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1. Introduction

This paper concerns the existence of bounds for nilpotent length in groups,
G, admitting a fixed point free group of automorphisms, V. Among results in
this direction we may list the following:

Group of Operators V Bound for Nil-
potent Length

cyclic of prime order 1
cyclic, order 4 2
the 4-group 2

Investigators

J. G. Thompson [6]
D. Gorenstein and I N. Herstein [4]
S. Bauman [2]

The results in this paper may be summarized in the following theorem.

THEOREM. Let G be a group admitting the abelian group, V, as a fixed point
free group of operators.

(i) If IV n p’ p, is prime to G J, and G is solvable, then G
has nilpotent length at most a b(n), the total number of primes dividing n,
provided

a G is not divisible by primes, q, such that q 1 d for some integer
and some divisor, d, of the exponent, e, of the abelian group, V.
(ii) If V is cyclic of order p, and G is r-solvable, then G has r-length at most- 1 /2], provided

(b) p is not a Fermat prime when GI .is even, and that GI is not di-
visible by Mersenne primes <2 when p 2.

From (i), [((n) - 1 )/2] is a bound for r-length whenever G is solvable, but
in (ii) G is only r-solvable. Both results follow from two technical theorems,
Theorem 3.1 and 4.1, which may be regarded as the main theorems of the
paper. Theorem 3.1 treats the case that V is cyclic of prime power order, and
leads to (ii). Theorem 4.1 is a kind of analogue of Theorem 3.1, for the case
that V is not cyclic of prime power order; it requires more special hypotheses,
and its proof is more difficult. Section 5 shows that the bound in (i) is best
possible (and is a lower bound for the exceptional cases).
There are good reasons to believe the bound doubles in the presence of the

exceptional case, but this is rather difficult to show, especially when V is not
cyclic of prime power order.
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2. Preliminary results and notation

Let V be a group of operators acting on a group G. The following sub-
groups of G are of interest:

Gr {g g e G, v(g) g for all veV}

(V, G) the subgroup generated by {v(g)g-1 v e V, g e G}

r(G) the intersection of all maximal V-invariant subgroups of G.

If W <:l V, G, (W, G) and (G) are all V-invariant.
The following basic results are used repeatedly in this study. Throughout,

V is assumed to have order prime to G I.
LEMMA 2.1. " G) (G) whenever G is nilpotent.
LEMM_ 2.2. If H

__
G, and N No(H) then N N, CN(H).

LEMMA 2.3. If H is normal and V-invariant, V acts on G/H in a natural
way, and (G/H) , G, H/H.

LEMM/k 2.4. If N is normal and V-invariant, V, G)

_
N if and only if GIN

is fixed elementwise by V.

LEMMA 2.5. At least one q-Sylow subgroup is V-invariant for every prime q
dividing lG ].
LEMMA 2.6. V, V, G)) V, G) and is normal in G.

Many of these results follow readily from one another and almost all can be
proved by means of a theorem of G. Glauberman [3] which generalizes a result
of Wielandt [7]. Lemmas 2.3 and 2.5 can be found explicitly in Wielandt [7]
and Lemma 2.2 in Alperin [1].

3. Fixed point free automorphisms of prime power order

The main theorem of this section plays the role of a technical lemma for the
proof of Theorem 3.3. The reductions follow closely, those given in the im-
portant work of P. Hall and G. Higman [5], and may be regarded as a partial
analysis of their situation for the case that the characteristic of the underlying
field is prime to the order of the automorphism acting on G.

THEOIEM 3.1. Let V be a group of operators acting on a group G. Suppose
that V is cyclic of order p and that G has order prime to p (p is a prime number).
Let H be the semidirect product GV and let A be a faithful KH-module where K is
a splitting field for all subgroups of H and where the characteristic of K does not
divide H. If the generator, v, of V, acts in fixed point free manner on A, then
w v- centralizes G, provided neither of the following exceptional cases occur:

(a) G has a non-abelian 2-sylow subgroup and p is a Fermat prime and

(b) p 2 and G is divisible by a Mersenne prime q < 2 for which G has a
non-abelian q-Sylow subgroup.
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Proof. (By induction on G[ + dim A + V I.) Since the characteristic
of K does not divide H the module A may be decomposed into its irreducible
KH-components, A1, At, each affording a representation, p, with kernel
K, (i 1, 2, t). Since A is faithful, the K have trivial meet. If w
acts trivially on any A, w centralizes GIG n K. If w does not act trivially
on Ak, K G, and A is a faithful VG/K-module. If either (a) or (b) held
for the groups V and G/K they would hold also for V and G. Finally, V is
fixed point free on each A and char K does not divide V I" [G K]. Since
G/K + dimKA + V! < GI + dimA + V if > 1, induction

yields that w centralizes G/K. Thus in any case, whether V acts faithfully
on A or not, w centralizes G/K G, if > 1. Thus by Lemma 2.4

Fl___i K I,

whence w fixes G elementwise, our conclusion. Thus we may suppose 1,
so A is an irreducible KH-module.
Now let L be any proper V-invariant subgroup of G, form the group

Ho LV, and regard A as a KH0-module by restriction. V acts fixed point
free on A and the conditions (a) or (b) cannot arise for L since they would
then hold for G. Thus, V, L, Ho LV and A together satisfy the conditions
of the theorem, and since ]L] + dimA -t- V] < ]G] - dimKA + V I,
we may apply induction to obtain that w fixes L elementwise. Thus every
proper v-invariant subgroup of G may be assumed to be fixed by w.

