
OBSTRUCTIONS TO IMPOSING DIFFERENTIABLE STRUCTURES
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A classical problem of differential topology is the following, which has been
called the regularity problem: Given a topological n-manifold M, does M
possess a differentiable structure? Recently, M. Kervaire has found an ex-
ample in dimension 10 which shows the answer is "not always" [6]. On the
other hand, the affirmative answer is known to hold for n -< 3, at least if M
is nonbounded (i.e., if Bd M is empty); one combines the triangulation
theorem of E. E. Moise [8] with work of S. S. Cairns [2].
To obtain further results, one usually adds more hypotheses to the problem,

requiring M to possess a triangulation which is nice, in some sense. Spe-
cifically, one requires that the triangulation make M into a combinatorial
manifold, in which the closed star of every vertex has a subdivision which is
isomorphic with a rectilinear subdivision of the standard n-simplex. (It
follows readily that some subdivision of this triangulation is a Brouwer tri-
angulation [1]. This means that the closed star of every vertex is imbeddable
in R by a homeomorphism which is linear on each simplex, and if the vertex
lies on Bd M, the image of the open star is an open subset of the half:space
x >- 0.) This extra hypothesis is reasonable, since if M has a differentiable
structure, it also has a compatible triangulation [12], [14], which is auto-
matically combinatorial (see 8.4 of [12]).

In this paper, we apply our previously developed techniques [11] to this
problem. Roughly, our approach is to assume a Brouwer triangulation of M,
and take the imbeddings l CI(St v) --, R as a first try at coordinate systems
covering M. These do not overlap differentiably, but we attempt to "smooth
them out" so that they will. Obstructions to this smoothing are encountered,
which appear in C_I(M, Bd M; 1-). Here C denotes infinite homology,
with twisted coefficients in the nonorientable case. F is the group of
orientation-preserving diffeomorphisms of Sn-m-l, modulo those extendable to
the ball B-. In special cases (e.g., if M is contractible) all these homology
groups vanish, and our techniques suffice to construct a differentiable structure
on M. A list of such cases appears in 2.12.
Once one has strengthened the hypotheses, one may also wish to strengthen

the conclusion of the problem, and require that the differentiable structure
obtained should be compatible with the given triangulation, or some sub-
division of it. The differentiable structures we construct do not have this
property. For example, they may possess conical points: If we imbed a
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2-simplex in R as the ioin of a differentiable curve, in the x-y plane, with a
point p not in this plane, p will be a conical point of the imbedding. We
coniecture that the differentiable structures we obtain may be modified so as
to satisfy the compatibility conditions, but it remains to be seen whether this
is correct.
R. Thom has also outlined an obstruction theory to attack this problem

[13]; he states that the differentiable structures his methods obtain do satisfy
the compatibility condition. Since this paper was written, M:ilnor has in-
vented his theory of microbundles [7], which also gives rise to an obstruction
theory for the imposing of compatible differentiable structures. In addition,
M. Hirsch has outlined an obstruction theory both for the imposing of com-
patible differentiable structures and for their equivalence [5].

1. The obstruction theory

The following ssumptions hold throughout the pper" M is connected,
oriented n-manifold, possibly with boundary, not necessarily compact, pro-
vided with a triangulation making it into a Brouwer manifold. (In 2.9, we
indicate what happens in the nonorientable case.) For each vertex v of M,
there is given an orientation-preserving homeomorphism l Cl(St v) --* R"
which is linear on each simplex; we denote the image complex by K. (If
v e Bd M,/(St v) is to be open in H, which denotes the half-space with non-
negative first coordinate.)
We shall attempt to smooth these coordinate systems step by step, be-

ginning with neighborhoods of the (n 1)-simplices and working down. The
general induction assumption for this procedure is given in the following
definition.

1.1. DEFINITION. For each vertex v of M, let f CI(St v) -- K be a
homeomorphism such that

(1) f agrees with l on Lk v Cl(St v) St , and on all simplices of
dimension <= m;

(2) f f-i is a diffeomorphism onf( (St v n St w) Mm for every pair
of vertices v, w, where M(m) denotes the m-skeleton of M;

(3) for each vertex v of M, each simplex z of Cl(St v) of dimension =< m,
and each vertex w of z, there is a neighborhood V of z in St v such that ff-I
is smooth on f(V M() Bd M) near f(z) (see 2.2 of [11] ).
The homeomorphisms f are then said to define a differentiable structure

mod M). In the case m n 1, the mapsf l satisfy these hypotheses.
If m 0, the maps f define a differentiable structure on M.

We seek to redefine the maps f to obtain a differentiable structure
modM(-1). There is an obstruction to this smoothing, which we now describe.

