ON THE ELEMENTARY THEORY OF DIOPHANTINE APPROXIMATION
OVER THE RING OF ADELES |

BY
Davip G. CaNTOR!

Diophantine approximation, the study of approximations of real numbers
by rational numbers, has been investigated extensively (see Cassels [2],
Koksma [6], and the literature cited therein). To some extent it has been
studied over the field of p-adic numbers using the p-adic valuation (see
Mabhler [10], Lutz [9], and the literature cited therein). There has been in-
vestigation of diophantine approximation over algebraic numbers fields,
mostly in quadratic extensions of the field of rationals (see the literature cited
in [2]; but see also [12], in which the geometry of numbers over arbitrary
algebraic number fields is studied using the ordinary absolute values, and the
version of Roth’s theorem in [8]).

The purpose of this paper is to show that the ring of T-adeles of an algebraic
number field is a natural realm in which to study diophantine approximations;
that by doing so, one obtains a unified treatment, covering all algebraic num-
ber fields, using the ordinary absolute values and arbitrarily many p-adic
absolute values. In this way, one obtains theorems, which when specialized
to the case of the rational numbers and no p-adic absolute values, yield the
classical theorems of diophantine approximation as found in [2], and when
specialized to the case of the rational and one p-adic absolute value yield,
after minor restatements, the theorems of [9]. A major advantage of this
formulation is that it is easy to see what the analogues of many of the classical
theorems are and how to generalize their proofs (the outlines remain the same,
but many technical complications enter—in particular, the lack of a linear
order).

It would also be possible to study diophantine approximation over the
adele-ring of a function field of one variable, but in this case many of the
results (especially in Sections 2 and 3) would be subsumed under slightly
generalized versions of the homogeneous and inhomogeneous Riemann-Roch
theorems.

The T-adele ring of the rational numbers, when T contains only finitely
many valuations, is very closely related to the ring of g-adic numbers studied
by Mabhler [10], who hasalso studied diophantine approximation over algebraic
number fields.?

In Section 1, we introduce notation and state the basic facts about adeles
which will be used in the sequel. We refer the reader to [7] for proofs in the

Received April 29, 1964.
1 This research was supported in part by a National Science Foundation Grant.
2 Added in proof. The two papers of Mahler published in Acta Math., vol. 68 (1937),

pp- 109-114 and J. Australian Math. Soc., vol. 4 (1964), pp. 425-448 are closely related to
the present paper.

677



678 DAVID G. CANTOR

case T' = Q; the proofs for T' = Q are easy modifications of these (note that our
notation is different from that in [7]). Proofs for the facts we use about
locally compact Abelian groups will be found in [5].

In Sections 2 and 3 we study the two basic theorems of Diophantine ap-
proximation—Minkowski’s theorem and Kronecker’s theorem. The T-adele
formulation of Kronecker’s theorem when reduced to the classical case gives a
slight generalization, not involving approximation (mod 1), of the usual
version.

In Section 4 we study uniform distribution and obtain the analogue of some
of Weyl’s classical theorems. In Section 5 we investigate the metrical theory
and obtain analogues of some of Khintchine’s classical theorems. In Sections
4 and 5 we have omitted the multidimensional versions of our theorems; they
can be obtained by the usual procedure of adding subscripts and replacing
elements by n-tuples of elements.

It is possible to study such topics as lattices, successive minima, transference
theorems, etc., in the ring of T-adeles. These will be the subject of future
papers.

1. Preliminaries

Let K be an algebraic number field of degree N over Q, the field of rational
numbers. A completion » of K is an embedding of K as a dense subset of a
locally compact field K, ; K, is either a finite algebraic extension of a field of
p-adic numbers Q, , in which case v is called p-adic; or K, = R the field of
real numbers, or K, = C the field of complex numbers. If K, = RorC,vis
called infinite, and real or complex according as K, = Ror K, =C. Two com-
pletions » and v’ of K are equivalent if there is a continuous automorphism ¢ of
K, onto K, withov = v/. From each class of equivalent completions we choose
one, and denote the set of representatives so chosen by €. The subset of
infinite completions in € will be denoted Q,,. From now on, all completions
of K will be assumed to be contained in Q. We identify K with its image in
K,,sothat K < K, forall ve Q. If Q, is acompletion of Q and K, is a finite
algebraic extension of Q, , then v divides w, written vlw. Put N, = [K,:Q.],
then D .o No = N. In particular, if R, is the number of real completions of
K and R, the number of complex completions of K, then B, + 2R, = N.
Each K, has, as an additive group, a Haar measure u, ; if k € K, , one defines
the absolute value | |, by p,(kX) = | k |, u,(X), where X is any measurable
subset of K, with0 < p,(X) < . When K = Q, the | |, are the ordinary
absolute value or the p-adic absolute values. In this case, we shall denote by
| |w (sometimes simply | |) the ordinary absolute value, and the cor-
responding completion by o« ; if peZ, p a prime, | |, denotes the p-adic
absolute value and p denotes the corresponding completion. For an algebraic
number field K, the p-adic valuations are in 1-1 correspondence with the
prime ideals. Suppose ® is a prime ideal with » the corresponding valuation
If « is an algebraic integer in K, and @" is the exact power of ® which divides
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a, then |a|, = (N.®)". Conversely, ® is the set of algebraic integers
a e K for which | @ |, < 1. Then the Artin product formula holds: if & ¢ K,
k % 0, then [[,|k|, = 1. If v is real, then | |, is the ordinary absolute
value, while if v is complex, then | |, is the square of the ordinary absolute
value. Put H, = 1ifvis p-adic, H, = 2if visreal, and H, = 4 if v is complex.
Then foranyveQ, |a + b |, < Hy,max (|a|,, |b|,) foralla, beK,.

If v is p-adic, the set O, = {zx e K, : | 2 |, < 1} is the ring of integers of K, ;
it is the unique maximal compact subring of K, . We assume that the Haar
measure g, is normalized so that u,(0,) = 1. If v is infinite, put O, = K,
and choose u, to be ordinary Lebesgue measure if » is real, and twice ordinary
Lebesgue measure if » is complex.

Now let T be any subset of @ which contains Q.. For each finite subset S
of T put Ax(S) = [Jves Ko X [Ioer-s O.. Each Az(S) is a locally compact
topological ring. We define the T-adele ring of K as Ax = Ug AZ(S); where
the union is over all finite subsets S of . We take as a base for the open sets
of Ag , the open sets in each Az(S), and then Ax becomes a locally compact
topological ring. The elements (a,) ¢ Ax are called T-adeles. We identify K
with a subring of Ax by identifying k ¢ K with the T-adele (k) which has every
component equal to k. (Note: The ring of adeles as defined in [7] is the ring
of Q-adeles, Af .)

We shall use almost all to mean “all but a finite number” and (almost)
everywhere to mean “(almost) all ve T,

For any T-adele a, “a,” denotes the componentof ain K,. Ifa = (a,) e Ax
weput |al|, = | @, ]|». Then |a|, < 1 almost everywhere. The invertible
elements of Ax form a subgroup Ix, the group of T-ideles; if 7 ¢Ig, then
| 2|, # 0 everywhere and | 7 |, = 1 almost everywhere. If a, b e Ax , we write
a <bif|a|, £|b|, everywhere,and a < bifa < band|a|, < |b |, for all
veQ,. We shall also use < and < to denote ordinary inequality. The
meaning will be clear from the context. The sets

P(i,a) = {xeAx:2—a <14}, and P'(i,a) = {reAf:2—a <4},

where 7 eIx and a e Ax are called paralleletopes; they form a basis for the
neighborhoods of @ in Af . We define the T-integers K* of Ax as

K'={keK:|k|,<1,VYoeT};

more generally, if ¢I§, put K*(¢) = {ke K :|k|, < |i],, YogT}, thus
K™ = K'(1). We have K" = K, while if T = Q.,, then K" is the ring of
algebraic integers of K; K” is a Dedekind domain, and the sets K”(3) are
K"-modules, which are the nonzero fractional ideals of K.