If L1 and L2 are distinct maximal V-invariant subgroups of G, L G,
i 1, 2 so G {L1, L2}

_
G, whence G is fixed elementwise by w. Thus

without loss of generality we may suppose that G has a unique maximal V-in-
variant subgroup which contains every proper V-invariant subgroup of G and
is fixed elementwise by w v-1. Evidently, this unique subgroup is V(G)
itself.
Now suppose G is not a prime power group. Since V is soluble and has

order prime to ]G !, by the result of Wielandt (Lemma 2.5), at least one
q-Sylow subgroup of G is V-invariant, for every q dividing G ]. Such a group
is proper, and so lies in the unique maximal V-invariant subgroup CV(G).
Then ’(G) has order at least as large as G ], which is impossible since (G)
is proper. Thus G is a q-group. Then, by Lemma 2.1, since G is nilpotent,
(G) (G) is the unique maximal V-invariant subgroup of G. Thus
G/@(G) is an elementary abelian q-group admitting v irreducibly. Since V is
abelian, (G/4(G)) is a V-invariant subgroup of G/@(G) and so is either
G/@(G) or is trivial. In the former case, by Lemma 2.3, G (G) G so
G G, and we are done. We next show that the remaining alternative
(G/@(G)) E, leads to a contradiction.
Thus we have that (G) G. Since (G) is normal in G, by Lemma

2.2, G C(4(G) )G C(4(G) )@(G) and so G C(@(G) ), whence
(a)

_
z(a).

Since A is an irreducible KH-module and G <:l H, A may be decomposed
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into a sum of its homogeneous KG-components, A B B, where
vB= B+,i_< s- landvB Bsos p,h_< k. Nowu= vleaves
each B invariant. If a e B is fixed by u, then

(1)

is an element of A fixed by v and hence is zero. Since each va B+,
j < s 1, the quantities appearing in (1) are linearly independent and so each
must be zero. Thus a 0 and so h < k and u vv acts m fixed point free
manner on each B. Let D be the kernel of the representation of G afforded
by B. Then the groups U {u}, G G/D, and B satisfy the conditions
of our theorem (note that (a) and (b) cannot hold for G/D). If s > 1, then
G -4- dimB + U] < G -4- dim A -4- V and induction yields the

result that an element of order p in U centralizes G/D, i 1, ..., s p.
But since V is cyclic of prime power order, this element of order p generates
{w} Thus by Lemma 2.4, ({w} G)

_
D {1} and we are done.

Thus we must suppose that s 1 so that A is an homogeneous KG-module.
In this case p X @ Y where p is the representation of H afforded by A, X

and Y are irreducible projective representations of H, X(g) I for all
g e G, and Y has the same degree as that of an irreducible KG-submodule of A.
Thus X can be viewed as an irreducible projective representation of V.
Since V is cyclic, X has degree 1 and so A must have the same dimension as
one of its irreducible KG-submodules. Thus A remains irreducible when
viewed as a KG-module.
We established earlier that (G) (G) G Z(G). Since Z(G)

is V-invariant and contains the unique maximal V-invariant subgroup of
G, either Z(G) G or Z(G) 6(G). In the former case G is abelian, and
the irreducible KG-module A is therefore one-dimensional. Then, if p
denotes the representation of H afforded by A, p(v) commutes with p(x)
for all x e G, whence v centralizes G, since A is faithful. Certainly in that
case w vv centrahzes A. Thus we may suppose that Z(G) (G).
Now by Clifford’s Theorem, all KZ(G) submodules of A are conjugate (under
the action of G alone) and since Z(G) is the center of G, they are equivalent.
Thus the abelian group, Z(G) is represented on A by left scalar multiplica-
tion by dements of K. Thus Z(G) is cyclic and the matrix p(v) commutes
with the scalar matrices p(z) for all z Z(G). Since p represents H GV
faithfully, Z(G)

___
G

___
G 6(G) Z(G). Also, we may assume

G (v, G) since G/6(G) admits v irreducibly and v does not act trivially on it.
Thus every dement of G is a product of dements of the form v(x)x-, for
various dements x in G. Now the Frattini subgroup of G is generated by G’
and the q-th powers of elements of G. If it can then be shown that the
q-th power of any element lies in G’ we shall have that G’ O(G). This is
an easy consequence of the fact that every element of G is a product of ele-
ments of the form v(x)x- and that (G) is fixed elementwise by v. Let y be
an arbitrary dement of G. Then
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Then, modulo G’,

y (v(xl)x-l). (v(x.)x-) (v(x,)x-).

yq (v(x)x’)q... (v(xt)x-[1) q

(V(Xl)q(xl)q) (V(Xt)q(xl)q)

((x)(7)) (v()(7))
((x7))... (.(x7))
1 mod G’

since every q-th power lies in (G) and hence is fixed by v. Thus yqe e’
and so G’ (G). Now every non-trivial element in G has order q since
G’ Z(G) is abelian, and for ny generator, (x, y) we have

(x, y)q (x, y) (x, y)(x, y) (to q factors)
(2)

(x, y)q-’(x, y)q- (x, y)(x, y)

since (x, y)e Z(G). By applying the identity (ab, c) (a, c)(b, c) suc-
cessively on the two right most terms in (2), q 1 times, we obtain
(x, y) q (xq, y) 1 since xq lies in the center. Thus all of the generators
of the abelian group G’ have order q. Consequently, since G’ Z(G) is
cyclic, this group has order q.
Thus G is n extra special q-group of order q+, and p]a is irreducible of

degree q. Consequently, the enveloping algebra a for this representation
is full matrix algebra of dimension q. Let p* denote the matrix representa-
tion of the group algebra, KG induced by p. Then since p* is a ring homomor-
phism, a p*(KG) KG/ker p*. SetJ KG(z 0.1), the two sided
principal ideal in KG generuted by z 0.1 where 1 denotes the identity of
G, z is a fixed generator of Z(G) and 0 is the q-th root of unity such that
(z) I. Now

(z-O.1) (z)-O(1) =OI-O=O
SO

(3) J

_
ker p

It is easily shown that all elements of G which as elements of KG lie in cosets
of the form

.1 -t-J, K
belong to Z(G). More generally, if L is any collection of cosets of J for
which L/J is a one-dimensional subspace of KG/J and if L contains the group
element, x, it even contains the entire coset xZ(G). Moreover, if y e G and
y e 1 then xZ(G) yZ(G). Using these facts, it is not difficult to show
that if y, yq are a complete set of coset representatives of Z(G) in G,
then the cosets y W J, i 1, 2, q, form a K-basis of the factor algebra
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KG/J. Thus codimK J dimK(KG/J) q and so, from (3) and the fact
that dim a q we have ker p* J KG(z 0.1) whence

(4) KG/KG(z O. 1 ).