1.2. DEFINITION. Let f {f} be a differentiable structure mod M.
Choose a partial ordering of the vertices of M which induces a linear ordering



OBSTRUCTIONS TO IMPOSING DIFFERENTIABLE STRUCTURES 363

on the vertices of each simplex. Given the m-simplex a of Int M, let its
vertices be v0, vm in the given ordering, and denotefv byfi for the moment.
The map fi+lf-( is defined in a neighborhood V of fi(a) and is smooth on
V near . Hence the element "(fi+If-() o/+ of r is defined, as in
3.4 of [11]. (In order to define ,+, we must choose coordinates so that
f(a) and f+(z) are contained in 0 X R c R X R; the orientations
induced by the ordering v0, ..., v are to be compatible with the natural
orientation of R. By 3.5 of [11], ,+1 does not depend on these choices.)
The obstruction chain f (where f {fv} is the function assigning to each

such a the m-tuple (,, ..., ,m) of elements of Fn-.
1.3. PROPOSITION. If k,f O, then the maps f may be approximated by

maps g which define a differentiable structure mod M(-1).

Proof. First case. Assume the notation of 1.2. Consider the homeo-
morphismfif- 1 <- i -< m) of a neighborhood Uoff0(a) in K0 into a neighbor-
hood U of f(a) in K. Now’(ff-f) -t- ’2 + ’, by 3.5 of
[11], and all , 0 by assumption. Hence by 4.1 (Case I) of [11], there is a
homeomorphism H" 0 --+ which agrees with ff-fl except in a small
neighborhood of a and is smooth on U0 near each proper face of a. We define
g Hfo on f-j(U) and gi f otherwise; we define go f0. Since the
coordinate maps go and gi overlap differentiably near a, so do g and g. for
any pair i, j.

Second case. If a c Bd M, we use the same argument, except that no
coefficients , are involved. Case II of 4.1 of [11] is applied to construct the
map H everything else goes through as above.

1.4. DEFINITION. Let K denote the semisimplicial complex whose elements
are the ordered simplices v0... v of M; face and degeneracy operators are
defined as usual ([9, 1]). Bd K denotes the subcomplex based on simplices
of Bd M. KN denotes the set obtained by deleting all degenerate simplices;
K/Bd K, the set K Bd K.
Given an abelian group F, let W(F) denote the following FD-complex [3]"

w(r)0 0,

W(F) F X F X X F, mtimes,

(This complex is related to the Eilenberg-MacLane space K(F, 1); its ho-
mology is r in dimension 1 and zero otherwise. This fact is easily proved, but
is not needed in the sequel.)
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Let (W(1) X K) denote the group of all (possibly infinite) m-chains of
K with coefficients in W(I’). An elementary chain is denoted by , X a,
where , (vl, ..., ’) and v0... vm. Because K is locally-finite,
face and degeneracy operators on W(F) X K are well defined by the equations

so that W(F) X K becomes an FD-complex.

If either F or K is finite, W(F) X K is the usual cartesian product [3] of
W(F) and the group of (possibly infinite) chains of K. W(F) X K is defined
similarly, by allowing only nondegenerate simplices of K; it is a chain complex,
but not an FD-complex. W(F) X (K/Bd K) and W(1) X (K/Bd K) are
defined similarly. If f is a differentiable structure rood M(), hf might be
considered to belong to any of these groups. In order that h f be a cycle, it
must be one of the last two groups; in order to have a satisfactory obstruction
theory, the latter of these must be chosen (see 1.6).

1.5. THEOREM. 0 ()m f) 0.

Proof. Let T Wl"’" W be a simplex of Int M; let us compute the co-
efficient of 0 (),f) on r. Let f fw

Let " X (’1, ..., -/) X be a term of the chain kf; then the co-
efficient of O(v X )on r is =t=(,, ..., ,m_),where , (f+f-)(r).
(To prove this, set wl www+l w and note that

by definition of ),f, and this equals ,(f+f71)(a) by 3.5 of [11]. Thecases
ww w,, and a wl w w must be checked similarly.) The sign is

-F or according as the orientations of a and , induced by the ordering,
agree or not.

Let (a, ..., a_) be the value of 0(kf) on . Then a. is merely the sum
of the coefficients ,(f+f-:) on a, where j is fixed and the sum extends over
all m-simplices a in St , and signs are chosen according to the relative orien-
tations of a and T. I follows from 3.9, 5.4, and 5.5 of [11] that this sum is
zero (ust as in the proof in 5.6 of [11] that the obstruction chain there con-
sidered was a cycle).

1.6. THEOREM. Let {f} be a differentiable structure rood M(); let
kf O. By 1.3, we may choose maps g which form a differentiable structure
rood M(m-l). If is any m-chain of (F-+) X K/Bd K, there are maps
h, which also form a differentiable structure rood M(-1), such that

Xm--I g- Xm-i h (9.

