(v- 1) r(lc- 1).

In this paper we shll first give a new representation of balanced incomplete
block designs in terms of permutation matrices, from which several known
theorems follow easily. The main body of the paper is concerned with the
study of Abelin difference sets. The paper contains several new results to-
gether with a self-contained exposition of known results. Theorem 3 gives
a new condition for the existence of these difference sets, valid for every prime
divisor of n k . Theorem 5 generalizes results previously obtained for
cyclic difference sets to Abelin difference sets. Theorems 6 and 7 give a new
result for cyclic difference sets which disposes of 9 of the 12 cases which are
mentioned as unsettled in [3]. Another of these unsettled cases is disposed of
by Theorem 3.
For any given b.i.b., we define a v X b matrix A (a-) where

a. 1 if the i object occurs in the jth block,

a 0 otherwise.

From the properties of the design we then have

(2) AAt= (r ,)I -t- ,T,

where I is a v v unit matrix and T is a v v matrix all of whose entries are
unity. Since for every real matrix A

rank AA rank A,
it follows that

b>-s,

inequality first derived by R. A. Fisher [2].
We now assume b v; hence r /c nd ?(v 1) lc(/c 1). Putting
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tc k n, we then have

(2a) AAt= nI + XT.

We have AT TA leT; hence

A (A (k/k,) T) nI, A-1 (l/n)(A (X/It)T),

AtA AAt= nI + XT,
which shows that in a symmetrical b.i.b, any two blocks have X objects in
common, a result which was also first obtained by R. A. Fisher. The deter-
minant of the right-hand side of (2a) is kn-1 A 12. Hence we have

THEOREm 1. If V is even, then n ]c X is a square.

This result was obtained independently by Schiitzenberger [7] and by
Chowla and Ryser [1].
THEOREM 2. A symmetric b.i.b, with parameters v, ]c, X exists if and only if

there are l permutations P1, Pk of order v such that
(i) The pernutations PI Pk applied to 1, v yield a k X v Latin

rectangle.
(ii) For s t, s, 1,..., v there are among the permutations PiP-I

exactly which carry s into t.

Proof. Let P, P satisfy the conditions of Theorem 2. Condition
(i) implies that there is for s at most one permutation among P, Pk
which carries s into t. This means that

A

is a matrix of zeros and ones. Condition (ii) now gives

Hence A is the incidence matrix of a symmetrical b.i.b.
On the other hand, if A is the incidence matrix of a symmetrical b.i.b.,

then A is a doubly stochastic matrix of zeros and ones with row and column
sums equal to/c. By a theorem of KSnig (for a short proof see [5]) it is there-
fore the sum of ]c permutation matrices P1, Pk, and from (2a) we get

+
which shows that P, P satisfy (ii). The equation P A shows
that also (i) is satisfied, and this ends the proof.

COROLLARY 2.1. The bloclcs of a symnetrical b.i.b, may be numbered in such
a way that the it bloctc contains the it object, and the objects in the bloctcs may
be arranged in such a way that every object occurs once in every position.

Proof. If P, P satisfy (i) and (ii), then so do I, P-P, p-lp,
and this gives the first part of Corollary 2.1. If P. (1) s, then a 1, and
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we put the th object in the jth position in the st block. Since Pj must trans-
form exactly one digit into s, every object occurs exactly once in the jt posi-
tion. (Note that the proof of Corollary 2.1 goes through for every symmetri-
cal block design. The condition that every pair of objects occur }, times was
not used in the proof.)
A symmetrical b.i.b, with X 1 is called a finite geometry. We then have

v n -- n -- 1, and Theorem 2 gives

COrOLlArY 2.2. A finite geometry of order v n -- n -- 1 exists if and only
if there are n -- 1 permutations P, P+ such that I, P, P,,+,
p, p p-l, Pn+l P- applied to 1, v give the rows of a Latin square.

The proof of Corollary 2.2 may be left to the reader.

COrOLLArY 2.3. If a group @ of order v contains tc distinct elements
g g such that g g-(, i j represents every element except the unit element

times, and i] P,..., P are permutations representing g,..., g in the
regular representation, then

A P1 + "4-Pk

is the incidence matrix of a b.i.b.

One can construct the regular representation by multiplying gl, gk

successively from the left (or right) by the elements of @. Hence the b.i.b.
can be obtained by forming the blocks

glg, "", gkg

or the blocks gg, gg for all g e @.
The elements g, gk are called a difference set of order h for the group @.

If @ is Abelian, then the set g, g is called an Abelian difference set.