It is easily shown that the representatives yl, "", y.a which are used to
form a K-basis for KG/J can be chosen so that they are invariant (as a set)
under the automorphism v. The permutation induced on the y then cor-
responds exactly to that induced by v on the elements of G/Z(G). Rela-
tive to the v-invariant basis y + J of KG/J, v is represented by a permutation
matrix, and the v-orbits in y + J can be utilized (by forming sums on each
orbit) to construct a K-basis for the centralizer of v in KG/J. The number of
such orbits is, of course, the number of orbits v produces on the elements of
G/Z(G). Since G/Z(G) is an irreducible v-module, each orbit distinct from
the identity element of G/Z(G) has length p. Thus we have

(5) dim:(e:o/j(v)) 1 + (q2a_ 1)/p.
But the isomorphism in (4) is a v-isomorphism, and so the centralizer of v
in (t is isomorphic to that in KG/J.
The next step is the determination of the dimension of Ca(v). First, since

the module, A, is completely reducible as a V-space, it is the sum of one-
dimensional V-spaces--that is, the matrix p(v) can be put in diagonal form
by means of a change of basis in A. Thus, without loss of generality, we
may write

p(v) diag (1, "’, ),1 ;2, ),2 ;X, "’,

where ),1, 2, etc. denote the p distinct roots of x 1 0 in K, and where
it may happen that some roots do not appear in p(v). Let a denote the
number of times the root appears in the diagonal matrix p(v). Then

(6) 1 as q, the degree of p.

What are the matrices in ( which commute with p(v)? If X is a matrix of
the enveloping algebra which commutes with the diagonal matrix p(v) as
given above, X can be partitioned into blocks in the following manner:

(7) x

where each X. is an a. by as matrix (of course if either as or a. is zero, the
block does not actually appear). The condition that X be commutative
with o(v) is that

(s)
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or simply
X 7 ),X

where Ia, denotes the ai by ai identity matrix. Thus if i # j, then ), # ),,
since the roots were chosen distinct, and so X. is forced to be the zero matrix.
If i j, any X satisfies (8). The K-dimension of the algebra of such
matrices X which commute with p(v) is thus that for the algebra of all matrices
of the form

X diag (X X,.,),

X, any a by a matrix, namely the sum of the squares, a. Thus, from
(5) we have

p q2d(9) =a 1)/p + 1

Thus (6) and (9) comprise two conditions of the a’s.
Now suppose one of the a was zero. Then (6) reduces to a sum of p 1

terms which add up to q. Omitting the term fixed to be zero, say a 0,
what are the possible values of

pk(10) =2 a ?

If we think of the a, (1 i p) s rnging over the rels, the form (10)
chieves its minimum, given the constant sum in (6), when ech of the a
re equM (i > 1). In this cse we hve a 0 nd a q/(p 1), the
mean vMue of the a’s. In this cse, the minimum wlue of (10) is

q (p-- 1) 1)
= p-- 1 p-- 1

But this quantity actually exceeds the right hand side of (9)unless
q p- 1.

Replacing p by q + 1 in the right hand side of (9), we obtain the inequality

X X
Thus each a is zero or 1, and

(12) a (q- 1)In + 1 q
now implies

(13) p q + 1.

In this case either p 2, d 1 and q is a Mersenne prime, or q 2, k 1,
and p is a Fermat prime, or the equation is 9 2 + 1 (the only case in
which both exponents can differ from unity). But in all of these cases, the
forbidden conditions (a) or (b) must hold for ]G] and p. Thus, under the
conditions of the theorem, a contradiction is obtained, thus denying the
supposition that at least one a is zero. Consequently, every one of the p
distinct roots of x 1 0 in K must appear in the diagonM form of the
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matrix p(v). In particular, this means that v acts with minimal polynomial
x* 1 on the module A, and that the eigen-value ),1 1 is present. As a
consequence, v fixes a non-trivial subspace of A elementwise. But this is
contrary to the hypothesis that v acts in fixed point free manner on A, which
completes the proof of the theorem.

COROLLARY 3.2. In Theorem 3.1, the condition that K be a splitting field for
all subgroups of H GV may be dropped.

Proof. Let A be the KH-module of the theorem, where K is any field
whose characteristic does not divide H. Since H is finite, there exists a finite
extension, L, of K which is a splitting field for all subgroups of H. Every-
thing is now a matter of observing that the hypotheses of the theorem hold
for the module A A (R) K L. AL is a left LH-module where L is a splitting
field for all subgroups of H. As a KH-module, A is isomorphic to the sum
of [L’K] copies of A. By hypothesis, the generator, v, of V, acts in fixed point
free manner on A. Then

(A)r- (A -A)r- Ar -Ar

the trivial module. Hence V is also fixed point free on A. The divisibility
conditions on p and GI carry over automatically, and char L char K
does not divide H !. Finally, A is faithful as a KG-module, since A is.
Thus the hypotheses of the theorem hold with A in place of A and L in place
of K. By Theorem 3.1, v-1 centralizes G and the corollary is proved.
At this stage it is possible to prove the existence of a bound on the nilpotent

length of solvable groups admitting a fixed point free automorphism of
prime power order, but this result will be contained in the more general treat-
ment of the next section. For the moment, we can make use of the fact
that G need not be solvable in Theorem 3.1, in proving

THEOREM 3.3. Let G be a v-solvable group having no normal ’-groups.
Suppose G admits a fixed point free automorphism, v, of order p, where p is a
prime, and either

a p is odd and G has a trivial or abelian 2-Sylow subgroup,
(b) G has a non-abelian 2-Sylow subgroup and p is not a Fermat prime,
c p 2 and G has abelian q-Sylow subgroups for all Mersenne primes, q,

dividing G I, for which q < 2.
Then the number of distinct terms n, appearing in the upper r-series for G
(including E and G) does not exceed ]c q- 1.

