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It is not too difficult to prove the following theorem:

I. The commutator subgroup G’ of the finite group G is nilpotent if, and
only if, U’ is nilpotent whenever the subgroup U of G is generated by 3
elements.

Considerably deeper appears to be the following improvement on this
result:

I*. The commutator subgroup G of the finite group G is nilpotent if, and
only if, S’ is nilpotent whenever the subgroup S of G is generated by 2 ele-
ments.

On the basis of I* it is possible to obtain the following considerable generali-
sation of I"

II. If N is a normal subgroup of the finite group G, then N G is part
of the hypercenter f)G’ of G’ if, and only if, N S’

_
i)S’ whenever the sub-

group S of G is generated by 3 elements one of which belongs to N.

But these theorems are not isolated instances: thus one obtains again true
theorems, if one substitutes everywhere for the commutator subgroup the
terminal member of the descending central chain; and likewise one obtains
true theorems, if one substitutes everywhere at the same time for the commuta-
tor subgroup the n term of the descending central chain and for 2 and 3
the integers n 1 and n - 2 respectively. Hence one wishes for a unified
treatment of this infinite family of theorems; and this will be provided within
the framework of functorially defined characteristic (even. fully invariant)
subgroups.
To sketch our principal concepts and more fundamental results it will

prove convenient to restrict ourselves to finite groups. Then a functor
assigns to each finite group G a subgroup [G subject to the following--some-
what more restrictive than might be expected--requirements:
(G)

_
[H for every homomorphism a of the finite group G into the finite

group H with (fG) H in case is an epimorphism.
If is such a functor and n is a positive integer, then . G is the set of all

the elements c in G with the property:
There exists a subgroup C of G which is generated by n elements such that

c belongs to C.
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If we always have G /In GI, then we term the tunctor an n-functor.
Examples" commutator subgroup and terminal member of the descending
central chain are 2-functors; the kh member of the descending central chaiu
is a (/c- 1)-tunctor. A slightly more general and detailed discussion of
these and related concepts may be found in 1; the connection with group-
theoretical properties, particularly useful for the construction of such functors,
is given in 2.
We may now state our principal results" Suppose that is an n-functor

with 1 n.

A. The following properties of the finite group G are equivalent"
(i) [G is nilpotent.
(ii) IS is nilpotent whenever the subgroup S of G is generated by n 1

elements.
(iii) IS is nilpotent whenever the subgroup S of G is generated by n

elements and T/[T is soluble whenever T G is a subgroup of [G.

Again the proof of the equivalence of (i) and (ii) is not too difficult [Theorem
4.1,(a)] whereas the proof of the equivalence of (i) and (iii) is considerably
harder [Theorem 4.7].

B. N is a normal subgroup of the finite group G with N n [G

_
i)[G if

and only if,
N n IS

_
S wheneverthe subgroup S of G is generated by n -[- i elements

one of which belongs to N, and
T/[T is soluble for every subgroup T of the group of automorphisms,

induced in N by [G.

The proof of this result depends very much on our result A; see Theorem
6.2. Note that the theorems stated at the outset are all fairly obvious special
cases of the theorems A and B.

It will be noted that the finiteness of G is not really important for the above
theorems; all that counts is the finiteness of [G and N respectively. Slightly
deeper are the generalisations that one obtains when requiring only that [G
and N be noetherian and soluble; see Theorem 4.1, Corollary 4.12, and
Theorem 6.6.

Notations

o(g) order of group element g.
o(G) order of group G.
x= y-lxy.

XcrX--x for x a group element and z an endomorphism.
--1 --1xoy x y xy.

XoY= xoyforallxinXandyinY}.
X center of group X.
)X hypercenter of group X intersection of all normal subgroups N of X

with (X/N) 1.
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Commutator subgroup of X X’ derived group of X bX X X.
Derived series of X, inductively defined by

X-- X(0) bOx, b(biX) (X(i)) t-- hi+ix X(i+I)o

Descending central chain of X, inductively defined by

X c0 X, X o c X c+ X.

cX centralizer of subset X of group G (in G).
nX normalizer of subgroup X of group G (in G).
Factor of a group epimorphic image of subgroup.
A group X is

noetherian, if all its subgroups are finitely generated;
artinian, if the minimum condition is satisfied by its subgroups;
soluble, if every epimorphic image, not 1, of X possesses an abelian

normal subgroup, not 1;
nilpotent, if Y # 1 whenever the epimorphic image Y of X is not 1;
of finite class, if c X 1 for almost all i;
p-closed, if products of p-elements are p-elements.

1. The concept of functor

The domain of definition of the functors to be considered will be a non-
vacuous class of groups, subject to the following requirements:

contains with any group all its subgroups and epimorphic images;
contains with any two groups their direct product,

This class may be the class of all groups or the class of all finite groups and
so on. It will usually be kept fixed and will hardly be mentioned in the body
of our investigation. Special choices of will be made only when discussing
particular situations or when constructing examples.
A functor assigns to every group X in a well-determined subgroup IX

of X. All the functors appearing in the sequel will be subject to the following
two requirements, and after some preliminary discussion of these requirements
they will be used without any further reference to them:

(I) If S is a subgroup of the group G in , then [S [G.
(II) If is an epimorphism of the group G in , then (G) G).
Restatement of these conditions in the language of exact sequences.

(I) If 1 -- S - G is an exact sequence, then 1 -+ S G is an exact
sequence.

(II) If G -% S --+ 1 is an exact sequence, then G -- S -+ 1 is an exact
sequence.

Clearly these conditions are duals of each other, showing that our concept
of functor is self-dual.



180 REINHOLD BAER

If n is a homomorphism of the group G in into the group H in , then
is an epimorphism of G upon the subgroup G’ of H; and we deduce from (I)
and (II) the validity of the following general monotonicity property:

(M) If is a homomorphism of the group G in 3 into the group H in ), then
[(a) c_ [H.

From (M) it follows that fG is always a fully invariant subgroup of G.
Thus the center is not a functor in the sense in which we are going to use this
term in the present investigation. As a matter of fact neither (I) nor (II)
is satisfied by the operation assigning to every group G in 3 its center G.
Typical examples of functors are the commutator subgroup bX, the members
bX of the derived series, and the members cX of the descending central
chain.
From (II) one deduces that every functor has the following property:

If (r is an epimorphism o] the group G in upon the group H, then [H 1
if, and only if, [G is part of the kernel of
Thus in particular [(G/fG)= 1. One notes furthermore that property

(M) implies requirement (I) and the following weakened form of (II)
If z is an isomorphism of G upon H, then [H ([G).
But (II) is not a consequence of (M), as may be seen from the following

Example 1.1. Let be the universal class lI of all groups; and define by
the equation"

[G bG n GY

where p is some fixed odd prime and GY the subgroup generated by all the
powers of elements in G. It is fairly obvious that meets requirement (M).
But does not meet requirement (II), as may be seen from the following
example:

Let A [a, b} be the group generated by the elements a, b, subject to the
following conditions"

aY= bY= (aob)Y= 1, a(aob) (aob)a,

b(a o b) (a o b)b.

Thus AY= 1 and bA A [ao b}. Denote furthermore by B a cyclic
group of order p2; and let G A (R) B be the direct product of A and B. It
is clear then that

bG= hA, GY=BY, [G= bAnBY= 1.

As G A (R) B, the subgroup {(a o b)tY} for a generator of B is a normal
subgroup of G; and fIG/[ (a b)tY}] is easily seen to be cyclic of order p, showing
that (II) is not satisfied by [.

It is a consequence of this example that we use the term "functor" in a
somewhat more restricted sense than may be usual.
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Example 1.2. Let be the class of all finite groups; and denote by iG
for G a finite group the intersection of all maximal normal subgroups of G.
Then is a functor, meeting the following two requirements"

G/iG is a direct product of simple groups;
if the epimorphism maps G upon a direct product of simple groups,
then (iG) 1.

For the simple verification of these two properties see e.g. Baer [6; Folgerung
4.5].
From the two facts just stated it follows that the functor meets the require-

ment (II). If on the other hand G is a finite simple group, then iG 1.
But there exists any number of finite simple groups, possessing subgroups
which are not direct products of finite simple groups; and hence (I) is not
satisfied by the functor i.
We pointed out before that G is, for every functor , a fully invariant sub-

group of G. This raises the question whether [G might not always be a word
subgroup of G. This is not the case as may be seen from the following
example which appears to be of independent interest.

Example 1.3. Let be again the class of all finite groups, and denote
by c G the terminal member of the descending central series of G. Because
of the finiteness of G we may characterize G likewise as the intersection of
all normal subgroups X of G with nilpotent quotient group G/X. From this
last remark it is easily seen that c G is a functor. Consider on the otherhand
that c G is nothing but the intersection of all the c G; and that the Theorem
of Magnus states: the intersection of the members of the descending central
chain of a free group is equal to 1; see Specht [1; p. 211, Satz 21]. Hence
c G cannot be a word subgroup of G. Our considerations show furthermore
that c G would cease to be a functor, if defined on the class 12 of all groups.

LEptA 1.4. If is a functor, then (A (R) B) A (R) B for all A, B in .
Proof. Denote by a the decomposition endomorphism of G A (R) B

which leaves invariant every element in A and maps B upon 1; and denote by
the complementary decomposition endomorphism of G which maps A onto

1 and leaves invariant every element in B. Then a + 1 and we deduce
from property (II) that

[A ([G) [B ([G) 8,
(A (R) B) G (G)"(G)= A (R) B.

Construction of Functors. A. Suppose that the functors a and b are both
defined on the same class of groups. Then their product ab is well defined
by the formula:

ab(G) a(bG) for every G in ).
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It is easily seen that with a and 5 their product aD is also monotone.
B. Suppose that the functors a and

of groups. Then their intersection a n b is defined by the formula"

(n)G= aGnG for everyGin

Example 1.1 shows that a n need not be a functor.
C. Suppose that the functors a and

of groups. Then their join a v b is defined by the formula"

(a v )G= (aG)(

This is a well-determined functor. The join of infinitely many functors may
be defined likewise; it is likewise a functor.

D. Suppose that the functors a and
of groups. Then their commutator a is defined by the formula"

(aob)G= aGoDG for everyGin

This is a well-determined functor.

Generation of Functors. Consider a functor on the class of groups.
Consider a positive integer n. If G is a group in , then the subset [n G of G
is defined by the following rule"

The element c in G belongs to , G if, and only if, there exists a subgroup U of
G which is generated by n elements (or less) such that c belongs to [U.

From the monotonicity of it follows immediately that each of these subsets
n G of G is actually a subset of [G. One verifies furthermore"

(I.n) If U is a subgroup of G, then U is a subset of [n G.

(II.n) If is an epimorphism of G upon H, then [n H , G).
Note that (I.n) is a consequence of the monotonicity property (I) and that

(II.n) is derived from (II) by remarking that subgroups of H are generated
by n elements if, and only if, they are the images of subgroups, generated by
n elements.
Next we note the obvious fact that the sets [ G form an ascending sequence

of subsets of [G. We form the join --1 In G whichis naturally a subset
of [G. But if x and y are elements in [ G, then there exist finitely generated
subgroups X and Y of G such that x belongs to IX and y to [Y. Naturally
U IX, Y} is a finitely generated subgroup of G; and /IX, [Y} [U is a
consequence of the monotonicity of [. It follows that x, y and xy- belong to
[U. Hence xy-1 belongs to [ G, showing that [ G is actually a characteristic
subgroup of G.
We introduce now the following definitions which will prove fundamental

in the sequel:
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The functor is an n-functor, if [G lf, G} for every G in ; and the functor
is finitely definable, if [G G for every G in .
For every positive integer i the subgroup G generated by all the it powers

of elements in G defines a l-functor. Furthermore bk is a 2k-functor and ck

is a (]c-- 1)-functor. These three tamilies of tunctors are defined on the
universal class 1I of all groups.
Next we discuss two functors defined on the class of all finite groups.

We remember that a finite group G is nilpotent if, and only if, elements of
relatively prime order in G commute. It follows that the terminal member
G of the descending central chain of the finite group G--see Example 1.3--is

generated by all the commutators x o y for elements x, y in G with relatively
prime orders. Hence c is a 2-functor. Let furthermore bG be the terminal
member of the derived series big of the finite group G. This functor b has
the following characteristic property:
The epimorphism a of G maps G upon a soluble group if, and only

if, (bG) 1.
It has been shown by John Thompson that every finite simple group all of

whose proper subgroups are soluble is one of the known simple groups and
may therefore be generated by two elements. Consequently b is a 2-functor.
Remark 1.5. The author has been unable to construct an example of a

functor on the class of all finite groups which is not an n-functor for suitable
n.

If G is a group in , then the subset G of G is defined by the following
rule:

The element c in G belongs to G if, and only if, there exists a countable sub-
group U o] G such that c belongs to U.
One verifies without any trouble that fo G is a characteristic subgroup of G

which is contained in fG, meeting the following requirements:
(I.a) If U is a subgroup of G, then fa U

___
fa G.

(II.a) If z is an epimorphism of G upon H, then fH (foG).
If it so happens that fG G for every G in , then we term a countably

definable functor.
Example 1.6. Let be the class of all locally finite groups with minimum

condition for all subgroups. If G is a group in , then we define fG as the
intersection of all subgroups X of G with finite index [G" X]. It is well known
and easily verified that [G: fG] is finite, too; nd thus one sees that is a functor

If G belongs to , and if U is a finitely generated subgroup of G, then U is
finite so that fU 1. This implies f G 1. On the other hand fG G,
showing that finite definability and countable definability re in general
different properties of a functor.
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A joint definition of n-functor, finitely definable functor, nd countbly
definable functor my be obtained as follows. Denote by n some finite or
infinite cardinal number. If [ is functor and G is a group in , then denote
by [(n, G) the set of ll the elements c in G with the following property:
There exists subgroup C of G which is generated by less thn n elements

such that c belongs to [C.
If n happens to be nturl integer, then [(n, G) ,_G; nd

[(0, G) [,G nd [(, G) [G. It is furthermore clear that always
[(n, G) c_G_ [G, and [(n, G) is for infinite n a characteristic subgroup of G.
We shall, however, not investigate these generalisations in the present paper.

2. Group-theoretical properties and functors
Of the mny possible wys to relate group-theoretical properties nd

functors only one will be discussed here. This may be described in a general
fshion as follows:

Suppose that is s usual nonvacuous class of groups which contains
with any group ll its subgroups and epimorphic images, and with any pair of
groups their direct product. Suppose furthermore that the functor is
defined on and that the group-theoretical property is defined on (so
that a group in may or may not be -group). Then we shall always say
that

is co-?-functor, if G is -group is co-I-property, if [G 1 when-
whenever [G 1. ever G is a 3-group.