Proof. We proceed as in 4.7 and 4.8 of [11] to investigate how altering the
smoothings g affects the obstruction chain. Let v0 v bean m-simplex
of Int M, and consider the map F f f-i in a neighborhood of f0() for some
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fixed i. (fi f,, as usual; i > 0.) The construction of gi involves the
choice of an extension of the diffeomorphism of Sn-m-l, corresponding to
under the map F, to a diffeomorphism of B-m. Another choice gives a
different smoothing hi. The approximations to fi f-I are then gi fl and hi fl
respectively, (since f0 go h0). The composite (hi f-)(gi f-)- hig"1 is
defined in a neighborhood of fi(a), equals the identity on and outside a
small neighborhood of a, and is a diffeomorphism mod fi(Bd a) (as in 4.8 of
[11]). There is an element , of rn-m+1 such that the value of ’y(hig-() on the
face 0i equals (- 1)’, (i.e., the obstruction chain X(hi g71) is the boundary of
the elementary chain a, by 4.8 of [11]). By appropriate choice of , any
element of 1-m+l may so be obtained (as in 5.3 of [11]).

Let h, g for all vertices of M other than v, and consider Xg Xh, an
(m 1)-chain of W(F-m+) Kr/Bd K. Its coefficient is necessarily zero
except on faces of a; its coefficient is zero also on 0ia, since the coordinate
maps gi and h are not involved in defining the .coefficients of Xg and Xh on
0 a (by 1.2). We wish now to compute its coefficient on 0’ a, providing this
face is not in Bd K.

Consider the case i < j. Let u be the vertex preceding vi, and w the vertex
succeeding v, in 0. . The entry in the it place of the value of Xg on 0. a is
(gig:)(O a);the corresponding element in Xh is ’y(hih-)(O o’). Similarly,

gi )(0.a) and (h,h-()(Oo’),the elements in the (i + 1) place are ,(g -1

respectively. Sinceg h and gu h, the coefficient of Xg Xh on 0. is

(0, ..., (gih-(), ,(hig-(), ..., 0) (-1)(0, ..., -% % ..., 0),
where the nonzero coefficients appear in places i and i + 1 of this (m 1)-
tuple.
The same argument applies in the case j < i < m, except -, and appear

in places i 1 and i, respectively. In the case i m, the coefficient of
Xg Xh on 0. a is (-1)(0, ..., 0, -) for all j < i.
We conclude the following: Given/,changing the map gto hiin a neighbor-

hood of a v0 vm gives the equation

,g- kh 0((0, ...,-%7, ...,0) ) if0 <i<m,

the nonzero coefficients appearing in places i and i W 1 of this m-tuple, or

,g- ),h 0((0, ..., 0,-,) X ) if/= m.

We noted before that , may be chosen arbitrarily. Hence it follows that,
since an arbitrary elementary chain (a, am) X a may be written as a
sum of chains of these two forms, it is possible to alter the maps g, ..., gm
in a neighborhood of a so as to change ),_ g by 0( (a, ..., am) X a). By
proceeding similarly for each term in , we may define h so that ),g kh 0.

1.7. DEFINITION. If f is a differentiable structure rood M(m), the homology
class of kf in Cm((1-m) X K/Bd K) is called the obstruction class to
obtaining a differentiable structure rood M(m-).
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The preceding proposition shows that if these classes all vanish, M possesses
s, differentiable structure. (For m large, P 0, so there is never any
trouble in getting the induction started.) The obstruction class depends,
among other things, on the vertex-ordering chosen for M; this dependence is
not essential, as the following proposition shows"

1.8. PROPOSITION. A reordering of the vertices of M, giving rise to a second
semisimplicial complex[, induces an isomorphism p, of m(l(F) X Kv/Bd K)
with 3C(W(P) X/N/Bd/) which carries one obstruction class into the other.

Proof. We define the chain map p. Its value on the elementary chain
(5’1, 5"m) X (v0, vm) of W(r) X (KN/Bd K) is obtained as follows"
Let v0, v be the vertices of z v0 v in the ordering induced by/;
let s be the sign of the permutation involved. Let 5"0 denote (5"1 + + 5"m).

defineSupposing that vk v and vk+l

5"k+1 (5"i+1 " 5"i+2 - "4-

agreeing that in the case j < i, the summation extends from i + 1 through
m and then from 0 through j. We define

((,..., ) x (v0,...,v,)) (1,...,) x (v0,..., v).

