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Diophantine approximation, the study of approximations of real numbers
by rational numbers, has been investigated extensively (see Cassels [2],
Koksma [6], and the literature cited therein). To some extent it has been
studied over the field of p-adic numbers using the p-adic valuation (see
Mahler [10], Lutz [9], and the literature cited therein). There has been in-
vestigation of diophantine approximation over algebraic numbers fields,
mostly in quadratic extensions of the field of rationals (see the literature cited
in [2]; but see also [12], in which the geometry of numbers over arbitrary
algebraic number fields is studied using the ordinary absolute values, and the
version of Roth’s theorem in [8]).
The purpose of this paper is to show that the ring of T-adeles of an algebraic

number field is a natural realm in which to study diophantine approximations;
that by doing so, one obtains a unified treatment, covering all algebraic num-
ber fields, using the ordinary absolute values and arbitrarily many p-adic
absolute values. In this way, one obtains theorems, which when specialized
to the case of the rational numbers and no p-adic absolute values, yield the
classical theorems of diophantine approximation as found in [2], and when
specialized to the case of the rational and one p-adic absolute value yield,
after minor restatements, the theorems of [9]. A maior advantage of this
formulation is that it is easy to see what the analogues of many of the classical
theorems are and how to generalize their proofs (the outlines remain the same,
but many technical complications entertain particular, the lack of a linear
order).

It would also be possible to study diophantine approximation over the
adele-ring of a function field of one variable, but in this case many of the
results (especially in Sections 2 and 3) would be subsumed under slightly
generalized versions of the homogeneous and inhomogeneous Riemann-Roch
theorems.
The T-adele ring of the rational numbers, when T contains only finitely

many valuations, is very closely related to the ring of g-adic numbers studied
by Mahler [10], who hasalso studied diophantine approximation over algebraic
number fields.

In Section 1, we introduce notation and state the basic facts about adeles
which will be used in the sequel. We refer the reader to [7] for proofs in the
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case T f; the proofs for T # f are easy modifications of these (note that our
notation is different from that in [7]). Proofs for the facts we use about
locally compact Abelian groups will be found in [5].

In Sections 2 and 3 we study the two basic theorems of Diophantine ap-
proximation--Minkowski’s theorem and Kronecker’s theorem. The T-adele
formulation of Kronecker’s theorem when reduced to the classical case gives a
slight generalization, not involving approximation (mod 1), of the usual
version.

In Section 4 we study uniform distribution and obtain the analogue of some
of Weyl’s classical theorems. In Section 5 we investigate the metrical theory
and obtain analogues of some of Khintchine’s classical theorems. In Sections
4 and 5 we have omitted the multidimensional versions of our theorems; they
can be obtained by the usual procedure of adding subscripts and replacing
elements by n-tuples of elements.

It is possible to study such topics as lattices, successive minima, transference
theorems, etc., in the ring of T-adeles. These will be the subject of future
papers.

1. Preliminaries

Let K be an algebraic number field of degree N over Q, the field of rational
numbers. A completion v of K is an embedding of K as a dense subset of a
locally compact field K ;K is either a finite algebraic extension of a field of
p-adic numbers Q, in which case v is called p-adic; or K P, the field of
real numbers, or K C the field of complex numbers. If K 1 orC, v is
called infinite, and real or complex according as K P, orK C. Two com-
pletions v and v of K are equivalent if there is a continuous automorphism a of
K onto K, with av v’. From each class of equivalent completions we choose
one, and denote the set of representatives so chosen by f. The subset of
infinite completions in f will be denoted f. From now on, all completions
of K will be assumed to be contained in f. We identify K with its image in
K, so that K c K for all v e f. If Q is a completion of Q andK is a finite
algebraic extension of Q, then v divides o, written vie0. Put N [K:Q],
then 1N N. In particular, if R1 is the number of real completions of
K and R2 the number of complex completions of K, then R1 - 2R2 N.
Each K has, as an additive group, a Haar measure if/ e K, one defines
the absolute value [ by (/X) [/ [ (X), where X is any measurable
subset of K with 0 < g(X) < oo. When K Q, the Iv are the ordinary
absolute value or the p-adic absolute values. In this case, we shall denote by
[ (sometimes simply [) the ordinary absolute value, and the cor-

responding completion by oo; if p e Z, p a prime, [ denotes the p-adic
absolute value and p denotes the corresponding completion. For an algebraic
number field K, the p-adic valuations are in 1-1 correspondence with the
prime ideals. Suppose (P is a prime ideal with v the corresponding valuation
If a is an algebraic integer in K, and (pr is the exact power of (P which divides
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a, then a [ (N ()--r. Conversely, 5 is the set of algebraic integers
a e K for which a I < 1. Then the Artin product formula holds" if k e K,
k 0, then IIi kl 1. Ifvisreal, then is the ordinary absolute
value, while if v is complex, then I is the square of the ordinary absolute
value. PutH 1 if v is p-adic, H 2 if v is rel, andH 4 if v is complex.
Then for any v e gt, a -t- b I, H max (I a I, b I,) for all a, beg,.