Thus the commutator subgroup functor b is co-abelian nd co-nilpotent and
co-soluble whereas the property of being commutative is co-c and co-b.
Accordingly we shall term and 3 complementary, provided

G is 3-group if, and only if, [G 1.

It is now almost obvious how to construct to a given property (functor) the
complementary functor (property), nd this we re going to do now in a
systematic fashion. We set down the definitions:

The group G is -group if, nd If G is group in , then [ G is the
only if, [G 1. intersection of all the normal sub-

groups X of G such that G/X is a
-group.

It is clear that ) is lwys a well-determined group-theoretical property:
there exist -groups like 1, and isomorphic images of -groups are -groups.
Likewise f G is lwys a well-determined characteristic subgroup of G.

If a and b are functors on such If 9d nd re group-theoretical
that aG

___
5G for every G in , then properties on such that every

every -group is at the same time 9d-group is at the same time a
-group. -group, then [ G c_ [G foreveryG.
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PROPOSITION 2.1. If is a functor, then and subgroups, epimorphic
images, and direct products of pairs of )-groups are -groups.

Proof. If a is an epimorphism of G upon H, then by definition [H 1
whenever H is a -group. From the defining property (II) of functors and
[H 1 we deduce ([G) [H 1; and this in turn implies that [G is part of
the kernel of a. If G is part of the kernel of a, then it follows likewise that
[H ([G) 1; and this implies by definition that H is a -group. Hence
H is a -group if, and only if, [G is part of the kernel of ; and this is equiv-
alent to saying

[G is the intersection of all the normal subgroups X of G such that G/X
is a f-group.
But this property is just an explicit statement of [. The other claims

of Proposition 2.1 are fairly immediate consequences of the defining properties
of a functor and of Lemma 1.4.

PROPOSITION 2.2. If the minimum condition is satisfied by the nornal sub-
groups of every group in , then the following properties of the group-theoretical
property ? (on are equivalent:

(i) is a functor and
(iX) Subgroups, epimorphic images, and direct products of pairs of -groups

are ?-groups.
(iii) Subgroups of -groups are ?-groups, and the epimorphism (r maps G

upon a ?-group if, and only if, G) 1.

Proof. Assume first the validity of (i). If G is a -group, then by defini-
tion [ G 1. If S is a subgroup of G, then [ S 1, since [ is a functor, and
hence S is a -group, since . Likewise [H i foreveryepimorphic
image H of G so that H too is a -group. If finally A and B are -groups,
then A 1 and [ B 1 implying [(A (R) B) 1 by Lemma 1.4 so that
A (R) B is a -group too. Thus (iX) is a consequence of (i).
Assume next the alidity of (iX). If G is any group in , then there exists

because of the minimum condition among the ormal subgroups of G with
-quotient group a minimal one, say G*. Then GIG* is a -group so that
in particular [ G

___
G* (by definition). If X is another normal subgroup of

G with -quotient group G/X, then G(G* X) is isomorphic to a subgroup
of the direct product of the -groups GIG* and G/X. Apply (iX) to see that
G/(G* X) is a -group. From the minimality of G* we infer now that
G* G*a X X; and this implies G* G so that (iii) is a consequence
of (iX).
Assume finally the validity of (iii). If G is a -group, then (by definition)

[v G 1; and if conversely [G 1, then (by the second part of (iii)) G
is a -group. Hence . If X is any group, then every epimorphism
of X upon Y induces an epimorphism of X upon Y/( X) whichlattergroup

is a -group by the second part of (iii). Hence Y ([X). If J is the
inverse image of [Y with respect to the epimorphism a of X upon Y, then
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X/J and Y/fY are isomorphic groups. But the latter group is again a
-group (by the second part of (iii)) so that [X J and

([X)

___
J= [Y

_
([X)

implying [Y ([ X). If finally S is a subgroup of X, then

is a subgroup of the -group X/[ X and is consequently itself a -group.
But then we deduce from the second part of (iii) that [ S

_
S n [X

_
[ X,

proving that [ is a functor and (i) a consequence of (iii).

Remark 2.3. We note that the minimum condition for the normal sub-
groups of groups in has been used only when deducing (iii) from (ii). But
it is indispensable for the validity of Proposition 2.2, as may be seen from
the following simple example:
Denote by the class of all groups and by 3 the property of being of finite

class--it would suffice to assume that 3 is the property of being a finite
nilpotent group or even a finite p-group for fixed prime p. Then 3 certainly
meets requirement (ii). If F is a (non-abelian) free group, then according to
the Theorem of Magnus, 1 is the intersection of the members of the descending
central chain of F; see Specht [1; p. 211, Satz 21]. It follows that [F 1.
If H is a finite, non-abelian, simple group on 2 generators, then H [H is an
epimorphic image of F so that [ is not a functor, as it does not meet the
defining requirement (II).

Renark 2.4. If is the class of all finite groups and the property of
being a finite cyclic group, then [, G is for every finite group G just the com-
mutatorsubgroup of G. Thus [ isa (co-abelian) functor,and istheprop-
erty of being commutative. Hence , proving that the second part
of condition (i) is not a consequence of its first part. We mention, in pass-
ing that the f-groups are just the "residually -groups".

Because of the identity [ one may expect information concerning [
from properties of f. The following sample of such a result will prove useful
when constructing examples.

LEMMA 2.5. The following condition is necessary and sucient for the
functor to be an n-functor"
(+) [G 1 if, and only if, [U 1 for every subgroup U of G which is gen-

erated by n elements.

Proof. [G 1 implies [U 1 for every subgroup U of G. Thus only the
"if"-part of -- is relevant.
Assume now that is an n-functor and that G is a group such that U 1

for every subgroup U of G which is generated by n elements. By definition
[ G 1, and this implies [G ln G} 1, proving the necessity of (--).
Assume conversely the validity of (--). Consider a group G (in ), and
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let G G}. It is clear that G is a characteristic subgroup of G and that
G

_
[G. Denote by a the canonical epimorphism of G upon H GIG ^. If

the subgroup V of H is generated by n elements, then there exists a subgroup
U of G which is generated by n elements such that V U. Since [U is part
of n G, we have

v (fu)

_
a^= .

Application of (-k) shows [H 1;and this implies

a/a^ ([a) [H .
Hence [G G {[ G}, proving that is an n-functor.

3. The hypercenter of [G

If A is any group, then its hypercenter OA is the intersection of all the normal
subgroups X of A with (A/X) 1. One may also define )A as the terminal
member of the traasfinite ascending central chain. It is clear that the hyper-
center is a characteristic subgroup. For the reader’s convenience we collect
a few properties of the hypercenter which we shall use in the future without
explicit reference"

If is an epimorphism of A upon B, then (DA) i)B.
If N is a normal subgroup of A, then N n DA 1 and N n ]A 1 are

equivalent, properties of N.

For this and further properties of the hypereenter ep. Baer [1].
From now on we shall make use of the following properties of the elass

of groups and the funetor on , without restating these requirements:
contains with any group all its subgroups and epimorphie images, and

with any two groups their direct product; and is a funetor on .
All groups considered will belong to .
THEOREM 3.1. The following properties of the normal subgroup N of G are

equivalent"
(1) Nn [G O[G.
() No G

_
G.

(3) If is an epimorphism of G upon H, and "if M is a normal subgroup of
H with l M

_
N, then M cH 1.

(4) If is an epimorphism of G upon H with N 1, then N [H 1.
(5) [G ) N [G G for at least one i >--_ O.

Notational Remark. If X and Y are normal subgroups of the group G, then
X() Y is defined inductively by the rules:

X() Y Y, X(+) Y X [X() Y].

Note. Since c[H is a characteristic subgroup of H, the subgroup N*n cIH
appearing in (4) is a normal subgroup of H which is centralized by [H. The
group of automorphisms, induced in N n t)fH by H, is therefore an epimorphic
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image of H/[H; and as such its f-subgroup equals 1. It is therefore what we
termed in 2 a f-group.

Proof. Since N and [G are normal subgroups of G, we have

N [G

_
N [G

so that (2) is a consequence of (1).
Assume next the validity of (2), and consider an epimorphism a of G upon

H and a normal subgroup M of H with 1 c M N. If firstly M [H 1,
then M

_
cftt so that 1 M M n cfH. If secondly M [It 1, then

1 c M fH N’o (fG) (N fG)

_
()fG) )(fG)" )fH;

and it is well known that this implies J (M [H) o tt 1. Hence

1 cJ_MncH;

and thus we have shown in either case that (3) is a consequence of (2). It
is clear that (4) is a consequence of (3) as a matter of fact (4) is prima facie a
weaker statement than (3).
We assume next the validity of (4). Since N a )G is a normal subgroup

of G, we may form H G/(N n DG); and we denote by a the canonical
epimorphism of G upon H. Assume by way of contradiction that N n [H 1.
There exist normal subgroups X of H with X N and X a [H 1; and
among these normal subgroups X of H there exists a maximal one, say M
(Maximum Principle of Set Theory). We let H* HIM, and we denote by
r the canonical epimorphism of G upon H*. From N [H 1 and
M a [H 1 we deduce M N; and from M N and N= N/M we
deduce now that N 1. Application of (4) produces a normal subgroup J
of H* with IJ’_N and JOSH*= 1. Now J=L/M where L is a
normal subgroup of H satisfying M L

___
N; and from the maximality of

M we deduce K L a [H 1. Clearly K is a normal subgroup of H with

1 cKN[H;

and from fit* M. [H/M and J H* 1 we deduce

Lo [H

_
Mn [H I.

It follows that K tH. If T K- is the inverse image of K under a, then
T is a normal subgroup of G which, because of

satisfies
1 K Nn fH and fH fG/(N n 0fG),

N n OfG T

_
N n 0fG.

This is a contradiction proving

1 N H (N G)/(N )[G).

Hence [G N N )[G, showing that (1) is a consequence of (4).
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It is clear that (5) is a consequence of (1)--let i 0.
true, then there exists a minimal i with

([G) ({) (N n [G)

If conversely (5) is

If i were positive, then we could apply the equivalence of (1) and (2) to
deduce

contradicting our choice of a minimal i. Hence i 0, showing that (1) is a
consequence of (5).
COnOLLARY 3.2. If N is a normal subgroup of G and N n [G c_C_ O[G, then
(a) N n [U c_ O[U for every subgroup U of G, and
(b) N n [H c_ [H for every epimorphism (r of G upon H.

Proof. If U is a subgroup of G, then

N U NGU c_ O[G [U

_
O[U,

proving (a).
If a is an epimorphism of G upon H, then we apply the equivalence of

conditions (1) and (2) of Theorem 3.1 to show

N"o fH N"o (fG)" (N fG)" c_ (DfG)" c__

and a second application of Theorem 3.1 proves (b).

COROLLARY 3.3. If N is a normal subgroup of G, if the kernel K o] the
epimorphism r of G upon H is part of N, if U is a subgroup of G,
then N n [U

_
[U implies N n ( U) ( U).

Proof. If d is an element in N n [(U), then we deduce from [( U) (IU)
the existence of an element s in N and anelement in [U with d s .
The element ts-1 belongs to the kernel K of a which by hypothesis is part of
N. Hence (ts-)s is an element in N KU

_
i)[U so that d belongs

to ()[V)

_
i)[(V), proving N n [( V)

_
i)[(U).

Remark 3.4. The following simple construction shows that the condition
K

_
N, imposed in Corollary 3.3, is indispensable. Let be the class of all

groups (or the class of finite groups, etc.), and [G G for every G in
(or b, etc.). Consider a pair N, K of isomorphic, finite, simple, non-

abelian groups; and let G N (R) K be their direct product. Then there
exists a subgroup U of G such that

Nn U UnK 1, NU UK G, U’N’K.

Clearly N n fU 1 c__ )fU. Let H G/K, and denote by a the canonical
epimorphism of G upon H. Then N U H and hence

Nnf(U) =HI= D[(U)
From the indications made one sees the possibility of many variations of this
example.
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We denote by [G the product of all the normal subgroups X of G
with X [G

_
O[G. This is a well-determined characteristic subgroup of G.

PnOeOSTON 3.5. [G [G O[G and [G/O[G ([G/O[G) and [G
is completely determined by these two properties.

Proof. The set 0 of all the normal subgroups X of G with X [G t)[G
is because of Theorem 3.1 identical with the set of all normal subgroups X
ot G satisfying X G t)G. It follows that G G t)G; and Theorem
3.1 implies now [G [G i)G. From the obvious inclusion DIG

_
G n [G

we deduce now the validity of the first equation.
Denote by C the uniquely determined normal subgroup of G satisfying

)G

_
C and C/O[G ([G/O[G). A normal subgroup X of G is then part

of C if, and only if, X o [G t)[G. A normal subgroup X of G is consequently
part of C if, and only if, X belongs to O. Hence C [G, completing the
proof.
The importance of the next result stems from Theorem 3.1,(2).

LEMM 3.6. If N and K are normal subgroups of G with N K

_
K, if

the maximum condition is satisfied by the normal subgroups of G which are con-
tained in N, then the group of automorphisms induced in N by K is of finite
class.

Proof. Among the normal subgroups of G which are contained in
N K N there exists one L which is maximal with respect to the following
property"

There exist finitely many normal subgroups L(i) of G such that

1 L(O), K L(i + 1)

_
L(i) L(i + 1), L(t) L.

Assume by way of contradiction that L N K. Then L N o K. Let
H G/L, and denote by a the canonical epimorphism of G upon H. Then
we deduce from our hypotheses and constructions that

1 (N K) No K

_
(t)K)

_
[9(K)

and this implies 1 (N K)n (K) W/L where the normal subgroup
W of G satisfies

Ko W L W

_
NoK,

contradicting the maximality of L. Hence L NoK. If we let
N L(t + 1), then the L(j) form a chain of normal subgroups of G connect-
ing 1 and N with

KoL(j + 1) _n(j) _L(j + I).

The elements in K induce in each L(j + 1)/L(j) the 1-automorphism only.
Thus K induces in N a subgroup of what Specht [1; p. 349] terms the group
of stability of the chain L(j) of normal subgroups of N. Application of a
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Theorem of Kaluschniu (see Specht [1; p. 366, Satz 44]) shows that the group
of automorphisms induced in N by K is at most of class + 2.

LEMMA 3.7. If the normal subgroup N of G is a finite p-group, and if U is a
subgroup of G such that

N n [{x, U}

__
{x, U} for every x in N,

then a p-group of automorphisms is induced in N by [U.

Proof. It is clear that a finite group of automorphisms is induced in the
finite normal subgroup N of G by the subgroup [U of G; and this group of
automorphisms is essentially the same as [U/(fU ncN). This group pos-
sesses, as every finite group, a uniquely determined smallest normal subgroup
with p-quotient group which we denote by P/(fU n oN). Thus the normal
subgroup K of [U contains P if, and only if, [U n cN

_
K and [U/K is a

p-group.
Let X {x, U} forx an element in N. Thellby hypothesisN n[X )fX.