Proof. Case I. ]c 1. Here G is nilpotent, and since 0,(G) E, G is a
r-group with the upper r-series" E <:l G. Thus n, 2, ]c -t- 1 1 q- 1 2.

Case II. k 1. Without loss of generality we may suppose that there exist
at least three terms in the upper r-series for G, and accordingly we consider
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the first three terms of that series"

(14) E O,(a) <10(G) <30,,(a),

since 0,(G) 0(G) and 0,,,,(G) 0,,,(G). (We shall later make use
of the fact that the three members of (14) are also the first three terms of the
upper r-series for G.) Let v be the automorphism of order p* and set
w vv*- an element of order p. We shall show that w fixes Or,(G)/O,(G)
elementwise.
Now either Or(G) or Or,(G)/Or(G) has odd order, and by the recent result

of Thompson and Feit, one of the two is solvable. In this case, the Schur-
Zassenhaus Theorem tells us that Or,(G) splits over O(G). Thus
O**,(G) AB, where A Or(G) and B is a complement of A. Moreover,
all such complements are conjugate in AB and so, since the number of these
is prime to p, at least one of these conjugate r-complements is V-invariant.
Thus without loss of generality, we may choose B to be V-invariant. Then
BV is a group of automorphisms acting on A (by conjugation in the case of
elements of B) and having order prime to A I. Consequently, by Lemma 2.5,
for every prime r dividing A, there exists an r-Sylow subgroup of A, say A,,
which is BV-invariant. Then Fr Ar/k(A) is a GF(r)BV-module afford-
ing the representation, a, and is fixed point free under the action of V. Now
since B has order prime to r, the characteristic of GF(r), and V and
together satisfy the divisibility conditions (a), (b) and (c), by Corollary
3.2 w fixed B/(B n ker a,) elementwise. Each of the groups B n ker a, is a
normal V-invariant subgroup of B. Now select x an element of

(15) nrll, (B n ker a).

Then x is n element of B centralizing ech F,. Then by Lemm 2.3

A, C.,(x)4(A,)

since x, being a member of B, has order prime to A and hence prime to r.
Thus A, C,(x). But if x centralizes one member of each set .of coniugate
r-Sylow subgroups of A, it must centralize all of A. On the other .hand,
A Or(G) contains its own centralizer in G and so x e A a B E. Thus the
intersection (15) is trivial.
Now since w fixed BIB ker a, elementwise, by Lemma 2.4 (w, B)

B a ker a, for every r and so (w, B) E, that is, w fixes B elementwise. Be-
cause of the V-isomorphism B -- Or,,(G)/Or(G), we have that w fixes
O,(G)/O(G) elementwise, as we set out to prove.
But now BA/A <3 G/A, BA/A

_
(G/A), and BA/A contains its own

centralizer in G/A, since this is O,,,,,(G)/O,,:,,(G). Thus, by Lemma 2.2

G/A (/A),o C/,(BA/A) (G/A

That is, w fixes GlOw(G), elementwise. Thus GlOw(G) admits the cyclic
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group V/{w} of order pk-1 as a fixed point free group of automorphisms.
Since this group has no normal v-groups, and it and V/{wl satisfy the di-
visibility conditions (a)-(c), by induction, the number of distinct terms
appearing in the upper v’-series does not exceed It, i.e.,

,)(16) n( (G/Or(G)) <_ (- 1) -t- 1 k.

But this series (or at least the preimages in G of the terms of this series)
consists of the successive terms of the upper r-series for G, beginning with
Or(G), taken modulo 0r(G). As a consequence

n(r’)(G/Or(G)) nu 1

and so, from (16), nu _< ] W 1.

COROLLARY 3.4. Let G be a v-solvable group admitting a fixed point free
automorphism, v, of order pk, where GI and p satisfy the divisibility conditions
of a b and c of Theorem 3.3. Then if G has r-length l,

Proof. If G has r-length l, so does G/Or, (G) and the latter has 21 or 2l -t- 1
distinct terms in its upper r-series according as the series terminates in a
v or v’-factor. In any event n(G/Or,(G)) >_ 21. But since G/O,(G) has
no normal v’-groups and satisfies the conditions (a), (b) and (c), by Theorem
3.3.1, 21

_
n(G/Or,(G))

_
]c + 1, whence, considering that is an integer,

4. Groups admitting a fixed point free abelian group of operators
This section extends the results of Section 3 to the case where V is an abelian

group of operators. As in Section 3, there is a technical preliminary theorem
cast in the language of linear groups. Although this theorem resembles
Theorem 3.1 in that it asserts that certain factor groups of G are fixed element-
wise by a subgroup of V, it differs in several important respects. Evidently if
V acts in fixed point free manner on a faithful G-module A, it is not true in
general that some subgroup W <:l V fixes G elementwise. Examples illustrat-
ing this fact are easily constructed for the case that V is elementary abelian of
order p. For this reason, the hypotheses are altered to require that A be
homogeneous KGV-module, where K is a splitting field for every subgroup
GV. Again, since the condition of homogeneity must be demonstrated before
it is possible to apply induction on KMV-submodules of A, where M is a
V-invariant subgroup of G, the requirement that G be solvable is included
to facilitate this argument. Finally, the proof provides a reduction to the
case that G is extra special be a route different from that of Theorem 3.1,
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which, like "Theorem C" of Hall and Higman, results from having a group
minimal with respect to being normalized but not centralized by a given fixed
element. In this case, there is no such element available.