If v is p-adic, the set O {x e K x I - 1} is the ring of integers of K
it is the unique maximal compact subring of K. We assume that the Haar
measure is normalized so that ,(O) 1. If v is infinite, put O K
and choose to be ordinary Lebesgue measure if v is real, and twice ordinary
Lebesgue measure if v is complex.
Now let T be any subset of 2 which contains t. For each finite subset S

of T put A(S) II,g )< I-r_s O. Each A(S) is a locally compact
topological ring. We define the T-adele ring of K as A Us A(S); where
the union is over all finite subsets S of T. We take as a base for the open sets
of A, the open sets in each Ar(S), and then Ar becomes a locally compact
topological ring. The elements (a) e A are called T-adeles. We identify K
with a subring ofAr by identifying k e K with the T-adele (/) which has every
component equal to ./. (Note" The ring of adeles as defined in [7] is the ring
of 2-adeles, A.)
We shall use almost all to mean "all but a finite number" and (almost)

everywhere to mean "(almost) all v e T".
For any T-adele a, "a," denotes the component of a in K. If a (a,) e A/

we put ]a I a, ]. Then [a I -< 1 almost everywhere. The invertible
elements of A form a subgroup I, the group of T-ideles; if i e I, then
i I 0 everywhere and i I 1 almost everywhere. If a, b e A, we write

a

_
b if]a ]

_
]b ] everywhere, and a < b if a

_
b and [a [ < [b Iv for all

v e. We shall also use < and

_
to denote ordinary inequality. The

meaning will be clear from the context. The sets

P(i,a) {xeA" x--a_<: i}, and P’(i,a) {xeA’x- a <i},

where i e I and a e A are called paralleletopes; they form a basis for the
neighborhoods of a in Ar We define the T-integers Kr of A as

Kr= {keg. Iklv

_
1, VveT};

more generally, ifieIr, put gr(i) {keg" Ik]

_
]i],fvT}, thus

Kr Kr(1). We haveKa K, whileif T t(R), thenKr is the ring of
algebraic integers of K; Kr is a Dedekind domain, and the sets Kr(i) are
Kr-modules, which are the nonzero fractional ideals of Kr.

If a e/k, put a I IIr a I (if the product diverges, put a Ir 0);
then lab I a r:lblr ;ira >_ b, thenlalr >_ Ib]. If0 a egr, then
by Artin’s product formula a r > 1, in particular a I 1

Since Ar is a locally compact group it has a Haar measure . Suppose
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X is a meusurable subset ofK withX O ulmost everywhere. We assume
that is normalized so that r(ii x) II ((x)). Then

{x A" x < a} C[a
where C 2+ does not depend upon Y. Let , , be an
integral basis for the ring of algebraic integers of K. Put

D {aeA’a ,-u,0 u < 1};

then D D X O, where the product is over the p-adic completions
v e T, is a fundamental domain for A/Kr; D has compact closure and
T T ]1/2(D) ]d where d is the discriminant of the field K. (By ’funda-

mental domain", we ulways mean a fundamental domain of A/Kr.)
From now on, whenever convenient and no confusion will result, we will

omit the subscript K and write Ar, It, instead of A , etc.
If p e Z, the ring of ordinary integers, is a prime and a is an element of Q,

then a can be written in the form a -0 a p where the a e Z, and
-10 a g p 1. Definers(a) -oa Ifvis valuationofK

which divides the p-adic valuation of Q, and a eKe, we define A(a)
f(tr(a)), where the trace is that of K/Q. If v e and a e K, we define
(a) -tr(a) where the trace is that of K/R. Then if a e Ar,

x(a) exp (2i ,r A(a))

is a character of the additive group of At; every character x of Ar is of the
Ar" Aform x(a) x(ba) for some b e Thus is self-dual.

AT" DT ;it isPut Dr {a e x(ab) 1, Wb e Kr} is the annihilator of Kr

a fractional ideal of Kr and if T , is the inverse different of K.
Finally, we note that Kr is a discrete subset of Ar and that Ar/Kr is

compact.
We will denote by H the T-idele with components H, defined earlier.

Since R + 2R N, ]H[r Hr ]H ] 2"’4 2.
2. Mi.kowski’s theorem

If G is locally compact Abelian group, with Haar measure
discrete subgroup with G/H compact, then induces a measure ’ on the
factor group G/H by ’(X/H) (X) where X is any measurable subset of
G which does not contain two points whose difference lies in H. Since G/H is
compact, ’(G/H) is finite. If X is a measurable subset of G and
(X) > ’(X/H), then the map X X/H cannot be bijective. Minkowski’s
theorem asserts that any such set X must contain two points whose difference
lies in H. We shll upply this to the case where G (At) und H (Kr);
we tuke the product measure (r) on (At). The measure of (Ar)/(Kr)
is clearly ]d
The following theorem is the adele version of Minkowski’s theorem on linear
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forms. Special cases of it with the constants not specified may be found in
[9] and [10].