Since the finite normal p-subgroup N n[X of [X is part of the hypercenter
of [X, every element in IX induces a p-automorphism in N n [X; see Baer
[1; p. 181, Lemma 3]. The finite group of automorphisms induced in N n IX
by [X consists consequently of p-elements only and is as such a p-group.
Because of (N n X) [X

___
N n [X, the identity automorphishm is induced

in (N n X)/(N n [X) by [X. If we denote by 1 the group of automorphisms,
induced in N n X by [X, and by F0 the subgroup of those automorphisms in
1 which induce the identity in N n[X, then 1% is a normal subgroup of 1’
with 1"/1"0 a p-group. Furthermore F0 is part of the group of stability of the
normal subgroup N n[X of N n X; see Specht [1; p. 88]. If is any element
of N n X and a is any automorphism in r0, then -1 belongs to N n [X and
is therefore a fixed element of a. From t-It we deduce now by complete
induction the validity of * (t-) t for every positive i. If pe is the maxi-
mum order of the elements in the finite p-group N n X, then

proving a 1. Thus every element in F0 is a p-element so that the finite
group F0 is a p-group. Since F0 and F/F0 are p-groups, so is F. But the
group of automorphisms, induced in N X by [U

___
IX, is a subgroup of

F so that a p-group of automorphisms is induced in N n X by [U.
If K [U c(N X), then K is a normal subgroup of [U, and [U/K is
essentially the same as the group of automorphisms, induced in N X by
U. Thus [U/K is a p-group. Clearly [U cN

_
K. Recalling our char-

acterization of P we find that P

___
K. Hence X P X K 1; and thus

we have shown N o P 1. Hence P U ncN so that U/(U ncN) is an
epimorphic image of the finite p-group [U/P. But [U/([U n cN) is essen-



REINHOLD BAER

tially the same as the group of automorphisms, induced in N by fU; and thus
this group is a p-group too.

4. Groups with noetherian I-subgroup of finite class
The principal properties of engel elements will play a fundamental role in

the proof of Theorem 4.1. We recall these.
If x and y are elements in some group G, then their iterated commutators

x() y are defined by

x(1) y x y x-ly-xy, x(+) oy xo[x()oy].
The element e in the group G is termed

a left-engel element of G if, for every a right-engel element of G if, for
x in G, e() x 1 for almost all i. every x in G, x()

o e 1 for almost
all i.

Heineken has shown that every right-engel element is also a left-engel
element. Thus it is justified to say shortly engel element instead of left-
engel element.

Before stating the main result concerning engel elements we recall that
a group is termed noetherian, if all its subgroups are finitely generated, and
that this is equivalent to requiring the validity of the maximum condition
for subgroups.

(4.E) If e is an element in G such that {ev} is noetherian, then

e is a left-engel element of G if, and e is a right-engel element of G if,
only if, {e} is of finite class, and only if, e} G, so that e is

contained in a finite term of the as-
cending central chain.

For proofs of these facts cp. Baer [5; p. 257, Satz L and Satz R].

THEORE! 4.1. Suppose that is an n-functor and that [G is noetherian.
a) [G is of finite class if, and only if, [U is of finite class whenever the sub-

group U of G is generated by n 1 elements.
(b) [G G if, and only if, [U U whenever the subgroup U of G is

generated by n 1 elements.

Note. In the course of this proof We shall use the functor-defining condi-
tion (I) only.

Proof. If firstly [G is of finite class, and if U is a subgroup of G, then
[U [G implies that [U is of finite class too, proving the necessity of the
condition given ad (a).
Assume conversely that [U is of finite class whenever the subgroup U of G

is generated by n - 1 elements. Consider an element c in G and an ele-
ment x in G. We note first that c belongs to the noetherian characteristic
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subgroup [G of G and that consequently {c} is a noetherian normal subgroup
of G. By definition of In there exists a subgroup C of G which is generated
by n elements such that c belongs to [C. Then the subgroup/C, x} of G is
generated by n d- 1 elements so that [{ C, x} is, by hypothesis, of finite class.
Since c belongs to [C

___
I/C, x}, since [{ C, x} is characteristic subgroup of

C, x} nd x is in {C, x}, it follows that c) x 1 for almost all i. Hence c is
n engel element of G; nd application of (4.E) shows that {cs} is of finite
class. From [G {[ G} it follows now that the noetheria group [G is the
product of normal subgroups of finite class. Hence [G is the product of
finitely many normal subgroups of finite class; nd this implies, as is well
known, that [G itself is of finite class; cp. e.g. Baer [3; p. 406, Lemm 4].
This proves ().

If secondly [G G nd if U is subgroup of G, then

U UGUG..U,

proving the necessity of the condition given ad (b).
Assume conversely that [U Uwhenever the subgroup U of G isgeaerated

by n 1 elements. Consider aa element c ia [ G and an element x in G.
Then the normal subgroup c} of G is part of the noetherian characteristic
subgroup [G of G so that {c} itself is aoetheriaa. By definition of [ there
exists a subgroup C of G which is generated by n elements such that c belongs
to [C. Then c belongs likewise to [{C, x}; and since {C, x} is generated by
n + 1 elements, we deduce [{C, x} { C, x} from our hypothesis. Since x
belongs to {C, x} and c to C, x}, since {c(c’} c} is oetherian, applica-
tion of (4.E) proves that x() c 1 for almost all i. Hence c is a right-
engel element of G; and a second application of (4.E) shows{cs} G. Thus
[ G has been shown to be part of OG. Since is supposed to be an n-functor,
it follows that [G {[ G} DG, as we claimed.

COROLLARY 4.2. Assume that is an n-]unctor, that N is a normal subgroup
of the group G, that P is the group of automorphisms, induced in N by G, and
that [G is noetherian. Then [F is of finite class if, and only if,

(.) the group of automorphisms, induced in N by U, is of finite class when-
ever the subgroup U of G is generated by n 1 elements.

Proof. If U is a subgroup of G and if 0 is the group of automorphisms,
induced in N by U, then [0 is the group of automorphisms, induced in N by
U. It follows that [0 IF, since [U [G. Hence [0 is noetherian; and
[0 is of finite class whenever F is of finite class. This shows in particular
the necessity of conditio (.).
Assume conversely the validity of condition (.). If the subgroup 0 of F

is generated by n + 1 elements, then there exists a subgroup U of G which
is generated by n + 1 elements such that 0 is the group of automorphisms,
induced in N by U. Then [0 is induced by [U; and it follows from (.) that
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0 is of finite class. Since IF is noetherian, we may apply Theorem 4.1,(a)
to show that IF is of finite class.
We are now going to discuss the question--which will prove important in

later applications--under which circumstances it is possible to substitute for
the integer n - 1 appearing in Theorem 4.1,(a) the integer n. We want to
point out immediately that a further improvement to n 1 cannot be ex-
pected. For this discussion we shall need the following simple criterion for
a group and one of its epimorphic images to have the same number of gen-
erators.

LEMA 4.3. I] M is an abelian minimal normal subgroup of the finite group
G, if there exist complements of M in G, and if all the complements of M in G
are conjugate, if furthermore G/M is not cyclic, then G and G/M have the same
rank.

Terminological Notes. A complement of M in G is a subgroup C of G such
that G MC and 1 M n C. These conditions naturally imply G/M --- C.
The rank of the group X is the minimum number of elements, generating X.

Proof. Clearly it suffices to prove the following fact"

If G/M is generated by j elements, then so is G.

Our last hypothesis implies 1 < j. We denote by J* some set of j elements,
generating G/M.
A subset of j elements in G is termed a set of representatives of J*, if it

contains exactly j elements and if every coset in J* contains one and only
one element in this set. If we let m denote the order of M, then m is the
number of sets of representatives of J*.

If C is a complement of M ia G, then every coset of G modulo M contains
one and only one element in C. We denote by C J* the elements in C
belonging to cosets in J*. This is clearly a set of representatives of J*,
which we term singular. All the other sets of representatives of J* we call
regular.
The number s of singular sets of representatives of J* is by construction

equal to the number of complements of M in G. Since all complements are
conjugate, this number equals [G’uC] where C is any complement. Since
C uC and [G" C] is just the order m of M, we find that

s [G’rtC] [G’C] m
so that

s -< m < m,
since 1 < j. Since s is the number of singular sets of representatives of J*
whereas n is the number of all the sets of representatives of J*, there exists
at least one regular set J of representatives of J*. The subgroup S {J} is
consequently generated by j elements, but is not a complement of M in G.
Since J represents J*, we find that G/M {J*} MS and this implies
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G MS. Since S is not a complement, it follows that M n S 1. Thus
there exists an element a 1 in M n S. Since M is an abelian minimal
normal subgroup of G, we infer

i {a"} aM} a} S

so that G MS S is generated by j elements, as we intended to show.

Remarlc 4.4. The indispensability of the hypothesis that G/M be non-
cyclic is seen by considering the example of the essentially uniquely deter-
mined non-abelian group F of order pq for primes p and q with p 1 modulo q.
Such a group is not generated by one element; it possesses a normal
subgroup M of order p with G/M of order q so that G/M is cyclic, and clearly
all the other hypotheses of Lemma 4.3 are satisfied by the pair M, G.

COROLLARY 4.5. If M is an abelian minimal normal subgroup of the finite
group G, and if G/M is not cyclic, then G and G/M have the same rank, provided
at least one of the following conditions is satisfied by the pair M, G"

(a) M is a Hall subgroup of G.
(b) There exists a normal subgroup J of G such that M is a Hall subgroup

of J and M J.
Terminological Remark. A subgroup is a Hall subgroup, if order and index

are relatively prime.
Proof. If M is an abelian normal Hall subgroup of the finite group X,

then the Theorems of Schur-Zassenhaus assert the existence of complements
of M in X and the conjugacy of all these complements; cp. Zassenhaus [1;
pp. 125-126, Satz 25, Satz 27].

If M is a Hall subgroup of G, then the Theorems of Schur-Zassenhaus show
the applicability of Lemma 4.3 so that G and G/M have equal rank.
Assume next the existence of a normal subgroup J of G such that M is a

Hall subgroup of J, but M J. Since Che characteristic subgroup ]J of
the normal subgroup J of G is a normal subgroup of G, we deduce M ]J 1
from the minimality of M. Application of the Theorems of Schur-Zassenhaus
to the normal Hall subgroup M of J shows the existence of a complement C
of M in J and the conjugacy of all the complements of M in J. Using this
last fact we prove G J. nC MCnC M. nC by the so-called Frattini
Argument; see Baer [8; p. 117, Lemma 2]. Since C and M C are normal
subgroups of nC, we have

Co(MC) MC 1.

Thus M n nC is centralized by C and by the abelian group M; and it is con-
sequently part of the center of MC J. Hence M C

___
M ]J 1 so

that nC is a complement of M in G. If S is any complement of M in G,
then J S is a complement of Mia J. Clearly S n(J S). Since S
and n(J n S) are complements of M in G, we conclude S (J n S); and
now it is clear that all the complements of M in G are conjugate, since all
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the complements of M in J are conjugate. Thus we have shown again the
applicability of Lemma 4.3 so that the ranks of G and G/M are equal.
We turn now to the decisive

LEMMA 4.6. Assume that is an n-functor with 1 < n and that G is a finite
group. Then [G is nilpotent, if firstly [S is nilpotent for every subgroup S of G
which is generated by n elements, and if secondly at least one of the following
conditions (A) and (B) is satisfied:

(A) S/[S is soluble for every proper subgroup S of G with S

_
[G.

(B) Every simple epimorphic image of G is generated by n elements, and
there exist properties I and !3 of finite groups, meeting the following require-
ments:

(I) The orders of %groups and !D-groups are relatively prime.
(II) S/[S is an extension of an %group by a 23-group for every proper

subgroup S of G.
(III.) If there exist nonsoluble %groups, then o( [S) is prime to the order

of every %group for every proper subgroup S of G with nilpotent [S.
(III.!3) If there exist nonsoluble !-groups, then o([S) is prime to the order

of every !D-group for every proper subgroup S of G with nilpotent [S and S/S a

There does not exist a factor H of G with the following properties:
there exists one and only one normal subgroup M ofH with i c M H;
M is a simple non-abelian !D-group;
M [H and HIM is a cyclic %group of order a prime p # 2;
if is of order p and x belongs to M, then It, x}

_
[l t, x} and t, x}’ is

nilpotent;
(v) there does not exist a prime q such that [S is a q-group whenever the

subgroup S of H is generated by 2 elements;
(vi) there does not exist a prime q such that M is generated by n elements

one of which is a q-element and such that o( [S) is prime to q whenever
the subgroup S of H is generated by 2 elements.

Note on group-theoretical properties. If is a property of (finite) groups,
then we term every group with property an -group; and we require that
isomorphic images of E-groups be again -groups. If the prime x divides
the order of some -group, theI1 x is said to be an -prime or a prime belonging
to .

Discussion of condition (B). It is a well-known conjecture of Burnside that
every finite simple group may be generated by 2 elements. If this conjecture
should prove to be true, then the preamble of (B) may be omitted (because
ofl <n).

Conditions (II) and (III) are certainly satisfied whenever the n-functor
[ meets the following requirement:

(+) IX 1 if, and only if, X is an extension of an %group by a !3-group.

8-group.
(iv)
(i)
(ii)
(iii)
(iv)



HYPERCENTER OF FUNCTORIALLY DEFINED SUBGROUPS 197

Suitably selected properties ?I and will naturally lead to a fuactor
meeting our requiremeats (I)-(III) via the property (+). A typical ex-
ample of such a pair of properties is obtained by considering two comple-
mentary sets and ! of primes and terming a group a -group whenever
its order is divisible by primes i only. It was our desire to find an ex-
ample showing the indispensability of conditions (A), (B) that led us to the
investigation of this class of fuactors. But our next remark will show that
it is extremely unlikely that such an example can be found in this direction.

Condition (IV) is essentially aa enumeratio of properties of the "least
criminal". If H is a group with properties (i)-(iii), then a consideration
of (I) shows that M is a simple, nomabeliaa group possessing aa automor-
phism of order a prime p 2 which does not divide o(M) aad that H is not
geaerated by n elements. According to presently available evidence it
appears unlikely that such aa M and such a p do exist.

In a later application of this lemma coaditioa (v) will prove useful.
It should be noted finally that the prime 2 belongs to at most one of the

properties [ and . According to the Theorem of Walter Feit and John
Thompsoa groups of odd order are soluble. It follows that at least oae of
the classes and consists of soluble groups only. Thus of the conditions
(III.) and (III.) one is vacuous, though we do not know which one it is.

Proof. The proof will be effected in two essentially different steps:
the first of these no effective use will be made of conditions (A) and (B) which
are going to come into play during the second part of the proof only.