DEFINITION. Let V be an arbitrary abelian group having exponent m
(i.e. v 1 for every v in V and moreover, V contains an element of this
order). A prime number, q, is called exceptional if q/= d i for some divisor,
d, of m, and some integer f. The set of exceptional primes depends only on m,
and is denoted IIm, or Hr.

IIm is always a finite set. Given a divisor, d, then q, if it exists, is unique,
and so ]II is bounded by the number of divisors of m. If m is odd,
is either empty or contains the prime 2 only. If m is an odd prime power,
then IIm is empty unless m is a power of a Fermat prime. If m is a power of
2, II consists of Mersenne primes only, unless m < 4, in which case it is
empty.
Note that if m’ divides m,

II,

_
II.

In particular, since the exponent of a factor group, V/W, divides the exponent
of V, we have

IIv/ IIv.
Similarly, for subgroups: If W

___
V,

HwHv.
THEOREM 4.1. Let V be an abelian group of operators acting on a solvable

group G of order prime to V I, and suppose that G is not divisible by an ex-
ceptional prime q belonging to II IIv where e is the exponent of V. Form the
semi-direct product H GV and let A be a faithful KH-module, where K is a
splitting field for all subgroups of H and which has characteristic not dividing
V I. Suppose further that

(i) A is a sum of equivalent indecomposable KH-modules,
(ii) V acts in fixed point free manner on the elements of A in this representa-

tion,
(iii) G has no normal p-groups, where p char K. (If char K 0,

this requirement can be ignored.)
Then there exists a non-trivial subgroup W <3 V such that W fixes G element-

wise.

Proof. (By induction on GI -t- dimKA + V [) Decompose A into
equivalent indecomposable KH-modules, A1, A2, ..., At. Since A is
faithful and each of the Ai’s are equivalent, each is faithful. Moreover, each
is fixed point free under V since A is. Then, H GV and A1 satisfy the
conditions of the theorem, and if > 1, dimK(A1) <: dim (A) and we obtain
our result by induction. Thus we may suppose 1, so A is an indecom-
posable KH-module.
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If char K 0, A is irreducible. In this paragraph, we shall achieve a
reduction to the case that A is irreducible when char K p. Let us suppose,
then, that A is not irreducible. Then we can find a maximal KH-submodule,
B, in A. Then the factor module A/B affords a representation, , of H,
which when restricted to G has a kernel L G n ker/. Since L <:l H, L
is a normal V-invariant subgroup of G, and so O(L)

_
O,(G) E, i.e.

L has no normal p-groups. Then setting L0 O,(L), we see that L0 is
V-invariant, and, being characteristic in L, is normal in G. Moreover,
L0 can be regarded as a group of operators of order prime to p, acting on the
(additive) elementary abelian group, A. Since L0

_
ker , in the operator

notation of Section 2, we have

A/B (A/B) .o (A) Lo BIB
by Lemma 2.3. Since B A, (A)L E. On the other hand (A) A,
since A is faithful. Thus, using the complete reducibility of A as L0-module,

A (A)L (L0, A)

where neither component is trivial. Since L0 <3 H, each component is H-in-
variant, that is, they are KH-modules, contradicting the indecomposabiiity
of A. Thus we may suppose A is an irreducible KH-module.
We may now decompose A into its homogeneous KG-components,

B1, B8, which are permuted transitively by V according to some permu-
tation representation, v, of V, of degree s. Since V is abelian, r is a right
regular permutation representation for some factor group of V. That is,
s degree r [V:ker ]. Thus if ker E, V permutes the components
in a V-orbit of length V, and this would yield

mo v(m)

as a non-trivial fixed point of A for any m lying in a single component. But
this contradicts the hypothesis that V is fixed point free on A. Thus we
must have ker E.
Now suppose ket V. Then, since v is permutation isomorphic to the

right regular permutation representation of V/ker r, ker is the stability
group in V for each B. Moreover, ker is fixed point free on each B,
for if bl e B were fixed elementwise by ker r, again

m0, ,s v(b),

where S is a complete system of distinct coset representative of ker in V,
would be a non-trivial point of A, fixed by V, contrary to hypothesis. Thus
ker is fixed point free on each B. Let each B afford the representation

of (ker z)G. Now II(kerz) IIr and [G:ker n G] is not divisible by
primes belonging to II. Moreover, we can also see that G/ker f n G has no
normal p-groups because of the following argument: It follows that since
the normal subgroup ker r is the stability group for B, each B is a faithful
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irreducible K(ker r)(G/ker n G)-module. If

T 0v(ker r(G/ker f n G) ),

then B is a sum of conjugate irreducible T-modules. But T is a p-group
and, assuming char K p, we see that any irreducible T-module in B is
trivial. This means T ker /ker t E. Thus G/ker G has no
normal p-groups. (For the case that char K 0, the condition that
G/ker t G has no normal p-group does not have to be verified.) Since we
have assumed that V ker r, B A and so dimK(B) < dimK(A), we
are now in a position to apply induction on the irreducible
K(ker r)(G/ker n G)-module, B. For i 1 we obtain that there exists
a non-trivial element v e ker r (recall that ker r E) fixing G/ker t a G
elementwise. Thus, by Lemma 2.4, (v, G)

___
ker fl. But with appropriate in-

dexing of the v’s belonging to S, the system of distinct coset representatives of
ker r in V, we may writeB v(B) and ker fG v(ker lnG),
veS. Since V is abelian, {v} <3 V and so vi(v, G) (v, G). Thus
(v, G) ker for i 1i 2, s. Since A is faithful

G n (f’l’__1 ker fi) E
and so

(v,G) E,

that is, v fixes G elementwise, which was to be shown.
Thus we may rule out the case ker r V. We thus are left with s 1,

and A, a homogeneous KG-module.
Since G is solvable, there exists a maximal normal V-invariant subgroup,

M, necessarily containing G’, and G/M is an elementary abelian group which
may be regarded as a V-module over the field of q elements (q is some prime
dividing G, and for the moment, the possibility that q p is not excluded).
Because of the maximality of M, G/M acts as an irreducible V-module.
Since V is abelian, this irreducible V-module has kernel, W <3 V, such that
V/W is cyclic.