IfaeAr,put|alx = Jloer| @, (if the product diverges, put | a |z = 0);
then |ab |z = |a|x|b|x;ifa > b, then|alz > |blg. If0 5 aeK”, then
by Artin’s product formula | a |§ > 1, in particular |a |§ = 1.

Since Ag is a locally compact group it has a Haar measure ux . Suppose
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X, is a measurable subset of K, with X, = O, almost everywhere. We assume
that g is normalized so that ux(J[. X.) = I]o (#(X,)). Then
pxireAg iz < a} = Cklalx

where Cg 7% does not depend upon T. Let &, &, ---, & be an
integral basis for the ring of algebraic integers of K. Put

Dy = {aeAg“:a= Dmuiti, 0 < ui < 1};

— 2R1+R2

then Dz = Dx X ]I, 0., where the product is over the p-adic completions
veT, is a fundamental domain for Ax/K”; Dx has compact closure and
ug(Dg) = | d|"* where d is the discriminant of the field K. (By “funda-
mental domain”, we always mean a fundamental domain of Ax/K".)

From now on, whenever convenient and no confusion will result, we will
omit the subscript K and write A”, | |*, instead of Az, | |k, ete.

If p € Z, the ring of ordinary integers, is a prime and a is an element of Q,,
then a can be written in the form a = Z:‘L_,o a, p" where the a, e Z, and
0 <a <p— 1. Define fo(a) = > 2, ap. Ifvisa valuation of K
which divides the p-adic valuation of Q, and a ¢ K,, we define \,(a) =
fo(tr(a)), where the trace is that of K,/Q,. If veQ,and a ¢ K, , we define
M(a) = —tr(a) where the trace is that of K,/R. Then if a ¢ A”,

xl(a') = exp (27"7' ZveT kv(a))

is a character of the additive group of A”; every character x of A” is of the
form x(a) = xi(ba) for some b e A”. Thus A" is self-dual.

Put D" = {aeA” : xi(ab) = 1, Vbe K”}; D7 is the annihilator of K*; it is
a fractional ideal of K7, and if T = Q. , is the inverse different of K.

Finally, we note that K” is a discrete subset of A” and that A"/K” is
compact.

We will denote by H the T-idele with components H, defined earlier.
Since Ry + 2Ry = N, | H|" = Jloer | H |, = 2714™ = 27,

2. Minkowski's theorem

If @ is a locally compact Abelian group, with Haar measure u, and H a
discrete subgroup with G/H compact, then p induces a measure p’ on the
factor group G/H by p/(X/H) = u(X) where X is any measurable subset of
@ which does not contain two points whose difference lies in H. Since G/H is
compact, w'(G/H) is finite. If X is a measurable subset of G and
w(X) > p'(X/H), then the map X — X/H cannot be bijective. Minkowski’s
theorem asserts that any such set X must contain two points whose difference
liesin H. We shall apply this to the case where @ = (A")" and H = (K*)™;
we take the product measure ()™ on (A”)™. The measure of (A")"/(K")"
is clearly | d |™*.

The following theorem is the adele version of Minkowski’s theorem on linear
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forms. Special cases of it with the constants not specified may be found in
[9] and [10].

TaeEoREM 2.1. Let Li(z) = D myaix;,5=1,2, -+, mbem linear forms
with coefficients a;; e A". Suppose by, by, -+, b, are T-ideles satisfying
| bi| > [ d[(2/m)"" | det (ai).

Then there exists k = (ki, k2, -+ -, km) € (K")", k 5% 0, with Li(k) < b;,
i=1,2 - ,m.

Proof . Putb; = b;/H. (The T-idele H is defined in Section 1.) Let S be
the open subset of (A")™ defined by the conditions L(z) < b;,
1=1,2,---,m. Then

(BH™(8)

C IT%1 |03 |/| det (as)|
(m/2)"" [T | b:|/| det (as7)]
> |d|™.
Thus, there exist , y e S with 0 ¢ x — y = ke (K")™. Then
| Li(k)|, < H, max (| Li(x)]o, | L(y)l.)
< H,|bilo = |bils,
with the second inequality strict when v is infinite. Thus L;(k) < b;.

Il

CoROLLARY 2.2. Let Li(z) = X ™aizi, s = 1,2, -+, m be m linear
forms with coefficients a.j e A”. Suppose by, bz, -+, bm are T-ideles satisfying

=1 bs | > ‘ d |ml2(2/”")m2 | det (aii)l,

then there exists ke (K*)", k % 0, with Li(k) < b, and Li(k) < bs,
1=2,3,---,m.

A T-adele a is algebraic if it satisfies a not-identically-zero polynomial
equation with coefficients in K”. The T-height H” of two T-adeles x and y is
defined as H"(2,y) = JJoermax (|2 s, |y |»). The homogeneous version of
Roth’s theorem asserts that if T is finite, if \ is a real number >1, if cis a
positive real number, and if o and 8 are algebraic T-adeles with not both a,
and B, = 0 for any v e T, then the solutions z, y e K to

(1) 0<ILlex+8yl < c(H (z,9)™

have bounded height; hence only finitely many ratios z/y occur. This form
of Roth’s theorem may be obtained from the version in [8].

We wish to show that this result is best possible, with respect to A, in a
rather strong sense. Namely, that when N = 1, there exist solutions , y ¢ K ©
to (1) with arbitrarily large height H”(x, y), and that one can distribute the
value of H,,ET| ax + By |, among the various factors | az + By |, in a pre-
assigned fashion.
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THEOREM 2.3. Assume T 1s finite and let N, , v e T, be positive real numbers
satisfying Y ,er Ny = 1. Let a and B be T-adeles, such that for any v e T, not
both &, and B, = 0. (i.e, H"(a, B) # 0). Let ¢ be a T-idele with
le|” > |d|(2/m)*H"(a, B). Then there exist x, y e K* which satisfy

(2) Loz + By ls < [l H (2, )™
for all ve T, with H" (x, y) arbitrarily large.
We first prove

LeEmMmA 2.4. Let P,, veT, be real numbers >1, and ¢ a real number >0.
There exist arbitrarily large real numbers M and integers r, € Z, v e T, such that

(3) 1—eM" <Py < (1+e)M
for all p-adicveT.

Proof. Taking logarithms, we see that (3) is equivalent to requiring that
(N\,/log P,) log M be close to an integer for each p-adic veT. But, if
M = exp (M’), M’ ¢ Z, this is the same as requiring M’(\,/log P,) be close
to an integer. This is possible, for arbitrarily large M’ (even with M’ e Z)
by the classical form of Minkowski’s theorem on linear forms (Theorem 2.1
inthecase K = Q, T = {o}).