If the lemma were false, then there would exist finite groups meeting all
the requirements of the lemma, though their I-subgroups were not nilpotent;
and among these groups there would exist one G of minimal order: the
"least criminal". We are going to derive a number of properties of G.
As G is a "criminal", we have

(1) [G is not nilpoteat.

Next we note that all the properties imposed on G, with the exception of
(1), are inherited by all the factors of G. As G is a "least criminal", we have

(2) IF is nilpotent for every proper factor F of G.

If G were generated by n elements, then we could deduce the nilpoteacy
of [G from our first hypothesis in contradiction of (1). Hence

(3) G is not generated by n elements.

Assume next by way of contradiction that the minimal normal subgroup
K of G is not part of [G. Then K n [G 1. Noting that epimorphisms
map [-subgroups upon [-subgroups, we deduce from (2) the nilpotency of

[(G/K) K[G/K [G/(K [G) [G

contradicting (1). Consequently
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(4) every minimal normal subgroup of G is part of fG.
Assume by way of contradiction the existence of two different minimal

normal subgroups A and B of G. If X is one of them, then we deduce X

_
fG

from (4), and the nilpotency of [(G/X) [G/X from (2). But A n B 1
so that G is isomorphic to a subgroup of the direct product of the two nil-
potent groups [G/A and fG/B. Consequently fG itself would be nilpotent
contradicting (1). Hence

(5) there exists one and only one minimal normal subgroup M of G.

Clearly M is a characteristic subgroup of G such that M

_
fG by (4), and

[G/M is nilpotent by (2). Next we prove the following fundamental fact.

(6) M is not soluble.

If this were false, then M would be an elementary abelian p-group, since
the minimal normal subgroup M is free of proper characteristic subgroups.
We noted before that fG/M is nilpotent; and as such fG/M is the direct
product of a p-group P/M and a group Q/M of order prime to p. These
direct factors of fG/M are characteristic subgroups of [G/M; and since fG
and M are characteristic subgroups of G, so are P and Q.

Since the p-group M is clearly a Hall subgroup of Q, and since the abelian
group M is part of its centralizer cM, we find that M is a Hall subgroup of
D Q n cM. Application of a Theorem of Sehur (see Zassenhaus [1; p.
125, Satz 25]) shows the existence of a complement Q* of M in D; and since
M is centralized by D, we have D M (R) Q*. As the orders of M and Q*
are relatively prime, Q* is a characteristic subgroup of D. By noting that
M and consequently cM are characteristic subgroups of G, and recalling that
Q is a characteristic subgroup of G, it follows that D and consequently Q*
is a characteristic subgroup of G. Thus Q* 1 and (5) would imply
1 c M

___
Q* which is impossible, since the orders of M and Q* are relatively

prime. HeneeQ* lsothatD M.
If M Q, then [G P would be a p-group and hence nilpotent, contra-

dicting (1). Thus Q n cM M c Q so that the Hall subgroup M of the
characteristic subgroup Q of G is not part of ]Q. Hence condition (b) of
Corollary 4.5 is satisfied, showing that G and G/M are generated by the same
number of elements. Apply (3) to show that G/M is not generated by n
elements.

Consider an element c in f G. Then there exists a subgroup C of G which
is generated by n elements such that c belongs to [C. Since C is generated
by n elements and G/M is not, we have MC G. Application of (2) shows
the nilpoteney of f(MC) so that f(MC) A .(R) B is the direct product of
a p-group A and a group B of order prime to p. Since B is a characteristic
subgroup of the characteristic.subgroup f(MC) of MC, it is a characteristic
subgroup of MC. Thus M and B are characteristic subgroups of relatively
prime order of MC; and this implies M B

___
M n B 1 so. that B

_
cM.
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But B [(MC) [G implies B Q, since the order of B is prime to p.
Hence B Q n cM M so that B 1, as the orders of M and B are rela-
tively prime. This shows that (MC) A is a p-subgroup of [G; and as
such it is part of P. Thus the element c belongs to C [(MC) P so
that In G

_
P. Since [ is an n-functor, it follows that

[G {In G} P is a p-group;

and this contradicts (1), proving (6).

(7) cM 1.

If this were false, then M cM would be a consequence of (5).
M would be abelian, contradicting (6).

But then

(8) IS 1, if S is a subgroup of G with M

_
S c G.

From (2) and S G we conclude the nilpotency of [S. Since M and fS
are normal subgroups of S, their intersection M n[S is a .nilpotent normal
subgroup of M. But the minimal normal subgroup M of G is not soluble
by (6); and thus 1 is the only nilpotent normal subgroup of M.
Hence M n IS 1. But M and [S normalize each other so that
Mo[S___ Mo IS 1. Consequently IS

_
cM 1 by (7),proving (8).

(9) G/M is generated by n elements.

Assume the falsity of (9). Since [ is an n-functor, we deduce
In G} [G 1 from (1) so that there exists an element c 1 in [, G. There

exists furthermore a subgroup C of G, generated by n elements, such that
c belongs to [C. Since G/M is supposedly not generated by n elements,
we have MC G; and application of (8) shows

1 C_ (MC) 1,

contradiction proving (9).

(10) o(M) and o(fG) have the same prime divisors.

By (4), M is part of fG so that every prime divisor of o(M) is likewise
a prime divisor of o(fG). Assume by way of contradiction the existence of a
prime divisor p of o([G) which does not divide o(M). Then p is necessarily
a divisor of o([G/M). We recall furthermore that [G/M is nilpotent by
(2) and that therefore the totality P/M of p-elements in [G/M is a charac-
teristic subgroup of [G/M, implying that P itself is a characteristic subgroup
of G. If S is a p-Sylow subgroup of P, then S is a complement of M in P,
since P/M is a p-group whereas o(M) is prime to p.

Consider now any prime divisor q of o(M). If Q is a q-Sylow subgroup of
M, then we deduce from (6) that Q is not a normal subgroup of G so that
its normalizer nQ G, implying the nilpotency of [nQ by (2). By Frattini’s
Argument (see Baer [8; p. 117, Lemma 1]) we conclude that G MrtQ;
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and this implies by M

_
P and Dedekind’s modular law that P M(P n nQ).

Since the order of M is prime to p, it follows that a p-Sylow subgroup T of
P n nQ is a p-Sylow subgroup of P. Hence S and T are conjugate in P
so that there exists an element x in P with T S. Then Q* Q* is a
q-Sylow subgroup of M, and [nQ* ([nQ) is nilpotent. Furthermore
S T is a p-Sylow subgroup of (P n nQ) P nQ*. It follows that S is
a complement of M a nQ* in P nQ*.
The natural epimorphism of (7 M.nQ* upon G/M maps nQ* upon

G/M and consequently [nq* upon (G/M) G/M so that [G M.nQ*.
Since

SPnnQ* [GnnQ* M.[nQ*nnQ* nQ*(MntQ*),
and since S is a p-group whereas the order of [tQ*(M n aQ*)/[nQ* is a divisor
of o(M) and hence prime to p, we conclude that S [aQ*. Since S is a
p-Sylow subgroup of P n nQ*, it is likewise a p-Sylow subgroup of P n [Q*.
Noting that P is a characteristic subgroup of G and that

[tQ*/(P [tq*) - P[nQ*/P [G/P,

a group of order prime to p, we see that S is a p-Sylow subgroup of the nil-
potent group [rtQ*. Hence S is a characteristic subgroup of aQ* and con-
sequently of nQ* Thus S and Q* are normal subgroups of tQ*. Since their
orders re relutively prime, it follows thut S Q* S Q* 1. Hence S
is centralized by Q*. Thus we have shown that cS contains a q-Sylow sub-
group of M for every prime divisor q of o(M), proving that S is centralized
by M itself. Hence

1cScM=l

by (7). This contradiction shows that every prime divisor of o(G) is a
divisor of o(M), proving (10).

(11) There exists a proper subgroup S of G with S [G such that S/S is
not soluble.

Assume the falsity of (11). It is a consequence of (4) and (5) that
M

_
[G. Assume M G. Then it follows from (8) that [M i so that by

hypothesis M M/[M is soluble contradicting (6). Hence M G imply-
ing M [G. But then it follows from our hypothesis that S/IS is soluble
for every proper subgroup of G; and this implies by (2) that every proper
subgroup of G is soluble. Because of the minimality of the normal subgroup
M of G and because of M G, we find that G is a simple group all of whose
proper subgroups are soluble. It has been shown recently by John Thompson
that such a group is generated by 2 elements. But 1 n so that G is generated
by n elements, contradicting (3) and proving (11).

Since (11) amounts to saying that condition (A) is not satisfied by G, [,
we may restate 11 as follows"

(11") Condition (B) is satisfied by G and [.
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Accordingly we shall assume in the sequel the validity of (B).
If G M, then G would be a simple group; and G would be, as a consequence

of (B), generated by n elements, contradicting (3). Hence

(12) M G.

By (12) and (8), [M 1. By (12) and (II), M is an extension of an
I-group by a !-group. By (I), the orders of I-groups and of !-groups are
relatively prime. Since M is free of proper characteristic subgroups, it
follows now that M is either an /-group or a !-group. Assume by way of
contradiction that M is an -group. By (6), M is not soluble. Thus not all
?i-groups are soluble. By (1), 1 [G ln G}, as is an n-functor. Hence
there exists an element c 1 in n G. Consequently there exists a subgroup
C of G which is generated by n elements such that c belongs to [C. By (3),
C G, and, by (2), [C is nilpotent. By (III.[), the order of [C is
prime to every prime belonging to /. Since c 1 belongs to [C, there exists
a prime divisor b of o(IC) which does not belong to l. From [C [G we
deduce that b is a divisor of o([G); and this implies by (10) that b is a divisor
of o(M). Since M is an -group, we have shown that the prime b both
belongs and does not belong to /. This contradiction proves that

(13) M is a -group.
Assume by way of contradiction that every prime divisor of o(G/M)

belongs to !. This is, by (13), equivalent to saying that every prime divisor
of o(G) belongs to !. By (6) and (13), M is a nonsoluble !-group. If
S G, then S is nilpotent by (2); and S/IS is by (II) an extension of an
l-group A by a !-group. Applying (I) and thefact that every prime divisor
of o(G) belongs to ! we conclude that A 1 so that S/[S is a !-group. Apply
(III.) to see that o([S) is not divisible by primes belonging to !. As every
prime divisor of o(G) belongs to !, it follows that o([S) 1 and hence that
IS 1. If c is an element in In G, then there exists a subgroup C of G which is
generated by n elements such that c belongs to [C. From (3) we conclude
C G so that C 1 and hence c 1. This implies In G 1, and since is
an n-functor, it follows that G n G} 1, contradicting (1). Hence there
exists a prime divisor p of o(G/M) which does not belong to !.
By Cauchy’s Theorem there exists an element of order p in G/M, and con-

sequently there exists a subgroup T of G which contains M such that TIM
is cyclic of order p. Assume by way of contradiction that T G. Then
we deduce T 1 from (8) so thut T is, by (II), an extension of a normal
-subgroup L by the !-group T/L. Now o(T) o(M)p, and M is
!-group by (13), whereas the prime p does not belong to !. The orders
o(L) of the ?l-group L and o(M) of the !-group M are by (I) relatively
prime. Consequently o(L) p implying T M (R) L. Now we deduce
1 L

___
cM 1 from (7), a contradiction proving G T. Hence [G" M] p

is a prime not belonging to
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Since p is a divisor of o(G), there exists by Cauchy’s Theorem an element
s of order p in G. Since cM 1 by (7), there exists an element in M with
st ts. From 1 < n and our general hypothesis we deduce the nilpotency of
({s, t} ). Since s is not in M n {s, t}, as p is not a divisor of o(M), and since
[G:M] p, we have [{s, t} :M n {s, t}] p so that {s, t} (M n {s, t}){s}
andl (Mn{s,t})n{s}. Since belongs to M n s, t} and since st # ts,
it is impossible that {s} is a normal subgroup of {s, t}, as this would imply
{s, t} (Mn {s, t}) (R) {s}. Next we note that p is the highest power of
p dividing o(G) so that {s} is a p-Sylow subgroup of G. If s were contained in
[({s, t} ), then {s} would be a p-Sylow subgroup of the nilpotent group [({s, t}
and as such {s} would be a characteristic subgroup of [({s, t} and hence of
{s, t} which we proved to be impossible. Thus s does not belong to [({s, t}
so that p is a divisor of [{s, t} :[({s, t})]. Since {s, t} is, by (3) and 1 < n a
proper subgroup of G, we deduce from (II) that {s, t}/( {s, t} is an extension
of an I-group A/({s, t} by the -group {s, t}/A. Since p is a divisor of
[{s, t} :[({s, t} )] without belonging to , and since p is the highest order of p
dividing o(G), we conclude that the 9.I-group A/[({s, t} is a cyclic group of
order p whose [-subgroup equals 1. Thus p belongs to 9.I, and cyclic groups
of order p are -groups with -subgroup 1.

This last remark implies G M; and we deduce M [G from (4) and (5).
Since there exist by (6) and (13) nonsoluble -groups (like M), it follows
from the Theorem of Feit-Thompson that the prime 2 belongs to $ so that
p # 2. Thus we have verified the following facts:

(14) [G M, and G/[G is a cyclic .I-group of order a prime p # 2 belonging
to .

We note next that during the proof of (14) we have verified the following
facts" if s is an element of order p in G and is an element in M with st ts,
and if R Is, t}, then R/[R is an extension of the cyclic -group A/[R of
order p by the 5-group R/A. Since [R’A] is prime to p, the element s
belongs to A. Naturally M n R is a normal subgroup of R which contains
so thatR A(MnR). From (14) we deduce [R [GnR M n R
so that[R AnMA. But[A’R] psothateitherAnM [R or
A n M A. In the latter case A M, and hence R A, an impossibility,
so that A n M JR. Hence s is an element ia

Ao(MnR) _AnMnR fR;

and now we deduce fromR {s,t} that R’ JR. Froml < hand our
general hypothesis we conclude furthermore the nilpotency of [R and hence
that of R’. If st ts, then R’ 1;and we hve verified the following
fct"

(15) If s an element of order p in G and is an element in M, then {s, t}’
is a nilpotent subgroup of (Is, t} ).
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Since the minimal normal subgroup M of G is not soluble by (6), it is the
direct product of all its simple normal subgroups; and these are all isomorphic
and non-abelian; cp. Specht [1; p. 274, Satz 28/29] and Zassenhaus [1; p. 86,
Satz 12]. Assume now by way of contradiction that M is not simple. We
recall that M is by (13) a -group, and G/M is by (14) a cyclic 9.i-group of
order a prime p 2 which is prime to o(M). Hence there exists an element
of order p in G, and we have G M{t} and 1 M a {t}.
Let E be a simple and non-abelian direct factor of M. Then E M so

that E is not normal in G. Since E is normalized by M,. it is not normalized
by t. Since o(t) p 2, the conjugate subgroups Et with 0 i < p are
pairwise different and in particular E, Et, E are pairwise different. Since
the product of these normal subgroups Et of M is normalized both by M
and by t, it is normalized by G; and we deduce from the minimality of M that

M E @ E @ Et @ @ Et-.
Consider some prime divisor q of o(E). Since E is a non-abelian simple
group, E is not q-closed so that there exist two q-elements a, b in E whose
product ab is not a q-element. The elements a, a-t, and bt belong to different
components of the above direct decomposition so that they commute pairwise;
and likewise and b commute. It follows that x abt is a q-element;
and that- - - xt-x- at-a-btb-tX o XX

-t aa-tbtb-t x

We apply (15) to see the nilpotency of {x, t}’. But this subgroup contains
x and x-, and the Et-components of these elements are a-t and b
respectively;here we use 2 p again. The projection of the nilpotent group
{x, t}’ into E contains the q-elements a and b whose product (ab) is not
a q-element. This projection is thus at the same time nilpotent and not
q-closed, a contradiction proving that

(16) M is simple.