The reader may verify that p carries one obstruction chain into the other.
We need to show p commutes with O, but first we prove that the product of

two reorderings induces a homomorphism which is the product of the induced
homomorphisms. From this it follows at once that p is an isomorphism,
since the identity reordering induces the identity homomorphism.
Let A denote the permutation matrix which acts on the column vector

(v0, ..., v) to give the column vector (v’0, ..., v); for convenience, we
number the rows and columns of A from 0 to m. Define a matrix A* as
follows" Consider rowskandk + lofA (0 -< k < m;ifk m,k + lis
replaced by 0 in what follows). Let l’s appear in columns i and j, respec-
tively, of these rows. Then row /c + 1 of A* is to have l’s in columns
i + 1, ..., j, and O’s elsewhere; so that eA* acts on the column vector
5" (5"0, 5’) to give the column vector (5,g, 5"m). (The fact that
5"0 --(5’1 + + 5’) is proved by noting (1 1 1)A* (aa a),
where a is some integer; multiplying both sides on the right by 5’ gives
5"0 -4- + 5" a(5"0 + + 5") 0.)

Let A have l’s at positions (k, i) and (k + 1, j) and let B have l’s at
(i, p) and (j, q); then AB has l’s at (k, p) and (k + 1, q). Since A* has
l’s in row k + 1 at columns i + 1, j, the row k + 1 of A’B* is obtained
by adding together the rows i + 1, ..., j of B*. It follows from the definition
of B* that this sum is an integer a in columns q + 1, ..., p; and it is the
integer a + 1 in columns p + 1, ..., q. Hence the product of row k + 1
of A’B* with is a(5"0 + + 5") + 5"v+1 + +
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Hence A*B*2/ (AB)*,, as we desired to prove; the signs automatically
come out all right.
To show p commutes with 0, it suffices to consider an elementary chain

7 X (’1, ’m) v0 vm and its faces. In view of the result just
proved, it also sufficies to consider the simple permutation which exchanges
vi-1 and v. When 1 < i < m, one has the formula

YO YiYi--1 Ym

where the nonzero elements in the second term appear in places i 1, i,
and i + 1. When i 1 or i m, similar formulas hold. In every case, the
reader may verify the following relations"

Ojp(y X o-) pOj(y X a) for j i,i+ 1,

a p(y x -) -a+,(y x ,) -pa+,(y x -),

o,+( x ) -o,(y x ) -oo,(y x ).

It follows at once that Op(V X a) pO(v X a).

2. Computation of the homology group
Our definition of the obstruction to imposing a differentiable structure has

two virtues--it does work, and its use involves no further messy technicalities
of a "smoothing" nature than those already carried out in [11]. It has the
fault that it lies in an unfamiliar group 3C(l(Fn-m) X KN/Bd K); if we are
to apply the theory, we must compute this group. In this section, weprove
(2.8) that under suitable hypotheses this group is isomorphic with
3Cm_l(M, Bd M; ln-m). In the succeeding section, we examine the image of
the obstruction class under this isomorphism, and provide a description of it
which clarifies the geometric nature of the obstruction.
The homology group C(](F) X K/Bd K) is easy to compute. If K is

finite, it is the usual cartesian product of FD-complexes, so the Eilenberg-
Zilber theorem [4] shows it isomorphic with Cm(W(F) (R) K/Bd K). Then,
since the subgroup of cycles of W(F)m form a direct summand (easily proved),
the Kiinneth formulas apply to show it isomorphic with

+q=m 3C(K, Bd K; 5Cq(i(F))) 3C_1(K, Bd K; 1’).

Even if K is not finite, this computation holds; the isomorphism is induced
by the chain map a defined below, as one may prove without much difficulty.

Unfortunately, the homology groups we wish to compute are those of the
chain complex W(F) X KN/Bd K, and this is another object altogether.
The Eilenberg-Zilber and Kiinneth theorems provide us only with motiva-
tion for the work which follows.
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2.1. DEFINITION. Let a homomorphism

"((I’) K/Bd K) _(M, Bd M; r)

be defined by the equation

((, ..., ) 0 v) (v v).

(((K, Bd K; F) will be used to refer to the chains of the ordered complex
K; e(M, Bd M; F), to the chains based on oriented simplices of M.) One
readily verifies that aO -Oa.

2.2. PROPOSITION. a, is natural with respect to the reordering isomorphism
p, (1.8), so that a,[kf] is independent of the particular ordering used to define

Proof. Assume the hypotheses of 1.8. Let

a" (](r) X //Bd/) --* e_(M, Bd M; F)

be defined by the equation of 2.1. We wish to show a, ,p,.
Define D ("(F) X KN/Bd K) ---) e.(M, Bd M; F) by defining

D(y X ) D(3’, ..., /) X v0 v (3’1-4- -f- 7)v0 v

if the reordering of v0 v makes v into its leading vertex. We use the
same convention about the sum , + + %., if j < i, as in 1.8; hence if
i 0, + + 0. We leaveit to the reader to show that OD- DO
a ap.