Proof of Theorem 2.3. By replacing « and 8 by aa and Ba, if necessary,
where a is an appropriately chosen T-idele, we may assume, without loss of
generality, that max (| a|,, [B].) = 1, for each v e T; then H"(a, 8) = 1.
Choose a T-idele ¢’ such that ¢/ < cand |¢'|* > |d|(2/x)™. Let & >0
satisfy

supuer [(1 + €)'(1 — &)"*/(1 — &) =1

where ¢ is the cardinality of T, and n = R; + R, the number of infinite com-
pletions of K. Clearly, ¢’ — 0as e — 0. Ifo is p-adic, the possible values of
| |o are rational numbers of the form P3 or 0, where P, is a power of a prime
peZ and meZ. By Lemma 2.4, there exists a T-idele ¢ such that

(1—e)M™ < |il, £ (1 + e)M™

for all p-adic ve T, and | 7], = (1 — &)M™ for all infinite v e T, where M
can be chosen arbitrarily large. Define T-adeles y and 6 by v, = 1 and 6, = 0
when | & |, < | B |», otherwise v, = 0 and §, = 1. The linear inequalities

4) oax + By < i, ye + o0y < 4

have determinant 1; hence by the choice of ¢’ and Corollary 2.2, there exist
x, y e K" satisfying (4). Let veT be infinite. Suppose v, = 1, so that
|a/8l, <1lands, = 0. Then|z|, < |i|, < (1 —¢')M'. By the triangle
inequality,

lylo < lax/Bls + | 7¢/B
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when v is real, or
ly [ < | aa/8 " 4 |¢/B 11"

when v is complex (since in this case | |, is the square of the ordinary ab-
solute value on C). In either case, since | '¢//8 |, — 0 as M — o, we have

lyl < (L +e)eaa/Bl < (1 +e)(1 — )M
for sufficiently large M. By the same argument when vy, = 0, we obtain
max ([@]o, [y]) < (14 &)(1 — &)M™.

When v is p-adic, a similar argument shows that max (|2 ],, |y],) <
(1 + &)M". Combining these results, we obtain

H'(z,y) < (1+¢&)'(1 — &)"M.
If ve T is p-adic,

laz + By lo < ¢ /(1 — e)M™)

<L (4 o)1 = &)™
- (1 - 6)}IT(:E’ y))‘”

<lcl, H (z, Y™

Similarly, if v € T' is infinite,
loz + By, < | ¢ /(1 — )M™)

1 1y (1 + &' — &)™
I = o = &)H(z, y)™

—<- l (4 |1’ HT(x’ y)_)"’

if ¢ is sufficiently small. If « and 8 are linearly independent over K”, then
infinitely many ratios z/y must occur, since there are solutions x, y to (4)
with ¢’ arbitrarily small; hence H”(x, y) is unbounded [8]. If « and g
are linearly dependent over K”, the entire result is trivial.

If 2 = (21, %2, -+, %) e (AT, put H () = JJoermax; (|z:|y).
Theorem 2.3 can be generalized to m forms in n variables, where m < n:

IA

TaEOREM 2.5. Suppose m < n are positive integers. Assume T s finite,
and let N, , v € T, be positive real numbers satisfying Z,, N = n/m — 1. Let
aij,i=1,2 -+ ,mj=1,2 -+, nbe T-adeles with H (a;;) % 0. Then
there exists a T-idele ¢ (not depending on the a;;) such that if ¢1, ca, - -+
are T-ideles with [[i|ci| = | c|"H(as;), then the solutions

= (21,0, -, @) e (K" to | 2ia52]s < |cilo H (x)7,
forallveT and ¢ = 1, 2, -+« | m, have unbounded height.

y Cm

We omit the proof, since it is a straightforward generalization of the proof
of Theorem 2.3.
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The following results will be used later.

LemMmA 2.6. There exists a real constant ¢ depending only on the field K,
such that every set of the form P(j, a) = {ze A" iz — a < j}, where a is a
T-adele and j is a T-idele with |j|* > ¢, contains a fundamental domain of
A"/K".

Proof. Since any translate of a fundamental domain is a fundamental
domain, we may assume that a = 0. Let ¢ be a T-idele such that P(s, 0)
contains D, the fundamental domain defined in Section 1. Put

¢ =|al™@/m)™i|".

Then, if j is a T-idele with |j | > ¢, there exists, by Corollary 2.2, k ¢ K7,
k # 0, such that ki < j. Then kD" < kP(i, 0) € P(j, 0). IfzeA”,
let y e D" be such that y — x/k = he K”; y exists since D" is a fundamental
domain. Then ky ¢ P(7,0) and ky — x = kh e K”, so that ky is a representa-
tive of  in P(j, 0). It follows that the image of P(j, 0) in A"/K" is all of
A"/K”. Hence P(j, 0) contains a fundamental domain.

Ifiel”, put M'(4) = {keK" : k < ).

Levma 2.7. The cardinality of M"(7) satisfies

$M7(0) = Cel i [/ A" + 0((|§ ")),

as |1|" — o, where Cx is defined in Section 1.

Proof. It clearly suffices to prove this lemma when 7 = Q. In this case
it is a restatement of Theorem 1 of [7, p. 70].

LemMma 2.8. There exists a constant c, depending only on the field K, such
that for all i e I”
¥MT(1) — 1 < ¢|"

Proof. This is an immediate consequence of Lemma 2.7, when one ob-
serves that when | ¢ |” < 1, the only element of M” (%) is 0.

LemMA 2.9. For any real & > 0 there exists a real positive constant c; such
that if i is any T-idele with | i|" > 8, then ¥ M"(3) < ¢ 1]|".

Proof. Clear.

3. Kronecker’s theorem

Suppose 6;, 62, - -+, 0, are real numbers, linearly independent from 1 over
Q. Let ar, a2, -+, a, be arbitrary real numbers. Kronecker’s theorem
asserts that for every real ¢ > 0, there exists an integer m and integers
T1,Te, - , Ts such that

| mls — as — 7| <e, 1=1,2 .-, n

The following generalization is proved in [2].
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TuEOREM 3.1. Let Li(z) = D myaixi, i = 1,2, -, nben linear forms
with real coefficients. Let ay, a2, -+, an be real numbers.

Then the following conditions are equivalent:

A. Ifci,co, -, cyare integers such that Z =1 ¢i L;(x) has integral coeffi-
cients, when considered as a linear form in xy, Tz, -+, Tm, then i cio
s an integer.

B. For every ¢ > 0, there exist integers by, ba, -++, by and integers
Ti, T2, »o 1o Such that of b = (by, ba, + -+, bw) then | Li(b) — a; — ;| < ¢,
i1=12 .- m.

It is immediately clear that B implies A, and that the implication A im-
plies B contains the above-mentioned Kronecker’s theorem as a special case.

In this section we prove a similar theorem where the a;; will be T-adeles.
A corollary of this theorem in the special case K = Q, T = { »} will reduce to
Theorem 3.1. This same corollary, when specialized to the case K = Q,
T = {«, p}, where p is a prime in Z, reduces to the form of Kronecker’s
theorem given in [9]. We also obtain some standard approximation theorems
of algebraic number theory as corollaries, and a standard theorem on solu-
tions of linear diophantine equations. The proof of the theorem is related
to some theorems of Hewitt and Zuckerman [5, p. 431, Th. 26.15].