Assume by way of contradiction the existence of a prime q with the property"

+ If the subgroup T of G is generated by 2 elements, then IT is a q-group.

Because of (13), (14) there exists a p-Sylow subgroup P of G which is
cyclic of order p 2suchthatG MPand 1 MP. Ifrisaprime
divisor of o(M) and R is an r-Sylow subgroup of M, then we deduce G M.nR
from Frattini’s Argument; see Baer [8; p. 117, Lemma 1]. Since p is, by
(13), no divisor of o(M), it is a divisor of o(uR) so that nR contains a p-Sylow
subgroup of G which naturally has the form P for g in G. Let S(r) R-.
Then

P (uR)- uS(r).

Consider next prime divisor r q of o(M) nd n element x in S(r).
Application of (15) shows that
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[x, P}’ [( [x, P} aq-groupby(+).

From [x, P} {xP}P we conclude that

{x, P}’ {xP} {S(r) e} S(r) r-group

so that {x, P}’ 1 as a consequence of r q. Hence x P 1 showing that
x, and hence S(r), is part of cP. Since this is true for every r q, we con-
clude that M (M n cP)S(q). Since [P} is a normal subgroup, not 1,
of G, we deduce from (5) that

M

_
{pO} {ps(q)} PS(q).

But the order of M is prime to p, and S(q) is normalized by P.
M

_
S(q) contradicting (6), and thus we have shown that

Hence

(17) There does not exist a prime q with the property" T is a q-group when-
ever the subgroup T of G is generated by 2 elements.

Assume next by way of contradiction the existence of a prime q with the
following two properties"

(a) M is generated by n elements one of which is a q-element;
(b) o(T) is prime to q whenever the subgroup T of G is generated by 2

elements.
According to (a) there exists an n-element set E of generators of M which

contains a q-element e. There exists a q-Sylow subgroup Q of M which con-
rains e; and G M.uQ by Frattini’s Argument; see Baer [8; p. 117, Lemma 1].
By (13), (14), and (I) we conclude that a p-Sylow subgroup P of nQ is a
p-Sylow subgroup of G with o(P) p and G MP, 1 M P. If we let
F e, P}, then we deduce F’ IF from (15) so that o(F’) is prime to q
by (b). On the other hand we have F {ee} P so that

F’_ {eP} {q} Q aq-group.

Consequently F’ 1, and this implies e P 1.
Consider now an element 1 in P. Then P {t} and et re. As the

orders of e and are relatively prime, the elements e and are both contained
in {et}. The n-element set consisting of et and the elements, not e, in E
consequently generates G, contradicting (3), so that we have shown:

(18) There does not exist a prime q with the following two properties"
(a) M is generated by n elements one of which is a q-element;
(b) o([T) is prime to q whenever the subgroup T of G is generated

by 2 elements.

Combining (5), (6), (13), (14), (15), (16), (17), and (18) we obtain a
contradiction to (IV) proving our lemma.

THEOREM 4.7. If is an n-functor with 1 < n, and if G is a group with

finite G, then the following two conditions are necessary and sufficient for nil-
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potency of [G
a if the subgroup S of G is generated by n elements, then S is nilpotent;

and
(b) if S G is a subgroup of [G, then S/[S is soluble.

Remark. If we require instead of the finiteness of [G only the finiteness of
[G/OG, then Theorem 4.7 shows that the conditions (a) and (b) are necessary
and sufficient for the nilpotency of the finite group [G/[G. But nilpotency of
[G/O[G is equivalent to [G i)[G which in turn is equivalent to the nil-
potency of [G.

Proof. The conditions (a) and (b) are iust strongly weakened forms of
the nilpotency of [G, since IS

_
[G for every subgroup S of G; and hence

they are necessary conditions.
Assume conversely the validity of (a) and (b). Since c[G is a charac-

teristic subgroup of G, and since G/c[G H is essentially the same as the
group of automorphisms, induced in [G by G, we deduce the finiteness of H
from the finiteness of [G. Next we note that

+ H cG. G/cG --- G/G.If a subgroup of H is generated by n elements, then it is an epimorphic
image of a subgroup of G which is generated by n elements so that (a) is
satisfied by H. If a proper subgroup of H is part of H, then it is an epi-
morphic image of a proper subgroup of G which is part of [G so that (b) is
satisfied by H. Application of Lemma 4.6 upon the finite group H shows
the nilpotency of H; and this implies because of (+) the nilpotency of G.

Remarlc 4.8 on co-soluble functors. A functor may be termed co-soluble,
whenever X/X is soluble for every finite group X. Clearly condition (b) of
Theorem 4.7 may be omitted whenever the functor under discussion is co-
soluble. The functors mentioned in the introduction are all co-soluble;
they are even "co-nilpotent". Whether condition (b) is indispensable,
we have not been able to decide.

Remarl 4.9. The condition (a) cannot, in general, be weakened to

(a’) If the subgroup S of G .is generated by n 1 elements, then S is
nilpotent,

as may be seen by the following discussion of co-soluble 2-functors like com-
mutator subgroup or terminal member of descending central series, etc. In
this case (a’) asserts that S is nilpotent whenever S is cyclic, an assertion
that is always true. But if G is a finite, non-abelian, simple group, then
G G is certainly not nilpotent. See 8.C and Theorem A.1.

Remarlc 4.10. The hypothesis 1 < n--which we did not have to make in
Theorem 4.1--is indispensable, as may be seen from the following simple
consideration: let p be any prime, and denote by [G for every finite group G
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the intersection of all the normal subgroups N of G with p-quotient group
G/N. Then G/G is likewise a p-group; and it is fairly obvious that is a
co-soluble 1-functor. Condition (a) is trivially satisfied, since it asserts only
that fS is nilpotent in case S is cyclic. But if G is a finite, non-abelian,
simple group, then G fG is certainly not nilpotent.

Intermezzo 4.11 on a second application of Lemma 4.6. Consider a pair of
properties , !, of finite groups and an n-functor with 1 < n, subject to the
following requirements:

(I) The orders of /-groups and !-groups are relatively prime.
(II) If X is a finite group with X 1, then X is an extension of an

I-group by a !-group.
(III.) If there exist nonsoluble ?i-groups, if X is a finite group with

nilpotent X, then o([X) is prime to every prime, belonging to I.
(III.!) If there exist nonsoluble !-groups, if X is a finite group with

nilpotent IX and X/X a !-group, then o(X) is prime to every prime, be-
longing to !.

(IV)
proper

()
(ii)
(iii)
(iv)
(v)

There does not exist a finite group G, possessing one and only one
normal subgroup M with the following properties"
M is a non-abelian, simple !-group;
M G;
G/M is a cyclic -group of order a prime p # 2;
G is not generated by n elements;
if o(x) p and y belongs to M, then {x, y}’ is nilpotent.

The following proposition is then an immediate consequence of Lemma 4.6

[G for G a finite group is nilpotent if, and only if, S is nilpotent whenever
the subgroup S of G is generated by n elements.

A simple construction of 2-functors of this type may be given: Denote
by some set of primes and by ’ its complement. Let /be the class of all
finite 0-groups (= groups whose orders are divisible by primes in only);
and let ! be the class of all finite 0r-groups. Characterize the functor by
the property:

(-) fG 1 for G a finite group if, and only if, G is 0-closed.
Then is clearly a 2-functor; and requirement (I) is trivially satisfied.
and (III) hold in the stronger forms:

(II)

(II*) X is a finite group with IX 1 if, and only if, X is an extension
of an ?I-group by a !-group.

(III*) If X is a finite group with nilpotent X, then X is a !-group; and

IX 1 in case X/[X is a !-group.

It is a consequence of the Theorem of Walter Feit and John Thompson that
(IV) will be true whenever 2 belongs to since then -groups are soluble as
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groups of odd order. Whether or not (IV) is satisfied in case 2 does not be-
long to p, appears still to be an open question. However, there seems to be
good reason to believe that a group G may be generated by two elements, if
it possesses a non-abelian, simple, normal subgroup M whose index [G "M] is
an odd prime, not dividing o(M). If this should happen to be true, then we
would be assured of the validity of (IV) in either case.

COROLLARY 4.12. If is an n-functor with 1 < n, then the following prop-
erties of the group G with noetherian [G are equivalent"

(i)

(ii)
(b)

(iii)

l(b)

[G is of finite class.

S is of finite class whenever the subgroup S of G is generated by
n elements.
[G is soluble.

S is of finite class whenever the subgroup S of G is generated by
n elements.
[S is soluble whenever the subgroup S of G is generated by n nt- 1
elements.

Terminological Reminder. The group X is called soluble, if every epi-
morphic image, not 1, of X possesses an abelian normal subgroup different
from 1. For noetherian X this requirement is equivalent to X(i) 1 for
almost all i.

Proof. That (ii) is a consequence of (i), is immediately deduced from
S

___
G; and for the same reason (iii) is a consequence of (ii).

Assume the validity of (iii) and consider a subgroup H of G which is
generated by n -t- 1 elements. Since [G is noetherian, so is [H [G; and
it is a consequence of (iii.b) that [H is soluble. Suppose that K is a normal
subgroup of [H with finite [H/K. Since the noetherian group [H is finitely
generated, there exists a characteristic subgroup N of [H with N __c K
and finite H/N; see Baer [7; p. 331, Folgerung 3]. Then N is like-
wise a characteristic subgroup of H and we may form the epimorphic
image J H/N. From the solubility of [H we deduce that [J [H/N is a
finite soluble group. If the subgroup S of J is generated by n elements, then
S is an epimorphic image of a subgroup of H and G which is generated by
n elements; and application of (iii.a) shows that IS is a finite nilpotent group.
Hence we may apply Theorem 4.7 showing the nilpotency of the finite soluble
group [J. From N K we deduce that [H/K is an epimorphic image of
H/N J. Consequently [H/K is nilpotent; and we have shown

(--) Every finite epimorphic image of [H is nilpotent.

As a noetherian soluble group with the property -t- the group fH is of finite
class; see Baer [1; p. 205, Theorem and p. 170, Lemma 4]. Since [G is
noetherian, we may apply Theorem 4.1,(a) to show that [G is of finite class.
Hence (i) is a consequence of (iii).
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Remar 4.13. Note that the full strength of the requirement that G
be noetherian and that condition (iii.b) be satisfied came into play only
after the residual property (+) had been verified.

PROPOSITION 4.14. If is a co-soluble n-functor with 1 < n, if [S is finite
for every finitely generated subgroup S of G, and if T is nilpotent whenever the
subgroup T of G is generated by n elements, then every finitely generated sub-
group of [G is finite and nilpotent.

Proof. Suppose that c is an element in [. G and that x is any element in
G. Then there exists a subgroup C of G which is generated by n elements
such that c belongs to [C. The subgroup X /C, x} of G is finitely generated
so that by hypothesis IX is finite. Our third hypothesis shows that Y
is a finite nilpotent group whenever the subgroup Y of X is generated by n
elements. Since is a co-soluble n-functor with 1 < n, application of Theorem
4.7 shows that IX is a finite nilpotent characteristic subgroup of X. Since c
belongs to [C

___
IX, it follows from (4.E) that c is a left-engel element of

X. As x belongs to X, it follows that c() x 1 for almost all i; and thus
we have shown that every element in [ G is a left-engel element of G.

Consider next a finite subset F of [ G. If s is an element in F, then there
exists a subgroup s* of G which is generated by n elements such that s be-.
longs to s The subgroup F* of G which is generated by all the subgroups
s with s in F is finitely generated so that IF* is finite by hypothesis. If s is
an element in F, then s belongs to Is*

_
IF* so that F is a subset of F*. Every

element in F is a left-engel element of G and hence of the finite group F*.
Application of (4.E) shows that every element in F belongs to a finite nil-
potent normal subgroup of F*; and the set F is consequently likewise con-
tained in a finite nilpotent normal subgroup of IF*. It follows in particular
that every finite subset F of G generates a finite nilpotent subgroup of G.

Consider finally a finite subset A of [G. Since is an n-functor, G is
generated by [ G; and there exists consequently a finite subset B of f G such
that A is contained in {B}. Since B} has been shown to be finite and nil-
potent, its subgroup {A} is likewise finite and nilpotent, as was to be shown.

COROLLARY 4.15. If is a co-soluble n-functor with 1 < n, if G is a locally
finite group with artinian [G, then [G is nilpotent if, and only if, IS is nilpotent
whenever the subgroup S of G is generated by n elements.

Terminological Reminder. The group A is artinian, if the minimum con-
dition is satisfied by its subgroups. The group L is nilpotent, if every epi-
morphic image, not 1, of L has a center different from 1.

Proof. The necessity of our condition is an immediate consequence of
IS
_

G. If conversely our condition is satisfied, then all the hypotheses of
Proposition 4.14 are satisfied too. Hence every finitely generated subgroup
of [G is finite and nilpotent. Application of Baer [9; p. 21, Satz 4.1] shows the
nilpotency of [G.
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The following result will prove useful in an important application.

LEMMA 4.16. If is an n-functor with 1 < n, if p is a prime, and if G is a
group with finite G, then the following properties are equivalent:

(i)

(ii)
(b)

(iii) {(a)
(iv) {(a)(b)

[G is a p-group.

[S is a p-group whenever the subgroup S of G is generated by n
elements;
S/[S is soluble whenever S G is a subgroup of [G.

[S is a p-group whenever the subgroup S of G is generated by n
elements;
S/[S is p-closed whenever S G is a subgroup of [G.

[S is a p-group whenever the subgroup S of G is generated by n
elements;
[G is p-closed.

Terminological Reminder. A group is p-closed if products of p-elements are
again p-elements.

Proof. That (ii) is a consequence of (i), follows from S
_
G (and the

finiteness of G). If (ii) is true, then we deduce from Theorem 4.7 the
nilpotency of [G; and this shows that (iii) is a consequence of (ii).
Assume next by way of contradiction that (iii) is true and (iv) is false.