Since A is a homogeneous KG-module, and M <3 VG, we may decompose A
into its homogeneous KM-components, C, C2, -.., Ck. These will be
permuted by HIM GV/M, and since A is homogeneous as a KG-module,
these components will be permuted transitively by the elements of G/M
alone. Let x be an element of G/M and suppose x(Ci) C, i 1, 2, k.
Then for any v V, v(C) C v(x(C)) v(x)(C), for i 1, 2, ,/,
or equivalently, j 1, k. Thus v(x) is also an element leaving each C
invariant, and thus we see that the elements of G/M leaving each C invariant,
form a V-invariant subgroup of G/M. Thus this subgroup is either E or
G/M itself since M is maximal V-invariant. That is, either / 1, or
k [G: M]. We shall rule out the latter case.

Suppose k [G:M]. Then with appropriate indexing of the elements
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x of G/M, we may write

(17) C x(C1).

The permutations of the C are the images of some permutation representa-
tion of the group V(G/M), of degree [G :M]. This representation is therefore
permutation-isomorphic to one obtained by multiplication of the left cosets
of some subgroup U c V(G/M) of index [G:M], by elements of V(G/M).
But V has order prime to G/M and clearly U V so U is a q-complement
in the solvable group V(G/M). Consequently U is a conjugate of V in
V(G/M) and so the permutation representation obtained by left multiplica-
tion of the left cosets of U is itself, permutation isomorphic to one obtained
by multiplication on the left cosets of V in V(G/M). The latter is then (by
transitivity) permutation-isomorphic to that induced by V(G/M) on the
Ci’s. But in the former, the elements of V leave the coset, V, fixed. As a
result, we have proved that V leaves some component, say C1, invariant.
Now select w e W, the subgroup of V leaving G/M fixed elementwise.

(It is entirely possible that W E.) Then from (17) we have

w(C) w(xC) w(x)w(C) xC C

since w(xi) x and C is V-invariant. Thus W leaves each C invariant.
Moreover
(18) v(C) v(xC) v(x)C

so that the elements of V permute the C’s in exactly the same manner in
which the elements of V permute the elements, x, of G/M. Now G/M
represents V/W irreducibly and faithfully, where V/W is cyclic of order n.

Since G/M is an irreducible V/W-module, ll V-orbits produced on the
non-identity elements of G/M have length n. Thus by (18) and the remark
which follows it, 11 but one of the C’s are permuted in cycles of length n
(C is V-invariant). If x is a non-identity element of G/M, then xi(C) C
belongs to a V-orbit of length n. If n > 1, W E since otherwise, for any
Ci . Ci

,,v(c)
is a non-trivial point of A fixed by V, contrary to hypothesis. But then,
if W E, W is the subgroup of V leaving C invariant (since C belongs to a
V-orbit of length n). If n 1, of course W V, and stabilizes each Cj,
j 1, ]. In any event, W is fixed point free on C, for if c e C is fixed
by w, then for any system, R, of coset representatives of W in V,

c ., v.(c)

would be a non-trivial point of A fixed by V. Thus W acts in fixed point
free manner on each WM-module, C, i 1. Since WM necessarily coin-
cides with the stability group of C in H VG, C is an indecomposable
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WM-module. Let ti be the restriction of the representation of WM, on
Ci to M. Since C is a sum of equivalent irreducible M/ker t-modules,
M/ker ti has no normal p-groups. Since /c > 1,

IWI +dimCi+ M/ker[ < IVI +dimA-t- [GI,
and we may apply induction to obtain that a non-trivial subgroup W0 <1 W
fixes M/ker elementwise. Since G/M is fixed by W, the modules C,
j 1, k are all eoniugate by elements of Gw. Since these elements are
themselves centralized by W0, W0 centralizes each M/ker ., j 1, k.
Thus

(W0, M)

___
f’l ker E

and so W0 fixes M elementwise. Since W centralizes G/M, G G, M,
M

_
G and G

___
Gw0 imply G Gw0, our conclusion.

Thus we must suppose that/c 1 so that A is a homogeneous KM-module.
But 0(G) E implies 0(M) E and certainly A is a faithful KM-module,
fixed point free under V. Moreover, M[ is not divisible by a prime be-
longing to Hm since GI is not.

Since y / dim A + [MI < V -+- dim A -t- [G l, we may apply
induction. Thus M is fixed elementwise by some element v e V. Now if
G/M is aso fixed by v we are done. Thus, since V is abelian, we have
(G/M) G/M and henee (G/M)v M/M so M Gv. SineeM <I G,
by Lemma 2.2, MCo(M) G. In fact, if Co(M) is a V-invariant q-Sylow
subgroup of Co(M), then MCo(M)q G. Select the subgroup Q minimal
with respect to being a V-invariant subgroup of Co(M)q such that MQ G.
Then since M centralizes Q, we have Q <1 G. Also, then Z(Q) is centralized by
both Q and M and so Z(Q)

___
Z(G). Since A is a homogeneous KG-module

where K is a splitting field for every subgroup of GV, Z(G) is not only non-
trivial, but is represented by scalar multiplication on A. Thus the elements
of V commute with those of Z(G) and so Z(Q) c_ Gv G M. Since M
is properly contained in G, and Z(Q)

_
M, it is evident that if M E, Q

is non-abelian. We can even show that Q is extra special. Let D be any
proper V-invariant subgroup of Q. Then, by the minimality of Q, and the
maximality of M, DM M so D M. Since Q centralizes M, it centralizes
D, whence D

