INVARIANT ATTRACTORS IN TRANSFORMATION GROUPS

BY
Jesse Paul Clay

Introduction
In this paper, an attempt is made to generalize the notion of attraction due to Coddington and Levinson [3] which appears in the theory of ordinary differential equations so that it is meaningful in the context of the general notion of a transformation group.

Let (X, T) be a transformation group whose phase space is a separated uniform space. The generalized notion of attraction for (X, T) is defined in Section 1. In Section 2, the general definition of attraction in Section 1 is specialized. It should be pointed out that the specialization is itself a generalization of notions due to Ellis and Gottschalk [4] and the author [2]. Sections 3 and 4 are devoted to a brief study of the specialized notions introduced in Section 2.

The author wishes to express deep appreciation to Professor W. H. Gottschalk for his very helpful criticism and valuable suggestions.

Standing Notation. Let (X, T) be a transformation group whose phase space X is always a separated uniform space. Let \mathfrak{D} be the class of all nonvacuous invariant subsets of X, let \mathfrak{U} be the uniformity of X, let $\mathfrak{B} \subset \odot T$, let \Re be the class of all compact subsets of T, and for each $x \in X$, let \mathfrak{N}_{x} be the neighborhood filter of x.

1. The general notion

In this section the general notion of attraction is defined for the transformation group (X, T) and illustrated for a case in which (X, T) is a one-parameter continuous flow, which has a singular point.

Definition 1. Let $x \in X$ and let $D \in \mathscr{D}$.
(1) x is said to be $₫$-attracted to D under (X, T) provided that if $\alpha \in \mathcal{U}$, then there exists $B \in \mathscr{B}$ such that $x B \subset D \alpha$. The set of all points of X which are $ß$-attracted to D under (X, T) is denoted by $S((X, T) ; \circledast ; D)$.
(2) $\quad x$ is said to be regionally $ß$-attracted to D under (X, T) provided that if $\alpha \in \mathfrak{U}$ and $U \epsilon \mathfrak{N}_{x}$, then there exists $y \in U$ and there exists $B \in \mathbb{B}$ such that $y B \subset D \alpha$. The set of all points of X which are regionally $ß$-attracted to D under (X, T) is denoted by $R((X, T) ; B ; D)$.

Remark 1. Let $D, E \in \mathfrak{D}$ and let $\mathfrak{B}, \mathfrak{C} \subset \odot T$. Then the following statements hold:
(1) $S((X, T) ; \mathfrak{B} ; D) \subset R((X, T) ; ß ; D)$.

Received April 27, 1963.
(2) If $D \subset E$, then
$S((X, T) ; \circledR D) ; \subset S((X, T) ; \circledR ; E)$ and $R((X, T) ; ® ; D) \subset R((X, T) ; ® ; E)$.
(3) If $\mathbb{B} \subset \mathfrak{C}$, then
$S((X, T) ; \mathscr{B} ; D) \subset S((X, T) ; \mathfrak{C} ; D)$ and $R((X, T) ; ® ; D) \subset R((X, T) ; \mathfrak{C} ; D)$.
Example. Let X denote n-dimensional euclidean space with its usual topology where n is some positive integer, let T be the additive group of real numbers with its usual topology and let (X, T) denote a one-parameter continuous flow which has the origin as a singular point. Let $D=\{0\}$ where 0 is the origin in X. Let $ß$ be the class of replete semigroups of T. Then B-attraction to D under (X, T) is equivalent to the notion of attraction defined in Coddington and Levinson [3, p. 376].

2. Specialization of the general notion

Let $D \epsilon \mathscr{D}$. In this section, the general notion of attraction is specialized to obtain four sets $P(D), L(D), M(D)$, and $Q(D)$, in such a way that the proximal and regionally proximal relations of Ellis and Gottschalk [4] and syndetically proximal and regionally syndetically proximal relations of the author [2] are obtained as a special case.