TureoreM 3.2. Let Li(z) = X ryaix;,1=1,2, --+, n ben linear forms
with coefficients a;je A*. Let ay, as, -+ , an be T-adeles. Then the following
conditions are equivalent. ,

A Ifca,c, -, c, are T-adeles such that ZZ;I ¢; L;(x) has coefficients in
K", when considered as a linear form in &y, Ty, -+ , Tm, then D im c; ;e K"

B. For every T-idele ¢, there exists b = (by, by, -+, bw) € (K*)™ such that
Li(b) —a; <é&gt=1,2, - ,n.

Theorem 3.2, when specialized to the case K = Q, T = {=}, leads to a
generalization of Theorem 3.1, not involving approximation “mod 1”.
We first prove

LemMma 3.3. Let ai5, ai, and Li(x) be as in the statement of Theorem 3.2.
The following conditions are equivalent:

A If e, coy -+, ¢y are T-adeles such that S n s ciLi(x) has coefficients
in K”, when considered as a linear form in xy, Xz, **+ , Tm , then S orciaseK”.

A, Ife, e, - oo, co are T-adeles such that > riciLi(x) has coefficients
in DT (D" is defined in Section 1), when considered as a linear form in x, , 2.,
crr sy Ty then Z:}"l Ci o € DT.

Proof. Suppose condition A is satisfied, and Y p ¢; Li() has coefficients
in D”. Let beK be such that bD” < K”. Then ) 5 c;bL,(x) has co-
efficients in K7, hence by condition A, b % c;a: e K*. Denote by (D7)
the inverse ideal of D” so that

D'(D")™" = K* and (D")' = {beK :bD" < K"}.
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We have just shown that (D”)™ Y 5 cia; © K”; but then Doy ¢ as is in
the ideal inverse to (D")™, i.e. X puciaie D”. The converse is proved in
the same way.

Proof of Theorem 3.2. We observe first that every character x on (A")"
can be written in the form

x(Ur, Uy ooy Un) = Xl(Z?-l Ui V;)
where (v1, v2, -+, v,) € (A")" [5, p. 362] (x1 is defined in Section 1). Put
8 = {(In(x), Lo(x), - -+, La(x)) : z e (K")"}.
Let x be a character on (A")™ such that x(S) = {1}. Then
x(Li(z), <+, La(x)) = x( Z?=1 ¢i Li(z))

= x( Z?-l CiZZ’Ll aij )

= x1( 21 (21 s aiy)w;)
for appropriate ¢, ¢z, -+, c,eA”, and for all x e (K”)". Then, clearly,
Sriciai;eD’, j = 1,2, ---, m; hence by condition A’ of Lemma 3.3,
Soricia;eD’. Then x(ai, @z, -+, @) = 1. Thus by the duality

theorem for locally compact Abelian groups, (ai, a2, - -+, a,) is in the closure
of S. The proof that B implies A is clear.

CoroLLARY 3.4. (The adele form of Theorem 3.1). Let Li(x) =
S axi, i = 1,2, -+, n, be n linear forms with coefficients a.je A”. Let
ay, ag, -, a, be T-adeles. The following conditions are equivalent.

A. Ifc, e, - -, cne K" are such that D %y c; Li(x) has coefficients in
K", when considered as a linear form in @1, &2, **+ , Tm , then SricioseK

B. For every T-idele ¢, there exist

b= (b17b27 "'7bm)€(KT)m and r1, T2, -'-,T”GKT
such that L;(b) — r; — s < g2 =1,2, -+, n.

Proof. Put Li(z) = Li(x) — Tmyi, ¢ = 1,2, --+, n, and apply Theorem
3.2 to the forms Li(z) and oy, s, -++, o . If the form D ¢; Li(x) has
coefficients in K”, then the coefficient of z;yn being ¢;, we have c;e K. It
follows that in applying Theorem 3.2, one may restrict attention to
¢, ¢, -, cne K'. The rest of the proof is clear.

CoroLLARY 3.5. (The very strong approximation theorem [11, p. 77]).
Let v, be a fixed completion in I. Let o be a T-adele and & a T-idele. Then
there exists b e K* such that |b — a|, < | e, for all v 5% vo.

Proof. Let a be the T-adele with @, = 1if v £ v, and a,, = 0. Leto’
be the T-adele with ay = a, if v # v, and ay, = 0. If ¢ is a T-adele such
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that ca ¢ K”, then, since (ca),, = 0, ca = 0; hence ¢, = 0 if » # vy. Thus
ce’ = 0. Now apply Theorem 3.2 to the linear form ax.

COROLLARY 3.6 [1, p. 100]. Let D myaia; = ai, i = 1,2, -+ , nben
consistent linear equations with coefficients a.; and constant terms o;e K”.
The necessary and sufficient condition that these equations should have a solution

Ty, T2, -+, Tme K" is that they have a solution Ty, T, - , Tme O, for all
veT (O, is defined in Section 1).

Proof. Since the equations are consistent, they have a solution y;, ¥,

o, ymeK. If ¢, ¢z, -+, ¢, are T-adeles such that Y .pyci D "y ai; a;
has coefficients in K”, then

Z?=1 Ci oy = Z?‘=1 Yi Z?=1 ciaijeK.

Now if v¢T, let 21, 23, «++, Zm be a solution of the given equations in

O,. Then
[ P orvcioile = | omaa; 2omiciailo < 1;

hence Y i cioie K. By Theorem 3.2, for every T-idele e, there exists
Ty, T2, +-+, Tme K" such that D fayz; — a; < e Butif |e|” < 1,
then since Y 7y ai;x; — a; e K*, wehave D 7iai2; = ai, i = 1,2, -+, n.
The following lemma will be used in Section 4.
LeEmMA 3.7. Let 6 be a T-adele satisfying 6 ¢ K. Then for any T-idele e,
there exists a T-idele m, such that for any T-adele b, the inequality
wW+y—b<e

has a solution x, y e K*, with x < m.

Proof. By Corollary 3.4, the range of 26 + y (x, y ¢ K*) is dense in A”.
We may assume without loss of generality that b e D?, (D" is the fundamental
domain for A”/K" defined in Section 1). The lemma now follows from the
compactness of A"/K”.

4. Uniform distribution
Let f be a function with domain K* and range A”; f is uniformly distributed if
(1) *LGM"(5) + K*) n P(e, )] _ p'P(e, a)
#M*(5) wrDT

as j — o« (here, and throughout this section, j runs through T-ideles and the
limit is to be taken in the sense of nets under the direction induced by <),
where @ is any T-adele, e any T-idele, M () is defined in Section 2, and ¥,
as usual, indicates cardinality. By Lemma 2.7, (1) is the same as

2) KI(M"(G) + K")nP(e, )l/|§ 1" — dd| e |,

where dy = (27"*2¢™)?/| d|. By a step function, we mean a finite linear
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combination (with complex coefficients) of characteristic functions of sets
of the form P(e, a). Then the function f is uniformly distributed, if and
only if, for all step functions s,

(3) lim (3 ;js(k + f(a)))/ % M*(5) —»f”sdu/ld [,

j=>o kekT a

where the inner sum is over those a ¢ K” satisfying a < j. It is easy to verify
that the step functions are dense (in the uniform norm) in the complex-
valued continuous functions on A” which have compact support. Since, A”,
as a topological space is normal, the characteristic function of a set of the
form P(e, a) can be bounded from above and below by continuous functions
with compact support, with the property that the integral over A” of their
difference can be made arbitrarily small. It follows that f is uniformly dis-
tributed if and only if (3) holds for all continuous functions s on A” with
compact support.