2. Abelian difference sets

If is a set of elements in @, then we shall denote by A the sum of the
elements of I in the group ring of @ over any ring with unit element. Simi-
larly for ny set denoted by a German letter we shll denote by the corre-
sponding Latin letter the sum of the elements in the set. In particular

The following lemma seems crucial for the study of Abelian difference sets.

LEMMA 1. If A is any element of the group ring of an Abelian group @ of
order v over a field whose characteristic is prime to ), and if x (A 0 for all
nonprincipal characters x of @, then

(3) A tG, t ft.

Proof. Since the characteristic does not divide v, the regular representation
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of @ is completely reducible [8, vol. 2, p. 237]. Hence there is a nonsingular
matrix S such that for every g e @

S-lgS diag (1, x2 (g), xv (g)).
Here for some h e

S-IGS (v, 0,..., 0), S-1AS (h, 0,..., 0), S-AS #S-1GS,
A G, e 2, Q.E.D.

COROLLA:. If X (A 0 for every character x of @, then A O.

This follows, since x (G) v # 0.

LEMMA 2. Let v 0 (mod p), and assume that A is an element of the group
ring 9 of @ over the integers such that for every nonprincipal character x of @
we have

(4) x(A) 0 (modp’);
then

(5) A G q- pF,
where F is an element of .

Proof. Let be a prime divisor of p in the field of vtu roots of unity. The
residues mod O form a field of characteristic p which may be considered as an
algebraic extension of G.F.(p) which contains the vt roots of unity, that is
to say all characters mod p of @. Thus we may pass from the characters
over the rationals to the characters mod p. Equation (4) now implies

x(A) --- 0 (modO)

for all nonprincipal characters x of G. Hence we have by Lemma 1

A-= G (modO).

Since the coefficients of A G are rational integers, it follows that

A G q- pF,

where F has rational integer coefficients.
Applying induction, assume that

A G-ffpSF, s <j.
From (4) we have

x(A) pSx(F) 0

Hence

(mod p’), x (F) 0 (mod p), F 1G -ff pF.

A ’G -ff p’+F,
and Lemma 2 follows by mathematical induction.
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For every A a g we shall set

A(t) ag.
DEFINITION 1. The integer is called a multiplier of the difference set

(gl, "’", gk) /f

(6) D (t) gD, g e @.

Since is a difference set, we must clearly have (v, t) 1.

THEOREM 3. Let gl gk be an Abelian difference set for a group @ of
order v. Let be a multiplier of this difference set, p a prime divisor of l n,
and let v 0 (mod vl), vl > 1. Iffor some value offwe have tp 1 (mod vl),
then n is exactly divisible by an even power of p. If v* is the 1.c.m. o] the orders
of the elements of @, and if v* vl then t v.

Note that 1 is permissible.
Proof. We have

D(-1)D nI + G.

There is a nonprincipal character x of @ which maps every element into a
th th

vl root of unity. Since this mapping is a homomorphism of @ into the v
roots of unity, we get

(7) x(D(-1))x(D) n --- 0 (modpJ),
where n is strictly divisible by pS. Let be a prime divisor of p in the field of

thv roots of unity. Suppose x (D) is strictly divisible by 1*, i

_
O. The

automorphism i" -- where " is a primitive v root of unity leaves in-
variant. Hence

x(D) x(D(t)) --- x(D(tp)) =- x(D(-1)) --0 (mod ).
Conversely, x (D (- 1) 0 (mod ) implies x (D) --- 0 (rood ), so that
(7) implies j 2i and

x(D) =0 (modp).
If v v*, then this is true for every nonprincipal character of @. In this
case also (v, p) 1, and by Lemma2

D=-uG (mod p).

Hence tt 1 (mod p) andD G.
This completes the proof of Theorem 3.

LEMMA 3. Let , * be two derence sets with parameters v, to, for the
same group gO. If
(8) D(-1)D* G + mF,

where m is an integer, m > 3,, and F has integral coecients, then

D* gD, g @.
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Proof. Applying the automorphism g - g-1 we have

(8’) DD* (-- 1) G -4- mF (- 1),

and applying xl we get
n l2- ),v mxl(F).

On the left of (8) all elements have nonnegative coefficients, and since
m > h, it follows that F has nonnegative coefficients. Multiplying (8) and
(8’) together we get, on account of mFG mxl (F)G nG,

n m2FF(--1).
But a product of factors with nonnegative coefficients and of more than

one term cannot reduce to one term, and therefore

mF ng, g e @.

Multiplying (8) by D we get, after some simplification,

D* gD, Q.E.D.

THEOREM 4. Let , * be two Abelian difference sets for the group @ with
parameters, v, ], . Let n be divisible by p, j > O, (p, v) 1. If for every
character x of @ we have

(x (D*), p’) (x (D), p),
then

(9) D(--1)D* XG + pF,
where F has integral coefficients.