2.3. Remark. We have assumed throughout that K is based on a Brouwer
triangulation of the n-manifold M. In the remainder of this section, we also
assume that this triangulation is the first barycentric subdivision of another
triangulation of M, which we denote by M, and that the ordering chosen in K
is the natural one. That is, a simplex of K is a sequence z 2 z of
simplices of M, where z is a face of z_, for all i; z is called a vertex of .
If 0 has z as a face, then the symbol z0 denotes the simplex z0 Zl z2 z
of K.

2.4. LEMMA. If is an m-cycle (m < n) of W(F) X KN/Bd K and a is
homologous to zero, then is homologous to a chain such that a O.

Proof. a lies in the subdivision of the (n 1)-skeleton of M; since its
dimension is m 1, it bounds (mod Bd M) an oriented chain which lies on
the subdivision of this skeleton. Let a r be the corresponding ordered
chain; r is in K. For each m-simplex r appearing in the chain, choose an
n-simplex ai of M having the vertices of r as faces. Let c be the chain

(ai, 0, ...) X r, which lies in (I(F) X K)m+l;let -+- Oc.
Then a/ a}- O(ac) O.
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2.5. LEMMA. If is an m-cycle (m < n) of I(F) X K/Bd K and a O,
is homologous to a chain whose leading coecients are all zero.

Proof. Consider as a chain in W(F) X K let m > 0, since otherwise
-0o

Case I. Assume m > 1 for the moment. Let a be a simplex of dimension
n 1; consider all simplices of K whose second vertex is a. Let a be an

m--2n-simplex of 3r incident on a; let v (a, X a ar be that part of
carried by simplices beginning a a. We prove that ai r is the bound-

ary of some chain b. - -r where r is a simplex of K lying in Bd a.

For this, let us note that the part of 0 carried by simplices beginning a a

must appear in 0, because a and a have dimensions n and n 1, respec-
tively. This part of 0 is of the form (a, X ar since is a
cycle mod Bd K, this must vanish, for no simplex beginning lies in Bd K.

m--2Hence a r is an (m 2)-cycle on Bd a, which is a sphere of dimension
m--2n 2. (Ifm 2, it isa0-chainofindex0.) Thus ar boundsa

chain lying on Bd a, as desired.
If lies in Bd M, set

0, ..., 0) X

If z does not lie in Bd r, let z be the other n-simplex incident on z, nd
define

" ’ (b, -b, 0, ..., 0) X ( r7- ,
Then 0" has leading coefficient 0 on all simplices having z as a second
vertex, and hgs the sme coefficients gs on gll other simplices not in Bd K.
This is proved by direct computation, once we note that the prt of crried
by simplices beginning , z must be of the form (-a, X , zr
since a 0 mod Bd M, by hypothesis.
The cgse m 1 is hgndled by noting tht in this cgse, n simply equals

a X z z. If z is in Bd 3r, set (a, -a) X zv, where v is vertex of ;
if is not in Bd 3r, set (a, -a) X (zx zv z zv).

Case II. Let r be g fixed (m 1)-simplex of K whose legding vertex hs
dimension k < n 1; consider gll simplices of K of the form z r. Let
n ’ (a, ...) X r be that prt of crried by such simplices. If r

is in Bd K, then Lk r is cell of dimension n k 1 > 0 in M. Hence the
0-chgin ai i bounds, mod Bd K, chgin b. r. crried on Lk r. Set

’ (0, b, 0, ...) X r.r; then

0 (b, 0, ...) X (0r)r d- (0, b, 0, ...) X r Or.

Hence 0 has leading coefficient zero on all simplices of the form i r

not in Bd K, and has the same leading coefficients as on all other simplices.
If r is not in Bd K, then Lk r is a sphere of positive dimension.. ai i has
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index 0, because the coefficient of a on r must be zero. The argument just
given applies.
A combination of the chains " defined in Cases I and II will give us a chain

" such that 0" has leading coefficient zero on all simplices not in Bd K.

2.6. LEMMA. If is an m-cycle (m < n) of lg(F) X K/Bd K whose lead-
ing coecients are all zero, then bounds a chain (whose leading coecients
are all zero).

Proof. Consider as a chain in W(1) X K. We proceed by induction;
assume the first / 1 coefficients of are zero on all simplices not in
Bd K (1 </c _<_ m). Case I disposes of that part of carried by simplices of
K whose (/ + 1) vertex has dimension n /; Case II deals with the
rest of .