We say a complex-valued function g on A’ is periodic (mod K7) if
gz + k) = g(x) for all ke K* and x ¢ A”. If sis a complex-valued con-
tinuous function with compact support, then

(4) g(z) = Drexr s(z + k)

is continuous and periodic (mod K”). Then (3) becomes

(5) lim 5= (@) %M = [ gdu |

where the summation is over those a ¢ K” satisfying a < j. If g is a complex-
valued continuous function which is periodic mod K”, then g can be written
in the form (4) where s is continuous and has compact support (Proof: Leth
be a non-negative continuous function with compact support which strictly
includes D”. Put s(z) = h(z)g(x)/Dtexr h(t + z)); it follows that f
is uniformly distributed if and only if (5) holds for all complex-valued con-
tinuous functions, periodic (mod K”). Since the linear combinations of the
characters of A” which equal 1 on K” are dense (in the uniform norm) in
the space of continuous functions on A” which are periodic (mod K”), f
is uniformly distributed if and only if (5) holds for every g of the form g = x
a character on A” equal to 1 on K”. If x is the principal character (i.e.
x(A") = {1}) then (5) holds trivially. Since every character x which equals
1 on K" is of the form x(x) = xi(bx) with b eD”, where x1 and D" are
defined in Section 1, and since any non-principal character x with x(K”) = {1}
satisfies fpr x(a) du(a) = 0, we obtain the analogue of Weyl’s classical
criterion for uniform distribution:

THEOREM 4.1. The function f is uniformly distributed (mod K”) if and
only if, for every non-zero b e D7,

(6) limjoe (D6 x1(Bf(@)))/|§ "=0
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where the summation is over those a ¢ K satisfying a < j.

By an irrational T-adele 0, we mean a T-adele § ¢ K. If 7 and j are two
T-ideles we shall let 7 @ j denote a T-idele satisfying

(2 ® J)» max (| Z]», |7 ],) whenvis p-adic
[i1o + |7 1o when v is real
(<% + 17 13%)® when v is complex.
Ifa,beA"anda < 4,b < j,thena + b < ¢ @ j. Further for any T-idele
5, m (i ® j)/m" (i) — 1 asi— o, where m’(3) = #M"(4).
TurorEM 4.2. If 0 is an irrational T-adele, then the function f(k) = ko
s uniformly distributed.

Proof. Rather than estimate the sums (6), we proceed directly. For
T-ideles ¢ and j, and a eA”, put

Fi(i,a) = % (OM*(§) + K*) n P(4, a).
It is easy to verify that

@ [, Fiti, a) au(a) = %M (DW"PG, ).

For any T-idele e, there exists by Lemma 3.7, an idele m such that for any
b e A" the inequality

+qg—b<ce
has a solution k, ¢ e K*, with k& < m.
From this we obtain
(8) Fism(1 ® &, a) 2 Fi(1, b),
for any T-adeles @ and b. In fact suppose
r,seK*, r<j and 70 + seP(i,a),
sothat + s — a <4 Takek,qeK  suchthatk < mand k8 + ¢ + a—
b < g; then
k+r80+(q+s) —b<i1@¢c and k+r<jOm

Integrating both sides of (8) over D with respect to a, we obtain, by use of
(7)
¥M(j + m)u"P(E ® ¢, a) 2 Fi4, )| d [,
or
Fi(i,b) . #M"(j@m) p'P(i® ¢ a)
*MT(5) —  #MT()) | d [
Letting 7 — o, and then ¢ — 0, we obtain
lim sup;.e (F3(3, )/ % M"(j)) < w'P(5, a)/| d [
= u"P(3,b)/| d ",
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Similarly, by integrating the right side of (8) with respect to b; then letting
J — o, and then ¢ — 0, we obtain the opposite inequality with “lim sup”
replaced by “lim inf”. Hence

limj.o Fi(4, b)/ ¥ M"(j) = w"P(3,b)/| 4|
but this is the definition of uniform distribution.
CoroLLARY 4.3. For any irrational T-idele 8 and any nonzero b e D¥,

Hm:i—»w( Za Xl(abo)/lj |T) =0,
where the summation is over those a e K satisfying a < j.
THEOREM 4.4. Let f(q) be a function from K” to A”. If for each non-zero

heK”, the function grn(q) = f(q + k) — f(q) is uniformly distributed, then
f s uniformly destributed.

We first prove (following [2, p. 71, Lemma 3])

LemMa 4.5. Let u be a complex-valued function with domain K*. Then
for T-ideles Q and R we have

mT(R)Y Lacou(g) I < m"(Q ® R)m"(R) Duca|ulq) !
+ 22 0 AR, B) | 2qu(@)ulg + b) [],

where the summations are over h, q e K*; in the next to last sum,0 = h < R ® R;
and in the last sum ¢ < Q and ¢ + h < Q; A(R, h) is the (finite) number of
solutionstor — s = hwithr,s < R,r,se K'; m"(R) = ¥M"(R).

Proof. We may assume that u(q) = 0 if ¢ ¢ P(Q, 0). Throughout this
proof all summation indices will run through specified subsets of K*. Then

mT(R)quo u(q) = Zpgo@e era u(p — r).
By the Schwarz inequality,

(10) m"(R)Y| Yucew(g) P < m"(Q ® R)2 u(p — r)ulp — s),

where the last sum is over p, r, s satisfyingp < Q @ R,r < R,s < R. Now
any non-zero term of the form | u(q) |* appears in the last sum of (10) pre-
cisely M"(R) times, namely when ¢ = p — r = p — s. For given ¢ and
h, terms of the form u(g)@(q + h) or @(q)u(q + k) can only be non-zero
when both ¢ < @ and ¢ + & < @; then each such term occurs once for each
solutionof ¢ = p — 7, ¢ + h = p — s; hence once for each solutionof r — s = h
with r < R, s < R. Thus (10) is

m"(R)? | gz u(Q)F £ m"(Q @ R)[Xuze|ul(q) |'m"(R)
+ 2 AR, k) 220 (u(q)alg + k) + w(q)u(g + k)],

where the next to last sum is over non-zero h < R @ R and the last sum is
over ¢ satisfying ¢ < @, ¢ + h < Q. Taking absolute values in the last sum
on the right completes the proof.

(9)
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Proof of Theorem 4.4. Let b be a non-zero element of D and put

u(q) = x1(bf(q)). For each heK”, (f(g + k) — f(q)) is uniformly dis-
tributed. Hence by Theorem 4.1

2esaxa(d(f(g + h) = f(@)) = Lesou(@lg + h) = 0(|Q[")

as Q — «.
Since | Q@ ® 2 |7/|Q|" — 1 as Q — =, we have
2cu(g + hyalg) = 0(1Q["),

where the sum is over ¢ satisfying ¢ < @, ¢ + h < Q. We now fix a T-adele R
and apply Lemma 4.5. Since |u(g)| = 1 and A(R, h) < M"(R), we obtain

mT(R)2 l quo u(q)|2
< m"(Q ® R)m"(R)m"(Q) + m"(R @ R)-o(| Q|")].
Dividing by m” (R)*m”(Q)’, we obtain, as @ — «,
| 2aceue /(1 Q1) < ¢/m™(R) + o(1)

where ¢ is a constant independent of R and . Since R is arbitrary,

| Zecexa®(D)] = | Zagau(@)] = o(| Q)
as Q — ». By Theorem 4.1, the function f(q) is uniformly distributed.