_
Z(Q). Thus Z(Q) is the unique maximal V-invariant sub-

group of Q and so Z(Q) v(Q) 4(Q). Z(Q) is cyclic, since it is abelian
and possesses a faithful irreducible representation (this follows from the
fact that all KZ(Q)-modules in A are equivalent). But since Q <1 G and is
centralized by M, where MQ G, by the Clifford theorems, A is also a
homogeneous KQ-module, since the homogeneous Q-components must be per-
muted by elements in G (transitively) which centralize Q. Now IV fixes
G/M (which is V-isomorphic to Q/4,(Q)) elementwise, and since IV has
order prime to Q, IV must fix all of Q elementwise. (Note that in the ease
] 1, with which we are now concerned, the possibility that IV E is
presented anew.) Clearly we cannot have W V since (G) M.
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Thus W V. Now if W were fixed point free on A we could observe that
II II, that W E, and obtain our result immediately by induction on
W] < V I. Thus we must have that (A) E. But since W fixes Q ele-

mentwise, and V is ubelian, (A) is both V and a Q-module,--i.e. it is a
KQV-module. Since all irreducible KQ-modules in A are equivalent, it
is in fact. a faithful KQV-module. Moreover, it is fixed point free under V.
Also, since V is prime to Q and char K, and since q II, we may apply induc-
tion once more, provided dim((A)) + Q[ < dim A + [GI to obtain
that some non-trivial subgroup U/W < V/W fixes Q elementwise (for W
acts trivially on both Q and (A)). In that case, U properly contains W and
fixes Q elementwise. But this is a contradiction since W was defined to be
the group fixing Q/oh(Q) - G/M elementwise. Thus dim(A) + [Q[
dimA-t- [G[. This means(A) AandQ G. In this case, W fixes
all of G and so W E.
By Clifford’s Theorem on homogeneous modules, we may write the repre-

sentation, p, of H QV afforded by A in the form p Y (R) X where Y
and X are irreducible projective representations of V and Q respectively.
The restriction of X to Q is equivalent to an irreducible representation of Q
and X has degree equal to that of an irreducible KQ-component of p. Since V
is cyclic, Y has degree 1 and so the degree of p coincides with the degree of an
irreducible KQ-component of p. Thus A is already an irreducible KQ-module.
Now we have A an irreducible KQ-module which at the same time is an

irreducible KQV-module, where V is cyclic of order n and Q is an extra special
q-group. Since G/(G) is an irreducible V-space, [G:(G)] q where e is
the exponent ofq mod n, and e is even. This is exactly the situation en-
countered in Theorem 3.1 except that v, the generator of V, has order n
rather than prime power order As before, we can compute the K-dimension
of the centralizer of v in the enveloping algebra obtained from the representa-
tion of GV afforded by A and also in the factor algebra KG/KG(z . 1)
where z is a generator of the center of G, and 0 is a primitive ’q-th root in K.
These algebras are V-isomorphic and have dimension q q; they are full
matrix algebras. Since char K does not divide n, the matrix representing v
satisfies x" 1 and its minimal polynomial on A is an irreducible divisor of
x" 1, we have that the latter has all its roots distinct, whence the matrix
for v can be put in diagonal form. Letting a denote the number of times the
n-th root appears in the diagonal form for p(v), we obtain

(19) a (q 1 )/n + 1

for the dimension of the centralizer and

(20) Z=I a q
for the degree of the representation afforded by A. If one of the a were
zero, then, given (20), the form on the left hand side in (19) achieves its
minimum when the remaining a’s are all equal. In order that (19) and (20)
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have a solution in integers when one a is zero it is necessary that this minimum
be less than the right side of (19). This condition yields q -t- 1 _< n. On
the other hand, since the a are integers, we always have the left side of (19) >
the left side of (20). This means q -4- 1 >_ n. Thus (19) and (20) both
hold, given that one of the a’s is zero, only if q -4- 1 n. But in this case q
belongs to H H, contrary to our suppositions on [G I. Thus no a
is zero, and so v acts on A with minimum polynomial x 1 and has x 1
as one of its characteristic roots. Consequently V does not act fixed point
free on A, contradicting our hypothesis. This completes the proof of the
theorem.

COROLLARY 4.2. In Theorem 4.1, the module A may be taken to be an inde-
composable KH-module over an arbitrary field K. (If A is irreducible, the
requirement that O(G) E, may be dropped.)

Proof. If A is irreducible and by hypothesis, faithful, all irreducible
KO(G)-submodules of A are not only conjugate, but each is trivial since
char K p. Then O(G) ker a E where a is the representation afforded
by A.

If char K does not divide G I, A is already irreducible. Otherwise, if A
is not irreducible we may select a maximal submodule B in A, and consider
the irreducible KH-factor module, A/B. Clearly, since O(H) E, H is
faithful on A/B and our result then follows by induction on dim:(A/B).
Thus we may take A to be an irreducible KH-module. Let L be a finite ex-
tension of K which is a splitting field for all subgroups of H extending K,
and let C be an irreducible LH-submodule of A (R) L. Then as KH-modules,
(21) C--_AA-... A,
where the number, t, of copies of A appearing in the external direct sum
divides [L" K].

Clearly C is now an irreducible LH-module, char L char K p and
O,(H) E. V acts on C in fixed point free manner, for if c e C were fixed
by V, then by (21) we may write c a "4- -4- at where a lies in the i-th
copy of A in the external direct sum (21). Then

Y(C) Y(al) + -v(at) a + + at

so a v(a) for some a 0, because of the "directness" of the sum (21).
But this is impossible since A is fixed point free under V.

C, H and V now satisfy the conditions of Theorem 4.1 .and so some W <3 V
fixes G.