Case I. Let a be a simplex of dimension n -/, and consider all m-simplices
of K whose (/ q- 1) vertex is a. Assume/ < m for the moment. Let

k--1 m--k--1r _,.(0, O, ai ...) )< r ar
be that part of carried by such simplices; a appears in the k place of this

k--1m-tuple. T is a principal simplex of K; it has/c -f- 1 vertices, the last of
which has dimension n /c. We prove that is of the form- --1 where =t= 1._,.(0, ..., O, b, ...)e X r r
To prove this, we consider that prt of O crried by simplices of the form

k--2 m--k--I
r r and hving nonzero coefficients in place/ 1. This prt must
occur also in &/. (To have a nonzero (/ 1) coefficient, a term of 0
must arise from applying one of the face operators 00, ..., 0_. But
k--2 m--k--1

T k--lo.Tm--k--1r aT 0. for0 <j < k-- lonlyifr is of the form r

Since 0 --- 0 mod Bd K, we inspect the (/ 1 )t coefficients in &/and obtain
k--1the equation ,a(Or{-)ar--1 0 mod Bd g. Thus a r is a

cycle rood Bd K on Lk (ar--), which is a sphere or cell of dimension k 1.
k--1Hence this cycle is a multiple of the fundamental cycle" ar

b-e r-, where e =t= 1. Thus /is of the desired form.
Now we prove that b. r-- bounds a chain carried on Bd a. To prove

k--1 m--k--2this, we note that part of 0 carried by simplices of the form r ar must
come from &/, since r-a is principal. We inspect the/c coefficients in that
part of 0n to obtain the equation

k--1 m--k--1,b e r or O.

Thus b Or-k-1 O, SO that . b. r}-*- is a cycle on Bd a, which is a
sphere of dimension n -/c 1 > 0. (If 1 m 1, it is a 0-cycle of index
zero.) Hence it bounds a chain ca" r- carried on Bd a, as desired. We
define

k--1 m--k,(..:, O, c, -c, O, ...)
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where cy and -cy appear in places/c and/ -4- 1 of this (m A- 1)-tuple. Then
k--1 m--k...) x

k--1 / m--k+ ...) X ).

In the first term, cy and -c. appear in places/ i and/; in the second term,
k--1in places/c and/c -t- 1. The first term is zero rood Bd K, since r is a

cycle rood Bd K. Then -t- (- 1)0" has zero coefficients in places 1, ,/c
-1 m--i and agrees with on all other simpliceson all simplices of the form T aT

not in Bd K.
m--1(Inthecasek m, 0, O, ai X r a. As above,

m--1
V (0, ,0, b) X eiri

Set ’ (0, b, -b) X ei ri av, where v is an arbitrary vertex of .)
Case II. Let r be an (m /)-simplex of K whose leading vertex has

dimension less than n k, and consider all m-simplices of K of the form
k--1 k--1

r r. Let (0, ...,0, ai, ...) X r r be that part of carried by
such simplices, where a appears in the k*h place. As before, that part of
0 carried by simplices of the form -rj r and having nonzero coefficient in
place k 1 must come from &/. By inspecting the (k 1)*h coefficients of
&/, we obtain the equation

a(0r-x)r 0 rood Bd K.

Thus ai r is a cycle mod Bd K on Lk r, which is a sphere or cell of dimen-
k--1 ksionn-- (m-- k)-- 1 > k-- 1. Hence ’ar --- 0bjrmodBdK,where r lies in Lk r. Set

(0, ..., ..., 0)

where by appears in place/ -t- 1 of this (m -t- 1)-tuple. Then 0" has
zero coefficients in places 1, ,/ on simplices not in Bd K ending with r,
and its coefficients agree with those of in places 1, ,/ on all other simplices
of K.

2.7. LEMM. If C is a cycle of,_ M, Bd M; F) m < n) carried by the sub-
division of the (m 1 )-slceleton of, then there is a cycle oflr(F) )< K/Bd K
such that a c. has leading coeficient zero on every simplex (r such that
Oo a is not in the carrier of c.)

Proof. Let m > 1 for the moment. Let 5 ’ a i r- be the ordered
chain corresponding to c, where a has dimension m 1, and a 0 if the
leading vertex of r’-2 is not a face of a, or if a is in Bd 21r. For each i,
choose an n-simplex a of having a as a face. Let



372 SAMES MUNKRES

thena0 c. Now

so that 0 is not a cycle. However, the second term in 00 does vanish. For that
part of Oc carried by simplices beginning i must come from 0 ._ai r
since c is carried by the subdivision of the (m 1)-skeleton of M. Hence

a. 0r’- 0 mod Bd K, for each i, since is a cycle rood Bd K. Hence
the second term in 00 vanishes.
We now choose a chain 7 so that 0 -+- 7 will have leading coefficients zero.