THEOREM 4.6. Suppose f(x) = X i-oa &’ is a polynomial with coefficients
ar e A”. If at least one of the coefficients a; , with § > 0, is irrational, then f(q)
18 uniformly distributed.

Proof. Induction on s, the degree of f. For s = 1, the theorem follows
from Theorem 4.2. Suppose now that s > 1, and the theorem has been proved
for s — 1. If a, is irrational, then for each ke K”, f(¢ + h) — f(q) is a poly-
nomial of degree s’ < 1 with leading coefficient irrational; hence by the in-
duction hypothesis f(g + k) — f(q) is u(iformly distributed for each & ¢ K”.
By Theorem 4.6, so is f(¢). If o, is rational, then there exists ¢ > 0 such that
o is irrational and a1, asse, - - , @, are rational. Let n ¢ K” be such that
N1, -+, na, are in K*. It clearly suffices to show that the functions
f(ng + m) are uniformly distributed for each m ¢ K*. But f(ng + m) when
written as a polynomial in g, differs only by an element of K* from a poly-
nomial of degree ¢ whose leading coefficient is irrational. Hence by the in-
ductive hypothesis f(ng 4+ m) is uniformly distributed.

5. Metrical theory

If a and b are real numbers, we say that a < b (mod 1) if there exists m ¢ Z
such that [a — m| < b. Let e, &, &, -+ be a sequence of positive real
numbers. A classical theorem of Khintchine [2] asserts that the inequalities
n — o < & (mod1) forn = 1, 2, 3, -+ -, have infinitely many solutions
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for almost all pairs (6, a) e R® if and only if D .y é&, diverges. Another
theorem of Khintchine asserts that if the &, are monotically decreasing, then
the inequalities n8 < &, (mod 1) have infinitely many solutions for almost all
0 if and only if D n-i &, diverges. The purpose of this section is to prove the
analogous theorems for T-adeles, (at least when T ## Q); see Theorems 5.6,
5.7, 5.12.

If o and b are T-adeles, we say that @ < b (mod K”) if there exists m e K”
such that @ — m < b. Throughout this section, ¢, ¢z, ¢3, - - - will denote
real positive constants, which in every case can be evaluated, but the exact
values are irrelevant for our purposes. We note here that all sets of T-adeles
referred to in this section are obviously measurable.

LemMA 5.1, Let i be a T-idele; let a be a T-adele satisfying | a|* < 27", and
let b 5 0 be an element of K*. Put

S=1{0eA”":0<17 and k6 < a (mod K*)}.
Then there exist positive real numbers dy and ds not depending on k or a such that
(1) dla|” < u'(8) < dlal’.
Proof. For each g e K*, put
Sy={0eA":0<i and kb — q < a}.

We first show that the S, are pairwise disjoint. In fact, suppose that
0eS;n Sy, with ¢ ¢ ¢". Then k6§ — ¢ < a and k9 — ¢’ < a. Hence
l¢g—¢ | <H,|al,forallveT. Then [[ser|q¢— ¢ |» <2 |a|" < 1,hence
¢ — ¢ = 0. Thus u(8) = X ou(S,). If 6¢8,, then for each ve T, we
have |60 — ¢/k |, < |a/k|,and |0, < |Z],. Hence

(2) lg/k|s < Hymax (|ilo, | a/k )

Then 8, is empty if ¢ does not satisfy (2) for all ve T. Suppose ¢ satisfies
(2). ForeachveT, put

S ={zeK,:|x], <|il, ke — gl < |al.}.
Then 8, = []. Sy and u”(S,) = 1. .(8}). Ifwis p-adic, an easy computa~
tion shows that

wo(8g) = min (| ], | a/k]);
while if » is infinite, then

pe(Sy) < 8min (|7, | a/k|),
and if ¢ satisfies
(3) |¢/k o < max (|3, |a/k ),

then
#«:(Sz) > %min (I ) ]v ) I a/k Iv)'
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Combining these results, we see that if ¢ satisfies (2) for all v e T, then
W'(8y) < 8" [Lomin (| il., | a/ky);

if in addition ¢ satisfies (3) for all v € Q,, then
w'(8e) 2 27 [Tomin (|4, | a/k o).

By Lemma 2.7, there exists real constants ¢, , ¢z > 0 such that the number of
g e K” satisfying (2) for all v ¢ T is less than

a Hv max (| & |», |a ),
while the number of ¢ ¢ K” satisfying (3) for all v e T is greater than

e [Lomax (| ik |o, | a ).
Thus

p7(8) < 8% ITomin (|4 s, |a/k|,) max (|ik|,, |al) = 8 |i|"|a|".
Similarly u"(S) > 27%¢; || | a|”.

LemMa 5.2. Let a be a T-adele with |a|* < 27", and let k 5% 0 be in K".
Put S = {#eD”: k8 < a(mod K*)}. Then there exist positive constants ¢,
and ¢, , not depending on a or k such that ¢, | a |* < u*(8) < e ] al”.

Proof. Clearly u”(8) is independent of the choice of fundamental domain
D”. Since there exist sets of the form P(4, 0) which include a fundamental
domain and others which are included in a fundamental domain, this lemma is
an immediate consequence of Lemma 5.1.

Fora, z ¢ A", put 8,(z) = 1if 2 < a (mod K”), otherwise 8,(z) = 0. Then
if ke K",k # 0,and if | a |* < 277, we have by Lemma 5.2

alal” < [ a(k) 4(@) < alal

Since any translate D” — a, a ¢ A”, of a fundamental domain is a fundamental
domain, we obtain:

LemMa 5.3. Ifa,aeA”,keK", k5 0,and|a|” <27, then
alalf< [ alke — ) du'() < @] al
D

LEMMA 5.4. There exist real positive constants cs , cs such that if a, be AT,
p, e K" and p ¥ g, then

alab "< [[ 6o + )bl@ + @) A7) () S el ab [T,
while if p = q, then

alal < [[ 600+ @) W7(0) du"(@) < ] a
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where both integrals are over (8, o) e D* X D.

Proof. The inequalities for the second integral follow from Lemma 5.3 by
integrating first with respect to 8. By substituting s = ¢ — p, &' = a + P9,
the first integral is transformed into

J[ ety 80 + o) au(0) (@),
where the integral is still over D* X D”. Integrating first with respect to 6,
then with respect to &', by applying Lemma 5.3 completes the proof.

LemmA 5.5. Suppose there exists a completion vog T (i.e. T # Q), and that
E is a measurable subset of (A")™ with (u*)™(E) > 0, where

(W)™ = pu" X u" X - X,
he product measure on (AT)™. Then almost all points of (AT)™ are contained
n K*-E + (K")™

Proof. Sets of the form (P(4,b))™, i1 ¢I”, b ¢ A", form a neighborhood basis
for (A")™. By the density theorem for Haar measures on locally compact
groups [3], there exists, for any real positive §, a set of the form (P(z, b))™
such that |Z|” < 1 and

(W")"[(P(3,0))" n E] > (1 — 8)(u")"(P(3, b))™

Since T # Q, there exists ge K” with | ¢|" = ¢ > 1. Let ¢ be the least non-
negative integer such that o’ | 7| > ¢, where c is the constant of Lemma 2.6.
Call F, = (P(iq', bg"))™. Then

(W)"Fen ¢'E] > (1 — 8)(w")"F..

But by Lemma 2.6, F; contains a fundamental domain G of (A™)"/(K")™.
Then

W)"CEnG) > (W)"G — 8(u")"F .