Proof. We have

D(--1)D D*(-1)D* nI + XG.

Hence for every nonprincipal character x of @

x (D (-1) )x (D) x(D*(-1))x(D*) n--- 0 (modp).

Since (x(D*), p) (x(D), p’), we have for every nonprincipal character x
of @

x (D (-1) )x (D*) 0 (mod p),
whence by Lemma 2

D(--1)D* gG + pF.
Taking the principal character x on both sides we get

k2-- /v------ l2- n----- Xv (modp), / }, (modpJ),
since (p, v) 1. We may therefore write

(10) D (-- 1)D* ),G + pF, Q.E.D.
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COROLLARY 4.1. Ifn 0 (mod nl), (nl, v) 1, n > h, nl pl p
and if there exists a such that p (mod v*) for suitably chosen values of
fi where v* is the 1.c.m. of the orders of the elements of @, then is a multiplier
for every difference set v, It, .

If is a primitive vt root of unity, then the automorphism

of the field 2: of vth roots of unity leaves all primefactors of pi invariant.
D (t) D (p) satisfies the conditions of Theorem 4, so that

Hence

D (- 1)D (t) hG -- pF, i= 1,’",s.
eBut pF p F, p p implies F -= 0 (mod p’) hence p niF.

The corollary now follows from Lemma 3.
Corollary 4.1 as well as Lemma 3 were first proved by Marshall Hall, Jr.

for the case that @ is cyclic [3]. They were generalized to Abelian difference
sets by P. K. Menon [6]. However, Lemma 2 simplifies the proof consider-
ably, so that it seemed worthwhile to include it here. Except for the simplifi-
cation afforded by Lemma 2 the proofs follow essentially Hall’s ideas.

Let v 0 (mod v). The integer will be called a v multiplier if for every
character : of @ for which x (g) is a vt root of unity for all g e (R) we have

x(D(t)) x(g)x(D) for some ge@.

THEOREM 5. If for some nonprincipal character X of @

(11) x(D) ’x(D(-1))

where is a root of unity, then
(i) n is a square or n n q3 where v 0 (rood q) and q is a product of

distinct primes q qu.
(ii) In the latter case v is odd, and there is for every q a g in for which

(g) has order divisible by q.
(iii) If q 4m -- 1, then is a v th root of unity. If q 4m -- 3, then

is a 2v root of unity, but not a v root of unity.
(iv) If an equation of the type of (11) holds for all characters of @, and if

n 0 (mod p), v 0 (mod p) for some prime p, then v k, D G.

Proof. Equation (11) implies

x(D)= ’n.
Now in the field of v roots of unity, only primefactors of v have multiple

n q 0 (mod q),factors. Hence either n n or n where v q q qu,
and the x (g) for g e must generate the field of qth roots of unity. By
Theorem 1, v is odd in the latter case. The field 2 of v roots of unity con-
rains V/(--1)(-l)/q. Hence x(D)/(nV/i-1)(-)q) is 2v root of
unity. This yields (- 1) (q-1)/v. Moreover, (1) and v 0 (mod q)
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imply le 3, 0 (mod q) and n = 0 (mod q). This proves (i), (ii), and
(iii). If the conditions of (iv) hold, then x (D) 0 (rood p) for all non-
principal characters of gO. By Lemma 1

D tG (modp),

and since D has coefficients 0 and 1 only, it follows.that t 1 (rood p),
D G. This completes the proof of Theorem 5.

COROLLhgV 5.1. If an equation of type (11) holds for all characters for
t n q, q 1, thenwhich x (g is a

v q, and q is a prime.

Proof. If v-- 0 (modq), v--: 0 (modq), q q, then there is a
nonprincipal character for which all x(g) are q roots of unity. Then
n nlorn nlql. Similarlyn norn n2 q2 so that we must have

COROllaRY 5.2. If is a vl multiplier and -- --1 (mod v), then all
conclusions of Theorem 5 hold. Moreover, if n n q, q > 1, then v q, q is
a prime o] theform 4m -+- 1, and the Jacobi symbol (t) q_ 1. If v* v and
n 0 (rood p),

Proof. The hypothesis of Corollary 5.2 implies that of Theorem 5 and of
Corollary 5.1. Moreover, " in equation (11) is v root of unity, being
character. In the field

primitive qt root of unity) takes /q into //q if (qt) -k-1 and V/q into
-V/q if (qt) 1. Now let x be character such that x (g) is a qt root of
unity for 11 g. Then

x(D) +/-n/q,

where is a qth root of unity, and if () -1, we would get
t--1 (t--1)x(D(t)) tn//q --7 x(D) x(g)x(D) x(g)

which is impossible, since q is odd.
In particular, every multiplier is

so that we have

COROLLARY 5.3. Let v* be the 1.c.m. of the orders of the elements of @. If a
multiplier has even order with respect to v*, then n is a square or n n q. Ifs-- -1 (modv*) and n 0 (modp), v 0 (modp) for some prime p,
then v

Proof. If has even order with respect to v*, then it has even order with re-
spect to a prime divisor q of v*. Let 2f be this order; then s -1 (mod q),
so that the conditions of Corollary 5.2 are satisfied. The second part of the
theorem follows from the fact that all characters are v*t roots of unity.