Let j be fixed. That part of 0f which is carried by simplices ending r- is

ai r-. If r’- is not in Bd K, a is a 0-cycle of index zero on the
(n m W 1)-sphere Lk -r Thus ’ aij bounds mod K on Lk r-whether r- lies in Int K or Bd K. Let ai" 0 bij r. mod Bd K.
Let

7" (0, b, 0, ...) X r. r7-2;
let 7 aT’. Then 07 0, and direct computation shows 0(0 + 7) is a
chain whose leading coefficients are zero on simplices not in Bd K.

Let be that part of 0(0 + 7) carried on K Bd K. By 2.6, bounds,
mod Bd K, a chain i" of ](F) K whose leading coefficients are all zero.
Then 0 + 7 " satisfies the demands of the lemma.

(In the casem 1, c aandwe set aiX a. Then
a c and is automatically a cycle.)

THEOREM. Under the hypotheses of 2.3,

a." Cm((r) X g/Bd K) --) C,_I(M, Bd M; r)

is an isomorphism for m < n.

Proof. The fact that a. is 1-1 follows from 2.4, 2.5, and 2.6; the fact that
it is onto, from 2.7.

2.9. Remark. The result of this theorem is that we may consider the
obstruction to imposing a differentiable structure on M as.a homology class of
_(M, Bd M; 1-). (The dimension m n does not concern us, since
there are no obstructions there.) We have throughout treated only the
case M orientable. There are no difficulties involved in extending the theory
to the nonorientable case; the only change is that all the preceding theorems
and proofs become slightly messier, because the coefficients in W(F) X K
must be twisted, as must the coefficients in (M, Bd M; I’). The use of
script C will imply, as in [11], that infinite chains are allowed and that co-
efficients are twisted if M is nonorientable.
The results may be translated into ordinary homology and cohomology

(denoted by H) by using duality and universal coefficient theorems, as in
6.2 and 6.5 of [11].
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2.10. THEOREM. Let M be a combinatorial n-manifold. If any one of the
following conditions holds, M has a differentiable structure.

(1) n _<_ 4.
(2) n 5; M is open or Bd M is nonempty.
(3) Hq(M) O forq >= 4.
(4) M is compact orientable, and Ha(M Bd M) 0 for q <- n 5.

Proof. These conditions overlap, of course. The sufficiency of condition
(1) was first proved by Cairns (see [2]). The possible obstructions lie in
the groups

_(M, Bd M; rl), ..., 3c0(M, Bd M; r-l).
Sincerq 0forq -< 3 [10], these groups vanish whenn -< 4. Ifn 5,
the only possible obstruction lies in 3C0(M, Bd M; r); this group vanishes
under the conditions of (2). The sufficiency of conditions (3) and (4)
follows from the isomorphisms mentioned in 2.9.

2.11. Remark. One disadvantage of this obstruction theory is if f is a
differentiable structure mod M(m), and M is some subdivision of M, there is no
natural way of obtaining from f a differentiable structure mod Mm). This
is a peculiarity of our definition of a "diffeomorphism mod L". Our ob-
struction theory thus depends heavily on the combinatorial structure of M,
not only on its piecewise-linear structure. The obstruction theories con-
structed by Milnor and Hirsch are formulated so as to avoid this difficulty.

3. A direct definition of the obstruction chain

By Theorem 2.9, it suffices in applying our obstruction theory to con-
sider the class a.[),f] in 3C_(M, Bd M; r-). Independently of the author’s
work, S. Smale and M. Hirsch had defined an element of this group which
seemed, for geometric reasons, to be a reasonable candidate for the obstruc-
tion to imposing a differentiable structure, although technical difficulties
hampered the building of an obstruction theory around it. (It is a dualized
form of the definition given by Thom [13]; his obstruction class lies in
Hq+(M; rq).) This element turns out to be precisely a.[),f]; their defini-
tion, to which we now turn, provides the desired geometric interpretation of
the obstruction to imposing a differentiable structure.

3.1. DEFINITION. Let N be an oriented differentiable manifold com-
binatorially equivalent to S, i.e., to the boundary of an (n 1)-simplex.
An equivalent requirement is that N be diffeomorphic to S mod a finite num-
ber of points, or mod a single point, by 6.8 and 6.9 of [11]. Let g N --, S"
be a diffeomorphism mod a finite number of points, and let k(N) be the index
of the obstruction chain k0 g; k(N) e F. By 5.4 and 6.11 of [11], , sets up a
1-1 correspondence between equivalence classes of such manifolds N, the
equivalence relation being that of orientation-preserving diffeomorphism, and
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elements of the group 1. If -N denotes the opposite orientation of N,
then (-N) -,(N).