Now, (u")"F is bounded, (since ¢’ | 7 |” is bounded) say by M. Translating
¢'E by (K*)™ we see that

ED"(@E + (K)™) n (D")™) > (u")"((D)™) — oM.

Since 6 is arbitrary, the proof is complete. We do not know if Lemma 5.5
remains true when the hypothesis 7 5 Q is omitted.

THEOREM 5.6. Suppose, for each q e K*, we are given a T-adele &, such that
D aexr | €47 < . Then, for each o € A", and for almost all 6 € A", there exist
only finitely many solutions q e K* to

(4) 90— a<¢e (modKF).
Proof. Without loss of generality, assume that | &,|* < 27" for all g e K”.
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By Lemma 5.2, for fixed ¢ and a, the set of ¢ D” satisfying (4) has measure
at most ¢; | &,|”. Assume now that « is fixed. Then if L is a finite subset of
K”, the set of § ¢ D” for which (4) has a solution ¢ ¢ L has measure at most
¢z D e | €4]". Thus, the set of 8D’ for which (4) has infinitely many
solutions has measure at most infr, ¢; Y gz | £4|" = 0.

TurorEM 5.7. Suppose that T # Q, and that for qe K, we are given a
T-adele ,. Then there exists, for almost all (8, &) e A* X A", infinitely many
solutions to g0 — o < &, (mod K”) if and only if D 4| €,|" = .

Proof. If D .| |" < , the theorem follows immediately from Theorem
5.6. Hence assume that Y ,| e, |” = «. For any T-idele h, let Ax(6, a) be
the number of g e K7, ¢ # 0, satisfying ¢ — o < g,and ¢ < h. Put

1) = [[ 846, @) du™(6) au" ()

M) = [[ 840, o) 7 (0) du" (a0,

where both integrals are over D* X D”. Forz e¢A”, put §,(z) = 1ifz < ¢,
otherwise §,(z) = 0. Then A4(0, &) = quh 5,(¢0 — a). Hence

M) = 2 [ 6u(a0 — o) du"(0) " (a0,
a<h
By Lemma 5.4, M1(h) > cs quh | &, |". Similarly,

M) = 2 T [[ a0 — @) 6,08 — @) du7(0) du (),

p<h g<h

hence, by Lemma 5.4,
Ma(h)" < el Zagn | ") + s Zocn | €a|™

Since Y .| & |" = =, there exists a real, positive constant cs, such that
Mi(h) > ¢s Ma(h) for all large h (say, for all h > 1). By alemma of Paley-
Zygmund [2, p. 122], the set of 6 for which A,(8, &) > (¢s/2)M1(h) has meas-
ure at least (c3/4)(u"(D"))?. Since A4(6, o) increases as h increases (in the
sense of <) there is a set S < D" X D" of positive measure for which
An(8, &) — © as h — o, whenever (6, a) ¢ S. Now let 7, be a T-idele for
each ge K7, such that Y., | e,74|" = « and such that for every T-idele 3,
there exists a T-idele 7 such that if g ¢ P(4, 0), then 7, < 7 (roughly speaking
74 — 0 as ¢ — ). It is easy to construct such r,. By what we have
already proved, there exists a set S € D" X D" of positive measure such that
the inequalities ¢8 — o < 7,&, (mod K”) have infinitely many solutions
q e K™ whenever (6, ) ¢ S. By Lemma 5.5, almost all points of (A")* can
be written in the form (20 + y, za + 2) wherex,y,2 ¢ K* and (6, @) ¢ S. For
any such point there are infinitely many ¢ ¢ K such that

0 — a < 1.6 (modK7);
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hence
q(20 + y) — (za +2) < ggrex  (mod K*).
Since 7, ¢ < 1 with only finitely many exceptions (by the choice of r,), the in-
equality
9@ +y) — (e +2) < & (modK")
has infinitely many solutions.

Let q1, g2, s, - -+ be a sequence of non-zero elements e K*. We shall call
such a sequence regular if there exists a T-idele j; and finite subsets of
K,V,, Vs, Vs, - with cardinalities v, , v5, v3, - - - satisfying the following:

Rl. ¢.Vo.c K", forn =1,2,3,---.

R2. V.C P(j1,0),forn =1,2,3,---.

R3. The V, are pairwise disjoint.

R4. (1/¢.) < jifor all n for which v, = 0.

R5. There exists a real positive constant ¢; such that

2ome1tn/ @ |" > cam,
for all sufficiently large positive integers m.

If a, beZ, then as usual (a, b) denotes the greatest common divisor of a
and b.

LemMa 5.8. Suppose T is finite and k is a fixed positive integer; then the
sequence gn = n* is regular.

Proof. Let P be the product of those primes p for which |p|, < 1 for
some veT. Let £, &, -+, &y be an integral basis for the ring of algebraic
integers of K. If (n, P) = 1, let V, be the set of those « ¢ K which can be
written in the form z = (D ¥_ix;&)/n* where z;¢Z (s, P) = 1 and
1 <a; <nf. If (n, P) # 1, let V, be the empty set. Then, clearly R1—4
are satisfied with j; = 1. We now prove R5. Put ¢p(n) = ¢(n) if
(n, P) = 1, otherwise put ¢p(n) = 0 (¢(n) is the Euler Totient). As
| n*|" < n*, we have

(1/m) 2 naava/| gu|” 2 (1/m) 2201 (pp(n)/n*)"
> ((1/m) 2naep(n®)/n*)Y,
by Holder’s inequality. Since ¢p(n*) = n*pp(n), it is enough to show the
existence of a positive constant ¢; such that
sm= (1/m) 2 naaep(n)/n > cr.

But sn > tm = (1/m) D o(n)/n where D’ indicates summation over n
congruent to 1 modulo P. Now ¢(n) = n 2 4. u(d)/d where u is the
Moebius function. As there are m/(Pd) + O(1) multiples of d between 1 and
m which are congruent to 1 modulo P, we have
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tn = (1/m) 2o (m/(Pd) + O(1))u(d)/d
= (1/P) 2o u(d)/d + O((1/m) 2311/d)
—6/(Pr’) as m— « [4, p. 250, Th. 287].

LemMmaA 5.9. SupposekeZ,k > 2and | k|, > 1forallveT. Theng, = k"
78 a regular sequence.

Proof. Let V, be the set of those ¢ K which can be written in the form

= (2¥ .,z &)/k", where each x; is an integer relatively prime to k and
1 <z; <Ek" Asin Lemma 5.8, R1-4 are easily verified with j; = 1. Now

= (o(k™))" and | k" | = k™, since |k |, = 1 at all p-adicveT. Hence,

(1/m) 2Znmavn/ @n|” = (1/m) 251 (o(K") /K"
= (1/m) 220 (o(k)/B)™
= (p(k)/k)" > 0,
since o (k") = k" “¢(k) ; hence R5 is satisfied.

RemARK 5.10. We list some other regular sequences, leaving the proof to the
reader. We make the blanket restrictions that any element g, in any of the follow-
ing sequences shall satisfy | ga |» = 1 for all p-adic v e T, and that the elements in
the sequence shall be distinct:

(a) Any infinite sequence of distinct primes p e Z.

(b) Let r be a fixed positive integer. Any sequence, every element of which
has at most r distinct prime factors (this generalizes Lemma 5.9).