COROLLARY 5.4. Let be a difference set for the elementary Abelian group
of order 2m; then n is an even power of 2.
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The integer 1 is always a multiplier. But v* 2 and 1 -1 (2). The
second part of Corollary 5.3 now implies that n is a power of 2, and Theorem 1
that n is a square.
One also sees that the condition n 0 (rood p), v 0 (rood p) is indeed

necessary for the last conclusion of Theorem 5. P.K. Menon [6] has con-
structed difference sets with v 2, n 2(’-).

3. Cyclic difference sets

We now consider the case that @ is cyclic. In this case we shall call a
cyclic difference set. The elements of the group ring can be represented as
polynomials mod (x- 1).
We put

(12) T(x) 1 + X - - X
v-1 O(X) ZI Xai

where a, a is a difference set mod v.
We then have

(13) 0 (x) 0 (x-) --- n - XV (x) (mod (x 1) ).

THEOanM6. If p is a prime, Pin, PlY, V---- 0 (modp’v), (v p) 1,
and p =- --1 (rood v), and if 0 (x) =xa where a a is a differ-
ence set with parameters v, tc, , then

(14) 0(x) 0 (mod{ (Xv 1) [(p’+)/2], p}).

(The double modulus means that all coefficients are to be reduced mod p
and all polynomials rood (x 1) (’+).) Note that v 1 is not excluded.

Proof. From p n, p v, aad equation (1) it follows that ] k 0 (rood p).
Thus

0 (x-) 0 (x) 0 (mod{ (Xvl 1)’, p} ).

Let 2fbethe order ofpmodv (2f 0ifv 1). Letf(x) be an irre-
ducible divisor of x 1 in G.F. (p). We have f (x) II (x a), where

--1
a e G.F. (p). Since p -1 (mod v), it follows that a and a are con-
jugates. Hence if 0 (x) 0 (mod{f (x) , p} ), we also have

x0 (x-) 0 (modlf (x) , p} ),

where m is the degree of 0 (x), and vice versa. Hence the theorem follows.

THEOREM 7. If V -- n 0 (modp), v p’v (v p) 1, and
p/ --1 (mod v), and if a a is a difference set mod v, then t v.

Note that v 1 is again not excluded.
By Theorem 6 we have

(15) 0 (x) 0 (modlx"/ 1, p}

Let0 <-_ a < v/p. Ifx-- x (x/- 1),0-<j < v, then j can take only
one of the p values, a, a - v/p, a - (p 1)v/p. Now if we replace in
0 (x) all these terms by x, we must on account of (15) either get no term at
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all or p terms since 0 (x) has coefficients 1 or 0. Hence either x is not a
summand of O (x) or x xa’4"v]p a-b(p--1)v]p

X all are summandsof 0 (x). This
means the residues a, a of the difference set D consist of kip groups of
residues

bl,bl + v/p, ,b + (p-- 1)v/p,

52,52 + v/p,..., 52 + (p 1)v/p

bk/v, bk/v + v/p,..., bk/ + (p 1)v/p.

But then the difference v/p arises p. (k/p) k times. Hence k v.
2m 22(m-)The Abelian difference sets with v 2 n of P. K. Menon [6]

show that Theorem 7 does not hold for all Abelian difference sets. Of the
list of 12 unsolved cases in [3], the set 171, 35, 7 is shown to be impossible for
Abelian difference sets by Theorem 3. Of the other.ll cases, all except 120, 35,
10 and 100, 45, 20 are impossible for cyclic difference sets by Theorem 7. An
Abelian solution exists for 64, 28, 12 and for 36, 15, 6 and may possibly exist
in some of the other cases.
The set 100, 45, 20 was shown to be impossible by R. J. Turyn, so that

120, 35, 10 remains the only unsolved case in Hall’s list. R.J. Turyn had
also previously demonstrated the impossibility of 8 of the 9 cases which are
disposed of by Theorem 7. The present paper thus adds two new cases to the
list of solved cases and also provides a convenient proof for 8 others. R.J.
Turyn’s results are contained in two reports to the Sylvania Electronic System
published in 1960 and in 1961.
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