Definition 2. Let $x \in X$ and let $D \in \mathscr{D}$.
(1) Let $\mathbb{B}=\odot T$. Then x is said to be $\{$ simply $\}\{$ regionally $\}$ attracted to D under (X, T) provided $\{x \in S((X, T) ; \mathbb{B} ; D)\}\{x \in((X, T) ; \mathbb{B} ; D)\}$. The set of all points of X which are \{simply\} \{regionally\} attracted to D under (X, T) is denoted by $\{P((X, T) ; D)\}\{Q((X, T) ; D)\}$ or simply by $\{P(D)\}$ $\{Q(D)\}$ when there is no possibility of ambiguity.
(2) Let B be the class of syndetic subsets of T. Then x is said to be \{syndetically\} \{regionally syndetically\} attracted to D under (X, T) provided $\{x \in S((X, T) ; \mathbb{B} ; D)\}\{x \in R((X, T) ; \mathbb{B} ; D)\}$. The set of all points of X which are \{syndetically\} \{regionally syndetically\} attracted to D under (X, T) is denoted by $\{L((X, T) ; D)\}\{M((X, T) ; D)\}$ or simply by $\{L(D)\}\{M(D)\}$ when there is no possibility of ambiguity.
(3) Let $L_{*}((X, T) ; D)$ denote $L((X, T) ; D)$ when the phase group T is given the discrete topology.

Remark 2. Let $R=P, Q, L$, or M. For any transformation group (X, T), define $R^{*}(X, T)=R\left((X \times X, T) ; \Delta_{X}\right)$ where Δ_{X} denotes the diagonal of $X \times X$. Then
(1) $P^{*}(X, T)$ coincides with the simply proximal relation $P(X, T)$.
(2) $Q^{*}(X, T)$ coincides with the regionally simply proximal relation $Q(X, T)$.
(3) $L^{*}(X, T)$ coincides with the syndetically proximal relation $L(X, T)$.
(4) $M^{*}(X, T)$ coincides with the regionally syndetically proximal relation $M(X, T)$.

For the definition of $R(X, T)$ see [2, Definition 1].
Remark 3. Let $D \in \mathscr{D}$. Then the following statements hold:
(1) $L(D)=\bigcap_{\alpha} \bigcup_{K} \bigcap_{t}(D \alpha) K t$ where $\alpha \in \mathcal{U}, K \in \mathcal{K}$, and $t \in T$.
(2) $M(D)=\bigcap_{\alpha}\left(\overline{\bigcup_{K} \bigcap_{t}(D \alpha) K t}\right)$ where $\alpha \in \mathcal{U}, K \in \mathcal{K}$, and $t \in T$.
(3) $P(D)=\bigcap_{\alpha}(D \alpha) T$ where $\alpha \in \mathcal{U}$.
(4) $Q(D)=\bigcap_{\alpha} \overline{(D \alpha) T}$ where $\alpha \in \mathcal{U}$.
(5) $D \subset L(D) \subset P(D) \subset Q(D) \subset X$.
(6) $D \subset L(D) \subset M(D) \subset Q(D) \subset X$.
(7) $\quad L(D)$ and $P(D)$ are invariant subsets of X but not necessarily closed.
(8) $\quad M(D)$ and $Q(D)$ are invariant closed subsets of X.

Remark 4. Let $D \in \mathscr{D}$ and let R denote P or Q or L or M. Then $R((X, T) ; D)=R((X, T) ; \bar{D})$.

3. Basic characterizations

Let $D \in \mathscr{D}$. Then purpose of this section is to point out some general facts concerning the basic structure of the sets $P(D)$ and $L(D)$. The main results of this section are summarized in Theorem 1 and Corollary 1. Theorem 1 , in characterizing $L(D)$, points out that $L(D)$ is essentially independent of the topology on T. This theorem and corollary are a generalization of [2, Theorem 3].

Standing Notation. For the remainder of this paper, if (X, T) is a transformation group, we shall use a to denote the class of all syndetic subsets of the phase group T.

Lemma 1. Let $D \in \mathfrak{D}$ and let $x \in L(D)$. Then $\overline{x T} \subset L(D)$.
Proof. Let $y \in \overline{x T}$. We show $y \in L(D)$. Let $\alpha \in \mathcal{U}$. Choose $\beta \in \mathcal{U}$ such that $\beta=\beta^{-1}$ and $\beta^{2} \subset \alpha$. There exists $A \in \mathbb{Q}$ such that $x A \subset D \beta$. Choose $K \in \mathcal{K}$ such that $T=A K$. Let $t \in T$. It is sufficient to show that $y t K^{-1} \cap D \alpha \neq \emptyset$. Choose $U \epsilon \mathfrak{N}_{y}$ such that $U t k^{-1} \subset y t k^{-1} \beta$ for all $k \in K$. Choose $s \in T$ such that $x s \in U$, whence $x s t k^{-1} \epsilon y t k^{-1} \beta$ for all $k \in K$. Since $\beta=\beta^{-1}$, $y t k^{-1} \epsilon x s t k^{-1} \beta$ for all $k \in K$. Since st ϵT, st $K^{-1} \cap A \neq \emptyset$, whence there exists $k_{0} \in K$ such that $y t k_{0}^{-1} \epsilon x s t k_{0}^{-1} \beta \subset(D \beta) \beta \subset D \alpha$. Therefore $y t K^{-1} \cap D \alpha \neq \emptyset$. The proof is completed.