Then there exists a pair of p-elements a, b in G whose product ab is not a
p-element; and S {a, b} is a subgroup of [G, generated by 2 _<_ n elements,
which is not p-closed. Apply (iii.a) to see that IS is a p-group. Hence
S/S is not p-closed; and it follows from (iii.b) that S G implying that
[G IS is a p-group. This is a contradiction, proving that (iv) is a con-
sequence of (iii).
Assume finally that (iv) is true. Consider an element c in G. Then

there exists a subgroup C of G, generated by n elements, such that c belongs
to C. By (iv.a), [C is a p-group so that c is a p-element. Since is an
n-functor, G {[ G} is by (iv.b) a p-closed group, generated by p-elements;
and as such [G is a p-group, completing the proof of the equivalence of (i)-(iv).

Remarlc 4.17. The second criterion, contained in Lemma 4.16, admits of an
interesting application to the situation discussed in Corollary 4.15; cp. in
particular Lemma 4.6,(IV.v).

5. Finitely and countably definable functors
For these functors our problems admit of a comparatively simple solution.

We begin by proving a useful general property of countably definable functors.

LEMMA 5.1. If is a countably definable functor and U a countable sub-
group of G, then there exists a countable subgroup V of G with U V and
fV= VnfG.



210 REINHOLD BAER

Proof. We recall first that G [, G because of the countable definability
of f; and this implies because of the definition of [,

(1) To every element x in [G there exists a countable subgroup of G
such that x belongs to .

If X is a countable subgroup of G, then X n fG is likewise countable. It
follows that

X {X, 2forxinXn

is likewise countable. If x is an element in X n [G, then x belongs to [2 fX.
Hence

X n G X n fX X n G;

and thus we have shown

(2) Every eountable subgroup X of G is contained in a countable subgroup
XofGwithXnfG XnX.

If U is a eountable subgroup of G, then one may derive from (2) by com-
plete induction the existence of eountable subgroups U(i) of G with

U U(0), U(i) U(i + 1), U(i) n O U(i) n fU(i + 1).

The oin V U0 U(i) of this ascending chain of countable subgroups of G
is likewise a countable subgroup of G. Clearly U V and fV V n fG.
If x belongs to V n G, then x belongs to some U(i) and hence to

U(i) n fG U(i + 1) IV.
Thus fV V n fG, as we wanted to show.

THEOREM 5.2. If is a countably definable functor, and if N is a normal
subgroup of G, then

N n fG [G
if, and only if,

N A A for every countable subgroup A of G.

Proof. IfN n [G [G, then we deduce N U Uforeverysub-
group U of G from Corollary 3.2; and this proves the necessity of our con-
dition.
We assume conversely the validity of our condition. Let H G(N O[G

and denote by a the canonical epimorphism of G upon H. Then

H (fG) fG/(N n fG),
and consequently

N n fH [N/(N n [G)] n [fG/(N n fG)]

[N/(N n [G)] n [G/(N
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and thus we have shown

(1) 1 Nn)[H NnH.
Suppose next that A is a countable subgroup of H. Then there exists a

countable subgroup B of G with B A. It is a consequence of our hy-
pothesis that N [B

___
)B; and application of Corollary 3.3 shows

(2) N [A __c )[A for every countable subgroup A of H.

If U is a countable subgroup of [H, then there exists because of (1) to
every element u 1 in N U an element u’ in [H with u u 1. Because
of the countability of U and N U we obtain a countable subgroup V of H
by adjoining to U all these elements u’ for u in N n U; and it follows from
our construction that U __c V __c [H and N n U n V 1. We state this
result for future reference"

(3) To every countable subgroup U of [H there exists a countable subgroup
VwithU__C V__c [HandN UV 1.

Assume now by way of contradiction that N n [H 1. Then there exists
a countable subgroup W with 1 c W c__ N [H. Because of (3) there exists
a countable subgroup U( 1 with W __c U( 1 _c [H and N W U( 1 1;
and application of Lemma 5.1 shows the existence of a countable subgroup
V(1) with U(1) __c V(1)and V(1) V(1) [H. Clearly [U(1) __c V(1).
Assume now that we have constructed a countable subgroup V(i) for some

positive i. From IV(i) [H and (3) we deduce the existence of a countable
subgroup U(i -F 1) with

IV(i) c__ U(i-F 1)__c H and NnV(i) nU(i-F 1) 1.

Then V(i), U(i H- 1 is likewise a countable subgroup of H; and application
of Lemma 5.1 shows the existence of a countable subgroup V(i H- 1) of H
with {V(i), U(i -F 1)} c V(i -F 1) and [V(i -F 1) V(i -F 1) n [H. By
construction U(i -F 1) c__ V(i -F 1). We note the principal features of this
construction"

V(i) c__ U(i-F 1) _c [V(i-F 1), V(i) c__ V(i-F 1),
()

[V(i) V(i) n [H, N n [V(i) n U(i -F 1) 1.

Since the U(i) as well as the V(i) form ascending chains of countable sub-
groups, their joins

U- U U(i)

are again countable subgroups of H.
V. Firstly we have

and V U= V(i)

We derive further properties of U and

[V

_
V n fH fH n Ui_l V(i) Ui_l [fH n V(i).] U= fV(i)

_
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proving

(b) V Y n H U Y(i).

A second application of (a) shows

U U=z U(i) U= fV(i) U=z U(i + 1) U,

proving because of (b)

(c) v fv.
Consider next an element in N n [V. Because of (b) and (c) the element
belongs to almost all U(i) and IV(i). If belongs to IV(i)

___
IV U,

then it belongs to U(i + 1) and hence to U(i + 1) so that belongs to
N*n[V(i) nU(i+ 1) 1. Hencet 1; and we have shown

(d) N’n fV N n U 1.

Because of the countability of V and (2) we have N n IV
_

D[V; and
thus it follows from W

_
U(1) and (d) that

1 c W__c Nn U(1)

___
N*n U Nn[V N*nD[V 1,

a contradiction. Hence N n [H 1; and this is equivalent to

N n fG N n fG,
as we wanted to prove.

TIEORE 5.3. If is a finitely definable functor, and if N is a noetherian
normal subgroup of G, then

N n fG
if, and only if,

N n [S

_
[S for every finitely generated subgroup S of G.

Proof. The necessity of our condition is an immediate consequence of
Corollary 3.2. If conversely our condition is satisfied by N, then there exists
to every element in N n G a finitely generated subgroup T of G such that
belongs to IT, since G [ G. If x is an element in G G, then there

exists a finitely generated subgroup X of G such that x belongs to IX. Since
{T, X} is likewise finitely generated, we deduce

Nnf{T,X} _f{T,Z}

from our condition. Because of the monotonicity of we have

{t, x} {fT, fZ}

___
f{ T, Z}.

Since belongs to N, it belongs to i){ T, X}, and x belongs to [{ T, X}.
Since belongs to a noetherian normal subgroup of [{ T, X} and to )[{ T, X},

it is by (4.E) a right-engel element of [{T, X}. Since x is in {T, X}, we have

x()
o 1 for almost all i and every x in
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Thus we have showa that is a right-engel element of [G. Since belongs to
a noetherian normal subgroup of [G, a second application of (4.E) shows
that belongs to )[G; and hence we have shown N n [G

___
G.

6. The normal subgroups hypercentralized by the I-subgroup
It is the principal aim of this section to relate the following properties of a

normal subgroup N of a group G:

(I) N n

_ .
(II) N n [{g0, "", g}

_
)[{g0, ", g} whenever at least one of the n 1

elements g in G belongs to N.

It is an immediate consequence of Corollary 3.2,(a) that (I) implies (II);
and we Shall prove under suitable additional assumptions that (I) is a conse-
quence of (II). It is therefore convenient to introduce short names for
these two properties. Accordingly we shall say that the normal subgroup
N of G is [-hypercentralized by G, or that N is an [-hypercentralized normal
subgroup of G, whenever (I) is satisfied by N, G; and in case (II) is satisfied
by N, G, we shall speak of an [-n-hypercentralized normal subgroup N of G.
We begin by collecting a number of frequently used simple properties of

[-n-hypercentrMized normal subgroups.

LEMMA 6.1. Assume that N is an [-n-hypercentralized normal subgroup of G.
(A) If U is a subgroup of G, then N n U is an -n-hypercentralized normal

subgroup of U.
(B) /f is an epimorphism of G upon H, and if the kernel of is contained

in N, then N is -n-hypercentralized by H.
(C) {c} is of finite class for every c in , G, provided N is noetherian.
(D) N {. G} is of finite class, if N is noetherian.

Proof. The validity of (A) is quite obvious. To prove (B) consider
n + 1 elements h in H at least one of which belongs to N*. Then there
exist n + 1 elements g in G at least one of which belongs to N and such that
g h. Application of (II) shows

N [{g0, ", gn}

_
){g0, ", gn};

and application of Corollary 3.3 implies

N n {h0,..., h} i{h0,..’, hn},
proving (B).

If c is an element in [ G, then C {N, c} N{c} is noetherian as an
extension of the noetherian group N by the cyclic group C/N. To every
element y in C there exist an element x in N and an integer j with y cax.
From the definition of [ G we deduce the existence of a subgroup U of G,
generated by n elements, such that c belongs to [U. Let V U, x/. Then
[U IV so that c belongs to IV, too. Since V is generated by n + 1 elements
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at least one of which is in N, we may apply (II) proving

N n IV
_

Since x belongs to the normal subgroup N n V of V, and since c belongs to
the characteristic subgroup IV of V, the commutator c x belongs to
(Nn V) a IV N IV l)[V. IIencecoy co (cx) coxbelongs
to )[V. Since c is in IV, it follows from (4.E) that

1 c (i) (coy) c(i+l) oy

for almost all i. Hence c is an engel element of the noetherian group C.
Application of (4.E) shows that Icc} Icv} is of finite class, proving (C).

Let P IIc [N /cN}]. This is by (C) a product of normal subgroups
of finite class of N; and since N is noetherian, P is a product of finitely many
of its normal subgroups of finite class. Applying a well known result (see
e.g. Baer [3; p. 406, Lemma 4]) we conclude that P is of finite class. From
the normality of N we deduce N c

_
N n {cN} so that N {n G} P, prov-

ing (D).

THEOREM 6.2. If is an n-functor with 1 < n, then the following properties
of the finite normal subgroup N of G are equivalent"

() Nn

_ .
(2)

{(()(3)
b)

(4) (b)

()
(b)

(5)

N is an [-(n + 1)-hypercentralized normal subgroup of G.

N is an [-n-hypercentralized normal subgroup of G.
[G induces in N a nilpotent group of automorphisms.
N is an [-n-hypercentralized normal subgroup of G.
If X is a subgroup of the group of automorphisms, induced in N
by [G, then X/IX is soluble.

N is an [-n-hypercentralized normal subgroup of G.
If is an epimorphism of G upon H, if the minimal normal
subgroup M of H is an elementary abelian p-group, contained in
N, if F is the group of automorphisms, induced in M by H, if
[A is a p-group whenever the subgroup A of F is generated by n
elements, then A/A is p-closed for every subgroup A F of F.

Proof. It is an immediate consequence of Corollary 3.2,(a) that (1)
implies (2). Assume next the validity of (2). Then clearly (3.a) is satisfied
too. The group F of automorphisms, induced in N by G, is finite, since N is
finite; and IF is induced by [G in N. Suppose now that the subgroup A of F
is generated by n + 1 elements. Then there exists a subgroup U of G which
is generated by n + 1 elements and which induces A in N. The group of
automorphisms induced in N by [U, is essentially the same as [U/(cN n [U);
and it is finite because of the finiteness of N. Denote by T the uniquely
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determined normal subgroup of U which contains cN n fU and such that
T/(cN n [U) is the terminal member of the descending central chain of
[U/(cN n fU). Then a normal subgroup K of fU contains T if, and only if,
cN n fU _c_ K and [U/K is nilpotent. If x is any element in N, then
X-= {x, U} is generated by n q- 2 elements at least one of which belongs to
N. Thus we may apply (2) to show

(N n X) x __c N n X
_
OX;

note that N n X and fX are normal subgroups of X. Since N n X is finite
we may apply Lemma 3.6, proving that a nilpotent group of automorphisms
is induced in N n X by fX; and from U

___
fX we deduce that a nilpotent

group of automorphisms is induced in N n X by [U. If X* is the normal
subgroup of fU which induces the identity automorphism in N n X, then
clearly cN n fU _c X* and fU/X* is nilpotent. We deduce T

___
X* from

our characterization of T, so that in particular

X*xoTG (NnX) 1.

This implies N T 1; and the group of automorphisms, induced in N by
U, is consequently an epimorphic image of the nilpotent group [U/T. But
this group of automorphisms is iust h; and we have therefore shown that [A
is nilpotent whenever the subgroup A of F is generated by n q- 1 elements.
Application of Theorem 4.1,(a) shows the nilpotency of IF, proving the
validity of (3.b).

Condition (4) is nothing but a considerably weakened form of condition
(3). Assume next the validity of (4). Then we note first the identity of
conditions (4.a) and (5.a). Consider an epimorphism z of G upon H and a
minimal normal subgroup M of H with the following properties"
M is an elementary abelian p-group; M __c N.
If F is the group of automorphisms, induced in M by H, and if the subgroup

A of F is generated by n elements, then [h is a p-group.
Consider next a subgroup 0 F of W. We note that F is an epimorphic

image of the group of automorphisms, induced in N by G, and that therefore
W is an epimorphic image of the group of automorphisms induced in N by G.
Apply condition (4.b) to show the solubility of 0/[0. Thus F is a finite
group, satisfying condition (ii) of Lemma 4.16. It follows that A/[A is
p-closed whenever the subgroup A F of F is a subgroup of W; and this
shows that (5) is a consequence of (4).
Assume finally the validity of condition (5), and assume by way of contra-

diction that N n [G f)[G. ThenN n f)G c N n G. Denote by zthe
canonical epimorphism of G upon H G/(N f)[G). Then

N N/(N n f)G), H [G/(N n f)[G),

N" n fH (N n fG)/(N n )fG) 1.



REINHOLD BAER

Since N is finite, there exists a minimal normal subgroup M of H with

(i) M N* n [H.

If the subgroup U of H is generated by n + 1 elements one of which is con-
tMned in N, then there exists a subgroup V of G, generated by n + 1 elements
one of which belongs to N, with V U. By (5.a) we have

Since the kernel of z is part of N, we may apply Corollary 3.3 so that

Mn[UNn(v) i)[(V*) D[U;
in other words"

(ii) M is an [-n-hypercentrMized normal subgroup of H.

From the construction of z and the fundamental properties of the hypercenter
we conclude that N n t)[H 1 and this implies by (i) that

(iii) 1 t)[H n M M n [H.