(¢) For a fized positive integer k, the subsequence of {n*} consisting of those
n* where n lies in a fived arithmetic progression (this generalizes Lemma 5.8).

REMARK 5.11.  Suppose ¢, is a sequence of elements of K* and has a subse-
quence gn; which is regular. If there is a real constant k > 0 such that n; < ki
and the n; are increasing then the sequence g, 1s regular. (One chooses V., to be
the empty set if n is not of the form n; .)

TaEOREM 5.12. Suppose T' = Q, that ¢1, ¢z, g3, * * + 18 @ regular sequence of
elements of K™ and that &, &, €, -+ is a sequence of T-ideles for which
ler|" > | &|" > | &|" > -+, and for which there exists a T-idele j, such that
ei < jofor all i. Then there exist, for almost all @ ¢ A", infinitely many solutions
10 qn 0 < &, (mod K7) if and only if D n | €| = oo.

Proof. If D .| ex|” < =, then the theorem follows from Theorem 5.6.
Assume then that Y. |e,|” = o, and without loss of generality that
| x| < 27" for all n. We may also assume that R5 holds for all m > 1.
Since ¢, is regular, we have a sequence of sets V1, Va, V3, - - - with cardinalities
v1, Vs, Vs, - - - satisfying R1-5. Putj = j1 @ (j2/51) (1is defined in R1 and
R4). Then if 6 ¢ A” satisfies 8 — p < &,/¢., where pe V,, we have 6 < j.
For 0 ¢ A", put B,(0) = 1if 8 < &,/¢., otherwise 8,(8) = 0. Put v,(8) =
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D 2 Ba(8 — ) where the sum is over z ¢ V, ; v.(6) is the number of z ¢V,
satisfying 6 — = < &/q.; if 2’ ¢V, also satisfies this inequality, then
Gt — @2’ < & @ &, ; hence,

[z — g2’ |" < 2% |exy|" <1 and z = o,
since ¢, *, ¢» *' ¢ K*. Thus v,() is 0 or 1. For positive ke Z, put
Tw(0) = 2 h-17a(6) and
k) = [ 1) d0),  Mu(w)* = [ T0) "),

where the integrals are over 8 ¢ A", § < j. Note that I',(§) = 0 outside of
the range of integration.

LEmMA 5.13.  There exists real cs > 0 such that My(h) > cs D ey | €0 |"
Proof. We have

[ v o) = = [ .0~ 2) au(6)
0<j zeVy YOI
= v Ck | en/%' .
Hence,
Ml(h) = CK Z’;n-l Un ] en/Qn |T
= Zh-l (Zwlvr/lrlT)(lenl - l€n+1| )
+ (Xtav/| 7N & ]

> 08[21»-1 n(| &n IT — | &na IT) +h|en IT]

= Cg Zn=l | En IT
by R5.

LemmMA 5.14.  There exists cs > 0 such that if m 5= n, then
= f .'Ym(o)'Yn(o) du"(0) < ¢ | em|" | &n |

Proof. Clearly, Inn = 2 sev,, Dotev, b”(Wes), Where
We=1{0eA":0 — s < &n/gm, 0 — t < £2/qn}.
Then,

(5) W (W) < cw [Loer min (| &n/gm lo, | €a/gn ]s)-

We now estimate how many W, arenon-empty. Note that s & ¢ since by R3,
Vmand V, are disjoint. Puts’ = gns,t’ = q.tsothats’,t’ e K and s’ < jigm ,
t < jg. by Rl and R2. Put a = guqu(s — t) = qu s’ — qut’ 5 0; then
a ¢ K*, moreover

lal, < max (| gmlo, | gnl)

if v ¢ T; while if v € T, then, since | s — ¢ |, < H, max (| &n/qm |v 5 | €/ |») We
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have
lals < Hymax (| guémloy | Gmen o).

Thus by Lemma 2.8, the total number of distinet a which may occur is less
than
(6) cu HMT max (| qn Em |v ’ l m En lv) HvtTma'x (I qm Iv ’ l qn Iv)

For a given value of a, we now determine an upper bound for the number of
pairs ¢, ¢’ which satisfy ¢ = ¢, 8’ — gat’. Once ¢’ is known, ¢’ is determined,
hence we need only estimate the number of s’ for which there exists ¢’ satis-
fying ¢, 8 — gnt’ = a. Suppose that ¢, 8” — gmnt” = a. Theng.(s' — s”) =
gn(t’ — t”); hence
|8'—8”v§min(1,|9m/%|v) if 1)¢T,
while
|8 — " |s < Ho|jgmlo if veT.
Thus by Lemma, 2.9, the total number of pairs s’ — s” which can occur is less
than
e | gm|” ILoer (min ([ g los [ gnl)/] gn )

= co|gn|" | |" Iloermin ([ gmlo, [gnlo),
by Artin’s product formula (see Section 1). The total number of possible
values of s is less than
1+ culgn|”|gn|” Toermin (| gmlo, | gn |o)
< cslgn!” | gul|” Iloir min ([ gnlo, [ gn lo)

since the product in (7) is bounded away from 0. Then I, is less than the
product of (5), (6), and (8). Hence

Lin < cua HveT min (‘ em/qm |v y | 8n/Qn Iv)
'HveT max (| ¢n &m |y | Gm € ln)Hvu' max (| gm o, | gn o)
| gm @n |"TLoer min (| gm o, | gu |2)
o JToer Imin (| &m/m o 5 | €/n o) max (| gném |o s | gm €a [o)]
| gm @n ITHvtT (max (| gm |o, | @n o) min (| @m |o, | gn [+)]
= Cu HveT (| &n/qm |o*| €n/@n lo*| @m 1o+ @a |0)
| gn @ |"TLver I @a 1o
= culen|" | &n ",

(7)

(8)

by Artin’s product formula.
LemMa 5.15. We have Ma(h) < s M1(h).
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Proof.
M = [ Tu(6)* dut(6)
0<i

= 5 [ 0@ @ 0) + X [ va(0) au(0),
r:x;:l 0<J m=1 vy0<j

since ym(6) = 0or 1. Then by Lemma 5.14,

My(h)? < cuu 2 ohmes | & | | &a |* + Mi(R)
or

My(h)? < eis My(h)® + My(h) < o Mi(R).

LEMMA 5.16. There exists a set of positive measure in A” on which Tx(8) — o,
ash — .

Proof. By Lemma 5.15, M1(h) > cis Ma(h), hence by the Paley-Zygmund
Lemma [2, p. 122], the set of 8 where T4(0) > (c1/2)M1(h) has measure
> (cle/4)n"P(j, 0).

Proof of Theorem 5.12 (Concluded) Let 7, ,n = 1,2, 3, - - - be a sequence
of T-ideles such that 71 > 75 > 75 > -+, that ) ney | En T | = oo, and that
for every T-idele 7 there exists an 1nteger no such that 7, < 2ifn > ne. Itis
easy to construct such sequences.

By Lemma 5.16 applied to the e, 7, instead of the e, , there exists a set of
positive measure S such that the inequalities ¢, 0 < &, r. have infinitely
many solutions for § ¢ S. By Lemma 5.5 almost all points of A” can be written
in the form 0 + vy, with 8¢S, z, y e K*. For any such point there are in-
finitely many solutions to ¢, 8 < &, 7, , hence to ¢.(20 + y) < &, 7o 2(mod K7).

For all large n, we have 7, ¢ < 1, hence there are infinitely many solutions
t0 gu(280 + y) < en(mod K7).
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