3.2. DEFINITION. Let f: CI(St v) --. K be a differentiable structure
mod M(m), as defined in 1.1. Let a partial ordering be chosen for the vertices
of M, so that f may be defined. Given an m-simplex a of M, with leading
vertex v, let f denote the restriction of f to Cl(St ), and let K, denote the
image of f similarly for any (m 1)- simplex r. The coordinate systems
(St , f) cover M M(m-l) and overlap differentiably (so that it would
really have been more appropriate to call f /f} a differentiable structure
rood the (m 1)-skeleton rather than the m-skeleton).

Let be an (m 1)-simplex of Int M, oriented by the given ordering of its
vertices. The coordinate systems (St . f) impose a differentiable structure
on St and hence induce one on St ’, where ’ fi(r). They
also induce an oriented differentiable structure M on a small sphere in the
plane orthogonal to ’ (as we verify below). This manifold belongs to the
class described in 3.1; the new obstruction chain is defined as assigning to the
oriented (m 1)-simplex the element X(M"-) of F"-. It is considered
as an element of the chain group _(M, Bd M; r-).

This chain is a resonable candidate for an obstruction chain" if
),(M"-) 0, the differentiable structure on M- is the ordinary one and
may be extended to a differentiable structure on the ball B-+. It then
seems likely that the differentiable structure already defined on St
should be able to be extended to a differentiable structure that covers as
well.

3.3. POeOSITO. The new obstruction chain is well defined and equals

Proof. Let r be a fixed (m 1)-simplex of Int M; let a be an m-simplex
having as a face. Let r f(r) and r f(r). Let (P be an (n m + 1)-
plane orthogonal to ’ at the point of p of r’; let S be a small sphere in
this plane, with center at p, taken in the usual differentiable structure. We
orient (P by a linear map, carrying R" onto itself, r’ onto 0 Rm-, and
(P onto R-+ X 0, all in orientation-preserving fashions. This imposes an
orientation on S as well. Similarly, let S be a small oriented sphere in the
plane ( orthogonal to r atff-(p); let C be the cell S Int K. We map
C into S by first applying ff then projecting parallel to ’ into the plane
(, and then projecting radially from p into S. The crucial fact here is
that ffl Kcr --) R is smooth on Int K near , so that by 3.3 of [11], this
map of C into S is an orientation-preserving homeomorphism, which is
diffeomorphism rood the single point q where C intersects the simplex f(

It is in this way that the coordinate systems (St a, f) induce an oriented
differentiable structure M on the sphere S the identity map g of M
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onto S is a diffeomorphism mod finitely many points, so that ),(Ms-m) is
well-defined.

Let us compute X(M’-m). It is the index of the obstruction chain hog,
whose coefficient we now compute at the point which is the image of q.
When referred to coordinates in M and S, this is merely the obstruction
coefficient assigned to q, for the map of C into S. By 3.9 of [11], in turn,

--1this is exactly the coefficient (f f) evaluated on f(z).
--1If r and have the same leading vertex, f; f is the identity and the co-

efficient is zero. Otherwise, it is the coefficient ’1, where (1, ..., 3’) is
the coefficient of in f. (For then r vw ..., where w is the leading

--1vertex of -; "(ff)(f(a)) by definition; and f and f are restrictions
of fw and f, respectively.)
Now the coefficient of a(f) on r is precisely the sum of the leading co-

efficients in f of m-simplices having r as their terminal face. This is, as
we have iust shown, (Mn-).

3.4. The last paragraph of 3.2 suggests the likelihood of the following"
Even if a(f) is not homologous to zero, one ought to be able to extend the
differentiable structure given by the coordinate systems (St , f) across
those (m 1)-simplices r not lying in the carrier of a(Xf). This is in fact
the case, under suitable hypotheses.

PROPOSITION. Assume the hypotheses of 2.3. Let f be a differentiable struc-
ture mod M(); let Xf O. There is a differentiable structure g mod M(m-),
by 1.3. Let c be any representative cycle in a.[Xg] whose carrier c* is contained
in the (m 1)-skeleton of I. There is a differentiable structure h, mod M(m-)

with a(),h) c, such that the coordinate systems (St r, h), for all (m 1)-
simplices r not in c*, define a differentiable structure on M M(’-) c*.

Proof. By 2.7, there is a cycle with a c, such that the leading co-
efficient of is zero on each m-simplex such that 00 is not in c*. Since
a. is an isomorphism, is homologous to ,g, so that there is a differentiable
structure g’ mod M(m-l) such that Xg’ , by 1.6. For each m-simplex
= v0 ..vwith00 v...vnotinc* we may redefine the coordinate
map g Cl(St vl) R obtaining h, so that h(g)- is differentiable in a
neighborhood of g’0(), as in the proof of 1.3. Let h g’ otherwise.
The coordinate systems (St , h) automatically overlap differentiably;

if r is not in c*, then by construction of h, (St r, h,) overlaps all of these
coordinate systems differentiably, as desired.
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