Recalling that is an n-functor and that M is finite, we deduce from (ii)
and Lemma 6.1,(D) that

M :H M {:, H}

is a nilpotent normal subgroup of H which is part of the minimal normal
subgroup M of H. If M. H 1, then we would deduce from (i) that
M

_
][H, contradicting (iii); and thus it follows that M M [H is nil-

potent. Since M as a minimal normal subgroup is free of proper characteristic
subgroups, it follows that

(iv) M is an elementary abelian p-group.

Denote by I’ the group of automorphisms, induced in M by H. If the
subgroup A of F is generated by n elements, then there exists a subgroup U
of H which is generated by n elements such that A is induced in M by U.
If x is an element in M, then

M n [{x, U}

_
)[{x, U}

by (ii). Application of (iv) and Lemma 3.7 shows that a p-group of auto-
morphisms is induced in M by [U; and thus we have shown:

(v) If the subgroup A of I’ is generated by n elements, then [A is a p-group.

Combining (iv), (v), and condition (5.b) we obtain

(vi) If A # F is a subgroup of W, then A/[A is p-closed.

Since is an n-functor with 1 < n and I’ is finite, properties (v) and (vi)
together with Lemma 4.16 show that

(vii) IF is a p-group.
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Now a p-group of automorphisms of a finite p-group, not 1, always possesses
fixed elements, not 1. By (vii) therefore IF possesses fixed elements, not 1.
Since W is induced by [H in M, this is equivalent to saying that M n [H 1.
Since M is a minimal normal subgroup of H which is by (i) part of [H, we
deduce from (iii) that

1cM Mnc[H___M[H 1,

a contradiction arising from the assumption that N a [G )[G. Thus (1)
is a consequence of (5), completing the proof.

Remark 6.3. Condition (4.b) is automatically satisfied--and may then
be omitted--whenever the functor [ is co-soluble. We have pointed out that
there exists a great variety of such functors. The perfect functors, intro-
duced and discussed in 7, provide by Theorem 7.6 a second class of functors
for which condition (4.b) may be omitted; and it is a consequence of Corollary
7.8 that the class of co-soluble functors and the class of perfect functors do
hardly overlap.

Remark 6.4. It is as yet undecided whether the conditions (3.b), (4.b),
(5.b) are indispensable or not. Condition (5.b) shows that the class of
functors, discussed in the Intermezzo 4.11, will not provide examples showing
the indispensability of condition (5.b), that on the contrary in the presence
of such functors (5.b) may--as a consequence of Lemma 4.6--be omitted.
The impossibility of substituting n 1 for n in conditions (3.a), (4.a) may
be deduced from the examples constructed in 8.C and from Theorem A.1
below.

Remark 6.5. The hypothesis 1 < n has been used in part of our proof
only, mainly when making use of Corollary 4.14. But it is an indispensable
hypothesis, as will be shown by an example, constructed in 8.A below.

THEOREM 6.6. If is an n-functor with 1 n, then the following properties
of the noetherian normal subgroup N of G are equivalent"

(1) N a [G

_
)[G.

(2) N is an [-(n - 1)-hypercentralized normal subgroup of G.

(3) (b)

/(a)(4) ,(b)

(5) {(a)(b)

N is an [-n-hypercentralized normal subgroup of G.
The group of automorphisms, induced in N by [G, is offinite class.

N is an [-n-hypercentralized normal subgroup of G.
If A is a subgroup of the group of automorphisms, induced in N
by [G, then A/[A is soluble.

If is an epimorphism of G upon H whose kernel is part of N,
and if No [H is finite, then N [H

_
[H.

N o [G is soluble.
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Proof. It is a consequence of Corollary 3.2,(a) that (1) implies (2) and
(3.a); and (3.b) is a consequence of N fG

___
N n [G )fG and Lemma 3.6.

Since groups of finite class are soluble, (4) is a consequence of (3).
Assume next that at least one of the conditions (2) and (4) is satisfied by

N. Consider an epimorphism of G upon H whose kernel is part of N such
that N H is finite. Then we deduce from Lemma 6.1,(B) and (2) that

(2*) N [H is an [-(n + 1)-hypercentralized normal subgroup of H;

and we deduce from Lemma 6.1,(B) and (4.a) that

(4*.a) N [H is an f-n-hypercentralized normal subgroup of H.

If A is a subgroup of the group of automorphisms, induced in N [H by
H, then h is an epimorphic image of a subgroup A of the group of auto-
morphisms, induced in N by [G. Consequently A/[A is soluble by (4.b), and
its epimorphic image A/[A is likewise soluble. Hence the following property
is a consequence of (4.b)"

(4*.b) If A is a subgroup of the group of automorphisms, induced in N [H
by [H, then A/[A is soluble.

Thus we have shown that No fH is a finite normal subgroup of H which
satisfies (2*) or (4*). An immediate application of Theorem 6.2 shows the
validity of N [H c_ t)[H; and now we deduce from Theorem 3.1 that
N n [H

_
)fH. Condition (5.a) is therefore a consequence of (2) as well as

of (4.).
If (2) or (4) is satisfied, then N is an [-n-hypercentralized normal subgroup

of G. Since is an n-functor and N is noetherian, it follows from Lemma
6.1,(D) that N [G N {[ G} is of finite class and afortiori soluble’ con-
dition (5.b). Thus we have shown that (5) is both a consequence of (2)
and a consequence of (4).
Assume now the validity of (5). Suppose that L is a normal subgroup of

N [G with finite (N [G)/L. Since N is noetherian, N [G is finitely
generated, and consequently there exists a characteristic subgroup K of
N [G such that (N G)/K is finite and K L; see Baer [7; p. 331, Folgerung
3]. Then K is a normal subgroup of G. The canonical epimorphism z of G
upon G/K has the following properties"

The kernel of q is part of N;
No[H (No[G) (NoG)/Kisfinite.

Application of (5.a) shows that N [H _c. N n [H

___
)[H. Thus

N [H (N G)/K and its epimorphic image (N [G)/L are finite nil-
potent groups. Using (5.b) we see that N [G is a noetherian soluble group
all of whose finite epimorphic images are nilpotent. Applying Baer [1; p. 205,
Theorem and p. 170, Lemma 4] we see that

(i) N G is of finite class.
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Since N G is a noetherian group of finite class, we may apply Baer [7;
p. 301, Hauptsatz 1] to obtain

(ii) There exists a positive integer ]c such that 1 is the intersection of all the
characteristic subgroups X of N [G whose index [(N o G)’X] is a
prime power p with x =< ]c (and variable prime p).

If p is some prime, then denote by K(p) the intersection of all the character-
istic subgroups X of N [G with [(N [G)’X] a divisor of p. Since N G
is finitely generated, there exists only a finite number of such normal sub-
groups X; see Baer [7; p. 331, Lemma 4]. It follows that

(iii) K(p) is a characteristic subgroup of N o G, and (N G)/K(p) is a
finite p-group.

The following definition will be needed in the sequel"
subgroup of B, then

If A is a normal

A B() A, B (B(’)o A) B(+)o A.

It is clear that B(j) A is a normal subgroup of B, that the B()
o A form a

descending chain of normal subgroups, and that B (’) A is part of the (j + 1 )t
term of the descending central chain of B.
Denote by a the canonical epimorphism of G upon H G/K(p). Then

the kernel of a is part of N, and

No [H (No,G) (No [G)/K(p) is finite.

Application of condition (5) shows that N H
___

)[H.
finite, we deduce from Theorem 3.1 that

(+) (H) ()
o (No H) 1 foralmost allj.

Since No H is

Consider next a normal subgroup X of [H with X G N [H and [(N H):X]
a divisor of pk. Since at most lc + 1 terms of a composition chain of [H/X
are contained in (N [H)/X, it follows from (-t-) that

([H) (k)
o (N [H) G X.

But by our construction of K(p) and the intersection of all these normal
subgroups X of N o [H is 1; and this proves

([H) ()o (No[u) 1.

Recalling the definition of H and it follows that

(iv) ([G) () (N G)

_
K(p) for every p.

Combining (ii) with the definition of K(p) we see that 1 lpK(p); and
hence it follows from (iv) that

(G)()o (No,G) 1.
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But this fact implies clearly N o [G

_
)[G; and application of Theorem 3.1

shows the validity of N n [G

_
t)G so that (1) is a consequence of (5).

Remark 6.7. Condition (5.b) has been used only in the derivation of
property (i); and an inspection of this proof shows that it would have sufficed
to substitute for (5.b) the following slightly weaker condition:

(q-) N G possesses a soluble subgroup of finite index.

Note that N G is noetherian and that we may use Baer [7; p. 331, Folgerung
3]. Groups with property (+) may be termed almost-soluble; cp. Baer
[4; p. 276, Satz 3].

Remar] 6.8. The impossibility of proving a theorem of the type of Theorem
6.6 without imposing any hypothesis like the maximum condition on N will
be put into evidence by a simple example in 8.B.

PROPOSITION 6.9. If is a co-soluble n-functor with 1 < n, if N is an [-n-
hypercentralized normal subgroup of G, and if N n S is finite for every finitely
generated subgroup S of G, then every finitely generated subgroup X of N [G is
finite and nilpotent; and if the element g in [G aX induces in X an auto-
morphism of order m, then g commutes with the elements of order prime to m in X.

Proof. Consider a finitely generated subgroup S of G. Then, by hy-
pothesis, N n IS is a finite, f-n-hypercentralized normal subgroup of S so that
because of the co-solubility of f, condition (4) of Theorem 6.2 is satisfied by
N n S. Application of Theorem 6.2 shows then the validity of

(a) N n [S _c f)[S for every finitely generated subgroup S of G.

Consider next a finite subset X of N a G. Since is an n-functor, there
exists to every element x in X a subgroup x* of G which is generated by n
elements such that x belongs to [x*. If X* is the subgroup of G which is
generated by all the subgroups x* for x in X, then

(b’) X* is finitely generated,

since X is a finite set and every subgroup x* is finitely generated;

(btt) X is a subset of X*,
since every element x in X belongs to fx* __c fX*. From

{x}

___
N n X* G x*,

by (a) and from our third hypothesis we conclude that

(c) {X} is a finite nilpotent group.

If finally g is any element in [G n n{X}, then there exists a subgroup g* of G
which is generated by n elements such that g belongs to g*. Let Y X*, g*}.
Then Y is finitely generated so that N n Y is finite by hypothesis. Appli-
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cation of (a) shows that

(d) {X} _NnfX* Nn[Y___

and g belongs to [g*
___

[Y. Since g belongs to rt{ X}, and since X} is finite by
(c), an automorphism is induced in {X} by g whose order is a positive integer
m. From (d) we deduce that the normal subgroup [X} of [X, g} is contained
in the hypercenter 1){ X, g}. It is an immediate consequence of Baer [1; p. 179,
Lemma 2] that g commutes with every element in [X} whose order is prime
to m.

COROLLARY 6.10. If is a co-soluble n-functor with 1 < n, and if N is a
normal subgroup of G such that

(a) N n IS is finite for every finitely generated subgroup S of G and
(b) N n [G is artinian,

then N n [G [G if, and only if, N is an [-n-hypereentralized normal subgroup
of G.

Proof. It is an immediate consequence of Corollary 3.2,(a) that N is an
[-n-hypercentralized normal subgroup of G, if N n [G O[G. We assume
conversely that N is an [-n-hypercentralized normal subgroup of G. Because
of (a) and Proposition 6.9

(1) Finitely generated subgroups of N n[G are finite and nilpotent.

Because of (b) and (1) we may apply Baer [9; p. 21, Satz 4.1] to show that

(2) N n [G is nilpotent and almost abelian.

Assume now by way of contradiction that N n [G t[G. Denote by the
canonical epimorphism of G upon H G/(N n )[G). Then

(3) 1 c (Y n G)/(N n G) (N n G) N n [g.

Since the kernel of a is part of N, application of Corollary 3.3 shows that

(4) N" is an [-n-hypercentralized normal subgroup of H;

and we deduce from (b), (2), and (3) that

(5) N n [H is nilpotent, almost abelian, and artinian.

Since N" n [H is an artinian normal subgroup of H which is different from 1,
there exists a minimal normal subgroup M of H which is part of N
By (5), M is nilpotent, almost abelian, and artinian; and because of its
minimality M is free of proper characteristic subgroups. Hence

(6) M is a finite, elementary abelian p-group.

With M its centralizer cM is a normal subgroup of H; and H/cM is essentially
the same as the group of automorphisms, induced in M by H. It follows in
particular that H/cM is finite. If h is any element in [H, then h induces in
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M an automorphism of positive order lc. Since M is by (6) a finite p-group
which is part of N a [H, and since we may apply Proposition 6.9 by (a) and
(4), it follows that lc is a power of p. Thus we have shown that every element
in the finite group (M[H)/cM is a p-element; and this implies

(7) (M[H)/cM is a p-group.

A p-group of automorphisms of a finite p-group, not 1, possesses fixed
elements, not 1; and this is equivMent to saying that M n c[H 1. Since
[H is a characteristic subgroup of H and M is a minimul normal subgroup of
H, we conclude that

M__C cHHaN HN 1

by (3); and this is the desired contradiction which proves our corollary.

7. Perfect functors
Suppose that N is a normal subgroup of the group G, and denote by r the

group of automorphisms, induced in N by G. Then F is essentially the same
as GleN, and G is mapped onto F by the natural epimorphism of G upon F.
Consequently F 1 is equivalent to the fact that N is centralized by [G, a
fact that may be expressed shortly by N [G 1. Of this equivalence we
shall make considerable use in the sequel.

PROPOSITION 7.1. If is an n-functor and N a normal subgroup of the
group G, then N G 1 if, and only if, N U 1 for every subgroup U of
G which is generated by n elenents.

Proof. The necessity of our condition is an immediate consequence of
[U

_
G. If conversely our condition is satisfied, then we consider an element

c in n G. There exists a subgroup C of G which is generated by n elements
such that c belongs to [C. By hypothesis N C 1; and this implies
N c 1. Consequently N In G 1. Since is an n-functor, this implies

NoG No {e} 1,
as we wanted to show.

DEFINITION 7.2. The functor is perfect, if G [G)’ :for every group G.

For perfect functors it will be possible to improve considerably the results
of 6; and these improvements will be strongly related to considerations of
the type of Proposition 7.1.

LEMMA 7.3. The following properties of the functor are equivalent:
(i) [isperfect.
(ii) X 1 whenever b X i for almost all i.
(iii) X 1 whenever [X is of finite class.
(iv) X 1 whenever X is abelian.
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Proof. Assume first that is perfect, and consider a group X such that
bk([X) 1. Because of the perfectness of we have IX b([X) for every
positive i; and this shows that (ii) is a consequence of (i). It is almost
obvious that (iii) is a consequence of (ii) and that (iv) is a consequence of
(iii). Assume finally the validity of (iv). If X is any group, then (X)’ is
a characteristic subgroup of X, and thus we may form the epimorphic image
Y X/([X)Pof X. Then [Y [X/([X)’ is abelian so that [Y i by (iv).
Hence IX (IX)’, proving the perfectness of [.