Lemma 2. Let R be a compact invariant subset of $P(D)$. Then

$$
R \subset L_{*}((X, T) ; D)
$$

Proof. Let α be an open index of X. For each $x \in R$, there exists $t_{x} \in \mathcal{U}$ such that $x t_{x} \in D \alpha$ and hence there exists $U_{x} \in \mathscr{F}_{x}$ such that $U_{x} t_{x} \subset D \alpha$. Since R is compact, there exists a finite subset F of R such that $R \subset \bigcup_{x \in \mathcal{F}} U_{x}$. Let $K=\left\{t_{x} \mid x \in F\right\}$ and define $A_{y}=\{t \mid y t \epsilon D \alpha\}$ for each $y \in R$. Since K is finite and $y A \subset D \alpha$ for all $y \epsilon R$, it is sufficient to show that for any $t \epsilon T$, $t K \cap A_{y} \neq \emptyset$ for all $y \in R$. Let $y \in R$. Since R is invariant, $y t \in R$ and hence
there exists $x \in F$ such that $y t \in U_{x}$. Now $y t \in U_{x}$, whence $y t t_{x} \in D \alpha, t_{x} \in K$, $t t_{x} \in A_{y}$, and $t K \cap A_{y} \neq \emptyset$. The proof is completed.

Theorem 1. Let X be compact. Then the following statements hold:
(1) $L(D)=\{x \mid x \in X, \overline{x T} \subset P(D)\}=\bigcup\{\overline{x T} \mid x \in X, \overline{x T} \subset P(D)\}$.
(2) $L(D)=L_{*}((X, T) ; D)$.

Proof. Use Lemmas 1 and 2.
Corollary 1. Let X be compact. Then the following statements hold:
(1) The following statements are equivalent:
(i) $P(D)=L(D)$.
(ii) If $x \in P(D)$, then $\overline{x T} \subset P(D)$.
(2) If $P(D)$ is closed, then $P(D)=L(D)$.

Proof. Use Theorem 1.

4. Productivity

Let $D \in \mathcal{D}$. In this section, the productivity of $L(D), M(D)$, and $P(D)$ are studied. The main results are summarized in Theorem 2 and Corollary 2. These results are a generalization of [2, Theorems 4 and 5].

The results obtained in this section are an immediate consequence of the following lemma:

Lemma 3. Let T be a group, let n be a positive integer, and let A_{1}, \ldots, A_{n}, K_{1}, \cdots, K_{n} be subsets of T such that $T=A_{i} K_{i}$ for $i=1, \cdots, n$. Let K_{0} be the identity element of T. Then

$$
T=\left(\bigcap_{i=1}^{n} A_{i}\left(\prod_{j=1}^{i-1} K_{j}\right)^{-1}\right) \prod_{i=1}^{n} K_{i} .
$$

Proof. See [2, Lemma 3].
Remark 5. Let (X, T) and (Y, T) be transformation groups. Let φ be a uniformly continuous homomorphism of (X, T) onto (Y, T). Then

$$
R((X, T) ; D) \varphi \subset R((Y, T) ; D \varphi)
$$

where R is P or Q or L or M.
Remark 6. Let I be a set. For $i \epsilon I$, let $\left(X_{i}, T\right)$ be a transformation group where X_{i} is a uniform space which is not necessarily compact, and let D_{i} be an invariant nonvacuous subset of X_{i}. For $j \in I$, let φ_{j} be the canonical homomorphism of $\left(X_{i \epsilon I} X_{i}, T\right)$ onto $\left(X_{j}, T\right)$. Let R denote P or Q or L or M. Then
(1) $R\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right) \subset \times_{i \epsilon I} R\left(\left(X_{i}, T\right) ; D_{i}\right)$.
(2) If $j \in I$, then $R\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right) \varphi_{j}=R\left(\left(X_{j}, T\right) ; D_{j}\right)$.
(3) According to (1) and (2), $R\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)$ is a subdirect product of $\left(R\left(\left(X_{i}, T\right) ; D_{i}\right) \mid i \in I\right)$.