This result can now be used to produce a bound for nilpotent length in
groups admitting a fixed point free abelian group of automorphisms. If
n p’-., p, let

(n) _-a
the total number of primes appearing in the factorization of n. Let F(G)



718 ERNEST E. SHULT

denote the Fitting subgroup of G.
ductively by

The subgroups, Fk(G) are defined in-

Fk+I(G)/Fk(G) F(G/Fk(G)

and FI(G) F(G). If G is a solvable group, the series

E F(G) F (G) Fn(G) G

is called the upper Fitting series of G and the invariant n n(G) is called
the nilpotent length of G.

THEOREM 4.3. Let G be a solvable group with nilpotent length n, admitting
a fixed point free abelian group of operators, V, of order prime to G [. If G
is not divisible by primes belonging to II, where m is the exponent of V, then

(22) n_< IV].

Proof. First, if V is cyclic of prime order, by the theorem of Thompson
[6], G is nilpotent, so G F(G) and n(G) 1 1 V ]. We may suppose,
then, that V is not a prime.

Let M and M. be minimal normal V-invariant subgroups of G, and suppose
M M2. Then G/Mi, i 1, 2, admit V in fixed point free manner and
have orders not divisible by primes belonging to IIm. Applying induction

(23) n(G/Mi) <_ b V [, i- 1, 2.
Since M and Ms intersect trivially, the inequality (22) follows immediately.
Thus we may suppose that distinct minimal normal V-invariant subgroups

of G cannot be found; that is, M M is the unique minimal normal V-in-
variant subgroup of G. Then, since G is solvable, M is an elementary abelian
p-group for some p dividing G I, and
(24) M

_
O(G).

But since M is unique 0v, (G) E, and so the Fitting subgroup is given by

(25) F(G) O(G)
Thus

(26) n(G/O(G)) n(G/F(G)) n- 1.

Suppose (O(G)) (F(G)) E. Then F(G)/(F(G)) is a self-
centralizing maximal normal p-group in G/(F(G)) and thus coincides with
the Fitting subgroup of G/(F(G)). A simple induction argument shows
that if B/(F(G)) and F are the (j A- 1)-st members of the upper Fitting
series for the groups G/(F(G)) and G respectively, then

so

(27)

B. F., j 1, 2, n

n(G/dp(F(G)) n(G) n.
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But G/(F(G) and V together satisfy the conditions of the theorem and since
[G:(F(G))] < [G I, induction and (27) yield n

_
b V I, our result.

Thus we may suppose O(G) is elementary abelian. Since M O(G),
and M is a unique minimal normal V-invariant subgroup of G, O(G) is an
indecomposable GV-module over the field of p elements. Furthermore, its
associated kernel in G is simply O(G). Finally, since V is abelian, of order
prime to both p and [G: 0(G)], acting fixed point free on the module 0(G),
and since GlOw(G) is solvable and has no normal p-groups and does not have
its order divisible by primes belonging to IIm, we may apply Corollary 4.2 to
obtain that there exists a non-trivial subgroup W c V such that W fixes
GlOw(G) elementwise. (Note that W V, if V is fixed point free on GlOw(G).
This is possible since V is not a prime.) Under these conditions, GlOw(G)
is a group admitting V/W as a fixed point free group of operators. Moreover,
since the exponent m of V/W divides the exponent of V, namely m, then
IIm, II. As GlOw(G) is not divisible by primes belonging to II, it is
certainly not divisible by primes belonging to II,. Finally, V/W has order
prime to [G:O(G)]. Thus GlOw(G) and V/W satisfy the conditions of our
theorem and so, by induction (since [G: 0(G)] < G I)

n(G/O(G)

_
[V" W].

But[V’W]_ IV[ lsinceWE. We also have by (26)

n(a/o(a) n(a/F(a) n .
Thusn- 1 n(a/o,,(G))

_
k[V’W]_ [Vl 1, whencen_ +] V[as

was to be shown.

5. The bound is best possible

The following theorem is self-explanatory.

THEOREM 5.1. Let V be a cyclic group of order pn, where p is a prime. Then
there exists a solvable group, G, having nilpotent length n which admits V as a

fixed point free group of automorphisms.

Proof. Let n 1. Then if G is cyclic of order q, where q i rood p, and
v, the generator of V, acts on G by the rule g g" where the integer a has
exponent p modulo q. Clearly G is solvable, fixed point free under V and has
nilpotent length 1.
Now suppose G is a solvable, with nilpotent length k, and that G is fixed

point free under the action of Vk, which is cyclic of order p. Let q be a prime
number not dividing G such that q ---- 1 mod p. Let a be an integer less
than q having exponent p mod q, and let F denote the field of q elements.
Let M be a faithful FG-module. Let V+I be the cyclic group of order p+l
and suppose vk+ generates V+. V+ acts on G in the following way: First
U, the subgroup of order p ifi V+, centralizes G, and V+I induces on G the
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group of automorphisms Vk+I/U - Vk. Set
pkMk+ @j.. Mj

where M -- M as FGk-modules, and the modules M, M, ..., M’, are
pk defined byconjugate modules affording representations p. j 1

If v+ permutes the modules in the cycle (M, ..., M), and vk+l acts as
scalar multiplication by a, M+I becomes a faithful FG Vk+l-module.
Now set Gk+l M+ G. Then, since M+I was faithful, M+I is a self

centralizing normal qk-Sylow subgroup of G+, whence

M+ Oq(G+) F(G+),

the Fitting subgroup of Gk+ Then G+ has nilpotent length ] 1. Now
V+ acts fixed point free on G+/M+ since V+/U V is fixed point free
on Gk. Also V+ is fixed point free on M+I since its subgroup U is fixed point
free. Since V+] is prime to G+ [, V+ is fixed point free on G+.

Added in proof. Since this paper was submitted two other papers dealing
with this problem have appeared. In [4], F. ttoffman obtained a character-
theoretic proof of a special case of Corollary 3.4 which gives the bound for
nilpotent length when the group of automorphisms is cyclic of prime power
order. In a recent paper by J. Thompsoa [6’], a rather large bound has been
obtained without assuming that the group of automorphisms is abelian.
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