PROPOSITION 7.4. If is a perfect functor, then the following properties of the
noetherian normal subgroup N of G are equivalent"

(i) N n [G )[G.
(ii) The group of automorphisms, induced in N by [G, is of finite class.
(iii) No[G= 1.
(iv) Nn[G [G.

Proof. Since N and [G are normal subgroups of G, we have N G

_
N n [G,.

It is now an immediate consequence of Lemma 3.6 that (i) implies (ii).
Assume next the validity of (ii), and denote by F the group of auto-

morphisms, induced in N by G. Then IF is the group of automorphisms,
induced in N by G. Hence IF is by (ii) of finite class; and we conclude
IF 1 from the perfectness of and Lemma 7.3. Hence G induces the
1-automorphism in N; and this is equivalent to N [G 1. Thus (iii) is a
consequence of (ii).

It is fairly obvious that (iii) implies (iv) and that (i) is a consequence of
(iv), showing the equivalence of (i)-(iv).
Remark 7.5. The proof shows that the hypothesis that N be noetherian is

too strong. It suffices to assume that the maximum condition be satisfied
by the normal subgroups of N.

THEOREM 7.6. If is a perfect n-functor with 1 < n, then the noetherian
normal subgroup N of G is [-hypercentralized if, and only if, it is [-n-hyper-
centralized.

Proof. If N is [-hypercentralized by G, then it is a consequence of Theorem
6.6 that N is [-n-hypercentralized by G. Assume conversely that N is [-n-
hypercentralized by G. Consider an element x in N and an element c in [ G.
Then there exists a subgroup V of G which is generated by n elements such
that c belongs to IV. Since U {V, x} is generated by n + 1 elements at
least one of which belongs to N, we deduce

(Nn U) n[U Nn[U_C)[U

from our hypothesis.
we deduce

Since is perfect and N n U a normal subgroup of U,

(Nn U) o:U 1
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from Proposition 7.4. But x belongs to N n U, and c to [U. Hence x o c 1;
and thus we have shown that N [. G 1. Since is an n-functor, this
implies 1 N {[, G} N [G so that N is [-hypercentralized by G (see
Proposition 7.4).
Remark 7.7. The functor b, defined on the class of all finite groups, is

perfect by Lemma 7.3, and it is a 2-functor, by a Theorem of John Thompson,
as we have pointed out before. Thus it follows from Theorem 7.6 that
b%hypercentralization and b%2-hypercentralization are equivalent properties
of a normal subgroup N of a finite group G.

COROLLARY 7.8. The functor , defined on the class of all finite groups, is
the functor b if, and only if, is a perfect functor and G/[G is soluble for every
finite group G.

Proof. It is almost obvious that the functor b has the two properties
in question. Assume conversely that is perfect and G/G soluble for every
finite group G. If S is any finite soluble group, then we deduce from the
perfectness of and Lemma 7.3 that IS 1. If conversely T is a finite
group with IT 1, then T T/T is soluble because of the second property
of [. The finite group G is consequently soluble if, and only if, G 1.
If N is a normal subgroup of the finite group G, then GIN is soluble if, and
only if, [G N;and this implies [G bG and hence b.

8. Counterexamples
A. If/ is a positive integer, then a 1-functor k defined by the rule

G G

is for every G in 3 the subgroup, generated by all the ]ct powers of elements
in G.
We select now as the class of all finite groups, and/ as a prime power with

2 /c. Furthermore let p be u prime divisor of/ 1. If K is u cyclic
group of order/, then K possesses an automorphism of order p. Denote
by J the group, obtained by adjoining to K an element s, subiect to the
relations"

sT 1, s-lxs x for everyxinK.

Since 1 is the only fixed element of the automorphism a, it follows that
n{s} {s} {s}; and this implies that every element in J, but not in K,
has order p. Consequently J is generated by its elements of order p.

It is easy to construct now a group G, possessing a normal subgroup N
with the following properties"

(a) N is an elementary abelian p-group;

(b) N oN;

(c) G/N --J.
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Since J is generated by its p-elements, and since N is a p-group, one sees
readily that

(d) G is generated by its p-elements.

Since the integers p and k are relatively prime, as the prime p is a divisor
of k 1, it follows that every p-element is a/c power (of some power of
itself). Apply (d) to show that

(e) G=G.
If x is an element in N and y an element in G, then we let Y Ix, y}.

Clearly N a Y is an elementary abelian normal p-subgroup of Y; and since
x belongs to N Y, we have Y (N n Y)IY} so that Y/(N n Y) is a cyclic
group of order a divisor of pk. Thus

[Y/(N n Y)] (N n Y)Y/(N n Y)

is cyclic of order a divisor of p. Hence

(f) {z, y} is a p-group whenever x is in N and y is in G.

It is clear that J is soluble; but the element s of order p, prime to k, does
not commue with the elements of order, not 1, in K. Hence J is not nil-
potent. Consequently

(g) G is soluble, but not nilpotent.

The elements of order k in G induce because of (b) in N automorphisms of
order k. As k and p are relatively prime and N is a p-group, it follows from
Baer [2; p. 42, Theorem 3] that N is not part of the hypercenter of G. Com-
bining this with (e) we obtain

(h) N n G= N I)G ig(G).

By (f), N is an [-1-hypercentralized normal subgroup of G; and by (h), N
is not an [-hypercentrMized normal subgroup of G. Since G is soluble,
condition (4) of Theorem 6.2 is satisfied by the normal subgroup N of G and
the functor [. But neither condition (1) nor (3) is satisfied, showing the
indispensability of the hypothesis 1 < n. Cp. also in this context Remark
4.10.

B. Consider an odd prime p and countably infinite, elementary abelian
p-groups U, V, W. Then we may use the elements in W as indices for a
basis b(w) of V; and there exists one and essentially only one group R con-
taining V as normal subgroup and W as subgroup, subject to the following
conditions"

R VW WV, 1 VnW,

w-b(x)w b(xw) for all x, w in W.
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Then R 1, and finitely many elements in R generate a finite p-subgroup
of R.

Since R is likewise a countably infinite group, we may use the elements in
R as indices for a basis u(r) of U. Then there exists one and essentially
only one group G containing U as a normal subgroup and R as a subgroup,
subiect to the following conditions"

G UR RU,
--1r u(y)r u(yr)

1 =RnU,

for all r, y in R.

Then G 1, and finitely many elements in G generate a finite p-subgroup
of G.
One sees easily that the commutator subgroup bG of G is contained in UV

and is of a type very similar to that of UV. In particular bG t)bG 1.
If the subgroup S of G is generated by’finitely many elements, then it is a

finite p-group so that bS )bS. Hence

But U n bG is infinite whereas bG )bG 1. Recall finally that b is a
2-functor; and we see that Theorems 5.3 and 6.6 cease to be valid without
the hypothesis that N be noetherian.

C. The author is indebted to Professor Paul Fong (Berkeley) for pointing
out to him the following class of examples. Denote by F a finite group,
meeting the following requirements"

(a) F is of class three 3F 1.
(b) F is not of class two" c2F 1.
(c) SUbgroups S of F, generated by two elements, are of class two:

c2S 1.
There exist many such groups like the finite groups B, generated by more than
two elements, subject to the identical relation x 1 only; see Levi-van der
Waerden.
Denote by p any prime, not dividing o(F). Then there exist elementary

abelian p-groups N with a group F of automorphisms, isomorphic to F.
We form the product G NF within the holomorph of N.

Consider a subgroup S of G with N c S. Then [S:N] is different from
1 and prime to p. Consequently there exists in S an element s of order a
prime q p. The element s induces in N an automorphism of order q so
that S is not nilpotent. We may state this result as follows:

(1) N is a maximal nilpotent subgroup of G.

Since G/N - F is of class three, we deduce from (1) that

(2) N c3 F;

and combining (1), (2) with G/N -- F and (b) we find that
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(3) N c c2 G and c2 G is not nilpotent.

Consider next a subgroup S of G which is generated by two elements, and
form T NS. Then T/N is generated by two elements; and we deduce
from G/N

_
F and (c) that T/N is of class two. This is equivalent to

2 T

___
N. We restate this as follows"

(4) If the subgroup S of G is generated by two elements, then. S and
are elementary abelian p-groups, contained in N.

From the properties of the group G which we have derived so far we are
going to deduce a number of properties of the functor 2. We first state the
following rather obvious fact.

(I) c2 is a co-nilpotent 3-functor.

(II) . is not a 2-functor.

Proof. If this were false, then we would deduce from (4), the co-solubility
of 2 and from Theorem 4.7 the nilpotency of . G, contradicting (3).

(III) It is impossible to substitute n 1 for n in condition (a) of Theorem
4.7.

Proof. Let in Theorem 4.7 the functor be c.. Then n 3, and (III)
is a consequence of (3), (4).

(IV) It is impossible to substitute n 1 for n in conditions (3.a) and
(4.a) of Theorem 6.2.

Proof. Let in Theorem 6.2 the functor be .. Then n 3. If we
consider now the normal subgroup N of the group G under consideration,
then it follows from (1) and (3) that

Nnc2G N c.G
as N is a normal Hall subgroup of )c G. But G induces in N the nilpotent
group I’ of automorphisms so that condition (3.b) of Theorem 6.2 is satisfied;
and condition (4.b) of Theorem 6.2 holds true, since c2 is co-soluble. Now
(IV) is a consequence of (4).

Appendix. On the characterization of the invariant n of an
n-functor.

We want to show in some special, though interesting situations that the
properties contained in Theorem 4.7 and in Theorem 6.2 are characteristic for
the invariant n of an n-functor.

THEOREM A.1. If is a co-soluble functor on the class of all finite groups,
then the following properties of the integer n > 1 are equivalent:

(i) is an n-functor.



228 REINHOLD BAER

(ii) If S is nilpotent whenever the subgroup S of the finite group G is
generated by n elements, then G is nilpotent.

(iii) If N is an -n-hypercentralized normal subgroup of the finite group G,
then N n G

_
OG.

Proof. That (i) implies (ii) is a consequence of Theorem 4.7; and that
(i) implies (iii) may be deduced from Theorem 6.2.
We assume now that at least one of the conditions (ii) and (iii) is satisfied.

Consider a finite group G with the following property:-- S I whenever the subgroup S of G is generated by n elements.

Select any prime p which does not divide the order o(G) of G. Then there
exist an elementary abelian p-group N and a group F of automorphisms of
N which is isomorphic to G, and F may be selected in such a way that 1
induces a group of permutations, isomorphic to G, on a suitable basis of N.
Next we form the product H NF within the holomorph of N. It is clear
then that N and H have the following properties:

N is a normal Hall subgroup of H; the group F of automorphisms is
induced in N by H; and H/N

_
G, N oN.

Consider a subgroup S of H with N c S. Then o(N) and [S:N] are
relatively prime and [S:N] 1. By Cauchy’s Theorem there exists an
element s in S whose order is a prime q p. This element does not belong
to N and induces consequently by (a) in N an automorphism of order q.
It follows that the p-group N (with p q) is not part of the hypercenter
i)S of S; see Baer [2; p. 42, Theorem 3]. Thus we have established the following
facts:

(b) If S is a subgroup of H with N c. S, then N t)S so that S is not
nilpotent.

Assume next that the subgroup S of H is generated by n elements; and let
T NS. Then TIN is generated by n elements; and TIN is isomorphic to
a subgroup of G. Application of (-) shows therefore that [(T/N) 1;
and this is equivalent to IT N. This implies in particular that IS

_
T
_
N

so that S is an elementary abelian p-group. If furthermore x is an element
in N and X {x, S}, then X

_
T so that X

___
IT
_

N, implying again that
IX is an elementary abelian p-group. Thus we have shown

(c’) If the subgroup S of H is generated by n elements, then IS is an ele-
mentary abelian p-group.

(c") If the subgroup X of H is generated by n -t- 1 elements one of which
belongs to N, then X is an elementary abelian p-group.

If condition (ii) holds, then we deduce the nilpotency of [H from (c’).
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Thus

(d’) If condition (ii) is satisfied by n, then [H is nilpotent.

Similarly we deduce from (c") the validity of the following statement"

(d’t If condition (iii) is satisfied by n, then N n H
___

[H.

Since N and )fH are nilpotent normal subgroups of H, their product N. )[H
is a nilpotent normal subgroup of the finite group H. Application of (b)
shows that )[H

_
NH N. If condition (ii) is true, then we deduce from

(c’) that [H is nilpotent, implying [H [)[H N. If condition (iii) is
true, then we deduce from (dt’) that )fH N n )H N n [H. Naturally
automorphisms of order prime to p are induced by the elements in [H in N
and a fortiori in [H

_
N. Application of Baer [2; p. 42, Theorem 3] shows

that [H is centralized by [H. If x is an element in N and is an element in
fH, then x belongs to N [H

_
N n [H DfH so that x is centralized

byt. Fromx x(x t) we deduce by complete induction that xt x(x t);
and this implies in particular that x

tp x(xot)" x, sinceN 1. Thus
p commutes with every x in N; and we have shown that N is centralized by
for every in [H. In other words" (fH)

_
cN N by (a). This implies

that [H is a p-group, since N is a p-group. But N is a normal Hall subgroup;
and thus it follows that N is the totality of all p-elements in H, implying
[H

_
N. Accordingly we have shown in both cases that

(e) fH

_
N.

But (e) is clearly equivalent to [G 1 so that we have derived from (ii)
as well as from (iii) the validity of

(iv) If IS 1 whenever the subgroup S of the finite group G is generated
by n elements, then [G 1.

In the presence of (iv) it is easy to prove that is an n-functor. For let G
be some finite group. Then C {n G} is a characteristic subgroup of G.
Thus we may form H G/C. If the subgroup S of H is generated by n ele-
ments, then there exists a subgroup T of G which is generated by n elements
such that S CT/C. By definition T n G

_
C so that fS 1. Applica-

tion of (iv) shows now that 1 [H [G/C. Hence fG C G} so that
is an n-functor; and (i) has been shown to be a consequence of (iv), com-

pleting the proof.

Remart A.2. Inspection of the proof shows that the hypothesis of co-
solubility of has been used only when deriving (ii) and (iii) from (i), but
not when deducing (iv) from (ii) and from (iii) nor in the deduction of (i)
from (iv).

Remark A.3. It is apparent from our proof that the domain ) of definition
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of did not have to be the class of all finite groups. It would have sufficed
to impose upon the following two requirements:
-groups are finite.
G is a -group, whenever there exists a normal elementary abelian p-Hall

subgroup P of G such that G/P is a -group.
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