Lemma 4. Let n be a positive integer. For $i \epsilon\{1, \cdots, n\}$, let $\left(X_{i}, T\right)$ be a transformation group, let $x_{i} \in X_{i}$, and let D_{i} be a nonvacuous invariant com-
pact subset of X_{i}. Then the following statements hold:
I. The following statements are pairwise equivalent:
(1) For each $i \in\{1, \cdots, n\}, x_{i} \in\left\{M\left(\left(X_{i}, T\right) ; D_{i}\right)\right\}$.
(2) If $\alpha_{i}(i \in\{1, \cdots, n\})$ is an index of X_{i}, and if $U_{i}(i \in\{1, \cdots, n\})$ is a neighborhood of x_{i}, then there exist $y_{i} \in U_{i}(i \in\{1, \cdots, n\})$ and $A \in \mathbb{Q}$ such that $y_{i} A \subset D_{i} \alpha_{i}(i \in\{1, \cdots, n\})$.
(3) $\quad\left(x_{i} \mid i \epsilon\{1, \cdots, n\}\right) \in M\left(\left(\times_{i=1}^{n} X_{i}, T\right) ; \times_{i=1}^{n} D_{i}\right)$.
II. The following statements are pairwise equivalent:
(1) For each $i \epsilon\{1, \cdots, n\}, x_{\imath} \in L\left(\left(X_{i}, T\right) ; D_{i}\right)$.
(2) If $\alpha_{i}\left(i \in\{1, \cdots, n\}\right.$ is an index of X_{i} then there exists $A \in \mathbb{Q}$ such that $x_{i} A \subset D_{i} \alpha_{i}(i \in\{1, \cdots, n\})$.
(3) $\quad\left(x_{i} \mid i \in 1, \cdots, n\right) \in L\left(\left(\times_{i=1}^{n} X_{i}, T\right) ; \times_{i=1}^{n} D_{i}\right)$.

Proof. We prove I. Assume (1). We prove (2). There exist $y_{1} \in U_{1}$ and $A_{1} \in \mathbb{Q}$ such that $y_{1} A_{1} \subset D_{1} \alpha_{1}$. Choose $K_{1} \in \mathscr{K}$ such that $T=A_{1} K_{1}$. There exists an index β_{2} of X_{2} such that $\left(D_{2} \beta_{2}\right) K_{1}^{-1} \subset D_{2} \alpha_{2}$. There exist $y_{2} \in U_{2}$ and $A_{2} \in \mathbb{Q}$ such that $y_{2} A_{2} \subset D_{2} \beta_{2}$, whence $y_{2} A_{2} K_{1}^{-1} \subset D_{2} \alpha_{2}$. Choose $K_{2} \in \mathfrak{K}$ such that $T=A_{2} K_{2}$. Choose an index β_{3} of X_{3} for which $\left(D_{3} \beta_{3}\right)\left(K_{1} K_{2}\right)^{-1} \subset D_{3} \alpha_{3}$. There exist $y_{3} \in U_{3}$ and $A_{3} \in \mathbb{Q}$ such that $y_{3} A_{3} \subset D_{3} \beta_{3}$, whence $y_{3} A_{3}\left(K_{1} K_{2}\right)^{-1} \subset D_{3} \alpha_{3}$. Choose $K_{3} \in \mathcal{K}$ such that $T=A_{3} K_{3}$. This process is continued. Hence, there exist for each $i \epsilon\{1, \cdots, n\}, y_{i} \in U_{i}, A_{i} \in \mathbb{Q}$ and $K_{i} \in \mathcal{K}$ such that $y_{i} A_{i}\left(\prod_{j=1}^{i-1} K_{j}\right)^{-1} \subset D_{1} \alpha_{i}$ and $T=A_{i} K_{i}\left(K_{0}=\right.$ identity element in $\left.T\right)$. Define

$$
A=\bigcap_{i=1}^{n} A_{i}\left(\prod_{j=1}^{i-1} K_{j}\right)^{-1}
$$

Now $y_{\imath} A \subset D_{i} \alpha_{i}$ for $i \epsilon\{1, \cdots, n\}$. By Lemma 3, $A \in \mathbb{Q}$. The proof that (1) implies (2) is completed.

Assume (2). We prove (3). Let α be an index of $\times_{i=1}^{n} X_{i}$ and let U be a neighborhood of $\left(x_{1}, \cdots, x_{n}\right)$. There exists an index $\alpha_{i}(i \in\{1, \cdots, n\})$ in X_{i} such that $X_{i=1}^{n} D_{i} \alpha_{i} \subset\left(\times_{i=1}^{n} D_{i}\right) \alpha$. There exists a neighborhood $U_{i}(i \epsilon\{1, \cdots, n\})$ of x_{i} such that $\times_{i=1}^{n} U_{i} \subset U$. There exist $y_{\imath} \in U_{i}$ $(i \in\{1, \cdots, N\})$ and $A \in \mathbb{Q}$ such that $y_{i} A \subset D_{i} \alpha_{i}$ for each $i \in\{1, \cdots, n\}$. Now

$$
\left(y_{i} \mid i \epsilon\{1, \cdots, n\}\right) \in X_{i=1}^{n} U_{i} \subset U
$$

and

$$
\left(y_{i} \mid i \epsilon\{1, \cdots, n\}\right) A \subset \times_{i=1}^{n} D_{i} \alpha_{i} \subset\left(\times_{i=1}^{n} D_{i}\right) \alpha
$$

The proof that (2) implies (3) is completed.
That (3) implies (1) follows from Remark 6. The proof of I is completed.
To prove II, we simply observe that if

$$
x_{i} \in L\left(\left(X_{i}, T\right) ; D_{i}\right) \cap M\left(\left(X_{i}, T\right) ; D_{i}\right)
$$

then in the proof of I we may take $y_{i}(i=1, \cdots, n)$ to be equal to $x_{i}(i=1, \cdots, n)$. The proof is completed.

Lemma 5. Let $\left(\left(X_{i}, T\right) \mid i \in I\right)$ be a family of transformation groups. For $i \in I$, let $x_{i} \in X_{i}$, and let D_{i} be an invariant compact subset of X_{i}. Then the following statements hold:
I. The following statements are pairwise equivalent:
(1) For each $i \in I, x_{\imath} \in M\left(\left(X_{\imath}, T\right) ; D_{i}\right)$.
(2) If J is a finite subset of I, if $\alpha_{j}(j \in J)$ is an index of X_{j}, and if $U_{j}(j \in J)$ is a neighborhood of x_{j}, then there exist $A \in \mathbb{Q}$ and $y_{j} \in U_{j}(j \in J)$ such that $y_{j} A \subset D_{j} \alpha_{j}(j \in J)$.
(3) If J is a finite subset of I, then

$$
\left(x_{j} \mid j \in J\right) \in M\left(\left(\times_{j \epsilon J} X_{j}, T\right) ; \times_{j \epsilon J} D_{j}\right)
$$

(4) $\quad\left(x_{\imath} \mid i \in I\right) \in M\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)$.
II. The following statements are pairwise equivalent:
(1) For each $i \in I, x_{i} \in L\left(\left(X_{i}, T\right) ; D_{i}\right)$.
(2) If J is a finite subset of I, and if $\alpha_{j}(j \in J)$ is an index of X_{j}, then there exists $A \in \mathbb{Q}$ such that for each $j \in J, x_{j} A \subset D_{j} \alpha_{j}$,
(3) If J is a finite subset of I, then

$$
\left(x_{j} \mid j \epsilon J\right) \epsilon L\left(\left(\times_{j \epsilon J} X_{j}, T\right) ; \times_{j \epsilon J} D_{j}\right)
$$

(4) $\left(x_{i} \mid i \epsilon I\right) \in L\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)$.

Proof. We prove I. By Lemma 4, it is sufficient to prove (2) implies (4) and (4) implies (1). That (4) implies (1) is immediate by Remark 6.

Assume (2). We prove (4). Let α be an index of $X_{i \epsilon I} X_{i}$ and let U be a neighborhood of $\left(x_{i} \mid i \in I\right)$. Then there exist finite subsets J and J_{1}, a neighborhood $U_{j}(j \in J)$ of x_{j}, and an index $\alpha_{k}(k \in J)$, of X_{k} such that $\bigcap_{j \epsilon J} U_{j} \varphi_{j}^{-1} \subset U$ and $\bigcap_{j \epsilon J} \alpha_{j} \vartheta_{j}^{-1} \subset \alpha$ where φ_{j} and ϑ_{j} are the canonical homomorphisms of ($\times_{i \epsilon I} X_{i}, T$) onto $\left(X_{j}, T\right)$ and $\left(\left(\times_{i \epsilon I} X_{i}\right)^{2}, T\right)$ onto $\left(X_{j}^{2}, T\right)$ respectively. We may assume without loss of generality that $J_{1}=J$. There exist $y_{j} \in U_{j}$ and $A \in \mathbb{Q}$ such that $y_{j} A \subset D_{j} \alpha_{j}$. Now

$$
\left(y_{i} \mid i \in I\right) \in \bigcap_{j \epsilon J} U_{j} \varphi_{j}^{-1} \subset U
$$

and

$$
\left(y_{i} \mid i \epsilon I\right) A \subset\left(\times_{i \epsilon I} D_{i}\right)\left(\bigcap_{j \epsilon J} \alpha_{j} \vartheta_{j}^{-1}\right) \subset\left(\times_{i \epsilon I} D_{i}\right) \alpha
$$

whence

$$
\left(x_{i} \mid i \epsilon I\right) \in M\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)
$$

The proof of I is completed.
We prove II. We observe that by Lemma 4 and Remark 6 it is sufficient to prove that (2) implies (4). Assume (2). We prove (4). Let α be an index of $\times_{i \epsilon I} X_{i}$. Choose a finite subset J of I and an index $\alpha_{j}(j \in J)$ of X_{j} such that $\bigcap_{j \epsilon J} \alpha_{j} \vartheta_{j}^{-1} \subset \alpha$ where ϑ_{j} is as above. There exists $A \in \mathbb{Q}$ such that for each $j \epsilon J, x_{j} A \subset D_{j} \alpha_{j}$ whence

$$
\left(x_{i} \mid i \epsilon I\right) A \subset\left(X_{i \epsilon I} D_{i}\right)\left(\bigcap_{j \epsilon J} \alpha_{j} \vartheta_{j}^{-1}\right) \subset\left(X_{i \epsilon I} D_{i}\right) \alpha
$$

and

$$
\left(x_{i} \mid i \in I\right) \epsilon L\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{\imath \epsilon I} D_{i}\right)
$$

The proof is completed.
Theorem 2. Let $\left(\left(X_{i}, T\right) \mid i \in I\right)$ be a family of transformation groups. For $i \epsilon I$, let D_{i} be an invariant compact subset of X_{i}. Then
(1) $L\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)=\times_{i \epsilon I} L\left(\left(X_{i}, T\right) ; D_{i}\right)$.
(2) $M\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)=\times_{i \epsilon I} M\left(\left(X_{i}, T\right) ; D_{i}\right)$.

Proof. Use Lemma 5.
Corollary 2. Let $\left(\left(X_{i}, T\right) \mid i \in I\right)$ be a family of transformation groups whose phase spaces are compact. For each $i \in I$, let D_{i} be a nonvacuous invariant compact subset of X_{i}. Then the following statements hold:
I. The following statements are equivalent:
(1) $P\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)$ is closed in $\times_{i \epsilon I} X_{i}$.
(2) For each $i \in I, P\left(\left(X_{i}, T\right) ; D_{i}\right)$ is closed in X_{i}.
II. If $P\left(\left(X_{i}, T\right) ; D_{i}\right)$ is closed in X_{i} for each $i \in I$, then

$$
P\left(\left(\times_{i \epsilon I} X_{i}, T\right) ; \times_{i \epsilon I} D_{i}\right)=\times_{i \epsilon I} P\left(\left(X_{i}, T\right) ; D_{i}\right)
$$

Proof. Use Theorems 1 and 2 and Remark 6.

Bibliography

1. N. Bourbaki, Eléments de mathématique, Première Partis, Les structures fondamentales de l'analyse, Livre III, Topologie Générale, Chapitre I, Actualités scientifiques et industrielles, Paris, Hermann, 1940.
2. Jesse Paul Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc., vol. 108 (1963), pp. 88-96.
3. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, New York, McGraw-Hill, 1955.
4. Robert Ellis and W. H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc., vol. 94 (1960), pp. 258-271.
5. W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloquium Publications, vol. 36, 1955.
6. J. L. Kelley, General topology, New York, Van Nostrand, 1955.

UNIVAC, Division of Sperry Rand Corporation
 Philadelphia, Pennsylvania