THEOREM 2.1. Let L(x) "*=1 ax i 1, 2, m be m linear forms
with coejcients aj e Suppose b b, b are T-ideles satisfying

H, [b > d [/(2/) det (a)[.
Then there exists k (, k, ) (K), O, with L() < b,
i= 1, 2, ,m.

Proof. Put b b/H. (The T-idele H is defined in Section 1.) Let S be
the open subset of (Av) defined by the conditions L(x) (b,
i 1,2,...,m. Then

(r)(S) CHb / det (a)
(/2)"H [b [/ det (a)[

> d I/.
Thus, there existx, yeSwith0 x- y ke(Kr). Then

L(k)[ H, max (] L(x)], ]L(y)])

H[b’ [b,

with the second inequality strict when v is infinite. Thus L(k) < b.

COROhRY 2.2. Let L(x) ax, i 1, 2,..., m be m linear

forms with coecients a e Suppose b b b are T-ideles satisfying

then there exists k e (Kr), k O, with Ll.(k) b, and L(k) < b,
i 2,3,...,m.
A T-adele a is algebraic if it satisfies a not-identically-zero polynomial

equation with coefficients in Kr. The T-height Hr of two T-adeles x and y is
defined as Hr(x, y) H,r max (] x , y [). The homogeneous version of
Roth’s theorem asserts that if T is finite, if is a reM number > 1, if c is a
positive reM number, and if a and are Mgebric T-adeles with not both a
und 0 for uny v e T, then the solutions x, y e Kr to

(1) 0 < lax + fly ] c(gr(x, y)

have bounded height; hence only finitely many ratios x/y occur. This form
of Roth’s theorem may be obtained from the version in [8].
We wish to show that this result is best possible, with respect to , in a

rather strong sense. Namely, that when X 1, there exist solutions x, y e K r

to (1) with arbitrarily large height Hr(x, y), and that one can distribute the
value of r [ax + y [ among the various factors ]ax + y ] in a pre-
assigned fashion.
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THEOREM 2.3. Assume T is finite and let v v T, be positive real numbers
satisfying vr kv 1. Let a and be T-adeles, such that for any v e T, no
both av and v O. (i.e., Hr(a, ) 0). Let c be a T-idele with

T gTc > d 1(2/’)RHr(a, ) Then there exist x, y e which satisfy

(2) lax + Y Iv <_ c [ Hr(x, y)-X"

for all v T, with Hr(x, y) arbitrarily large.

We first prove

LEMMA 2.4. Let Pv, v T, be real numbers > 1, and a real number >0.
There exist arbitrarily large real numbers M and integers rve Z, v e T, such that

(3) (1 e)Mx _< P _< (1 + e)Mx

for all p-adic v T.

Proof. Taking logarithms, we see that (3) is equivalent to requiring that
(kv/log Pv)log M be close to an integer for each p-adic v e T. But, if
M exp (M’), M’ e Z, this is the same as requiring M’(v/log Pv) be close
to an integer. This is possible, for arbitrarily large M’ (even with M e Z)
by the classical form of Minkowski’s theorem on linear forms (Theorem 2.1
in the caseK Q,T {}).

Proof of Theorem 2.3. By replacing a and by aa and/a, if necessary,
where a is an appropriately chosen T-idele, we may assume, without loss of
generality, that max ([ a [, I Iv) 1, for each v e T; then Hr(a, ) 1.
Choosea T-idelec’suchthatc’ < cand c’l r > dl(2/)R. Lete’ >0
satisfy

supper [(1 -t- e)t(1 s’)’]x/(1 ) 1

where is the cardinality of T, and n R + R the number of infinite com-
pletions of K. Clearly, e’ -- 0 as e -- 0. If v is p-adic, the possible values of

Iv are rational numbers of the form P or 0, where Pv is a power of a prime
p e Z and m e Z. By Lemma 2.4, there exists a T-idele i such that

(1 t)Mx" _< ]i]v _< (1 + t)Mx"

for all p-adic v e T, and i [v (1 t’)Mx for all infinite v e T, where M
can be chosen arbitrarily large. Define T-adeles and by , 1 and v 0
when a Iv _< I Iv, otherwise ’v 0 and v 1. The linear inequalities

(4) ax -- y <_ i-lc’, "X + y <_ i

have determinant 1; hence by the choice of c’ and Corollary 2.2, there exist
KTx, ye satisfying (4). Let ve T be infinite. Suppose 1, so that

a/lv_< landv 0. Then xl_< Iilv-< (1-s’)M. By the triangle
inequality,
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when v is real, or
y I," < Ix/ I,’ / I%’/ I’

when v is complex (since in this case I is the square of the ordinary
solute value on C). In either case, since i-lc’/ I, - 0 as M , we have

y Iv (1 + ) ax/ (1 + )(1 e’)Mx

for sufficiently large M. By the same argument when 7 0, we obtain

max (I x I, ]y ]) (1 + )(1 e’)Mx.
When v is p-adic, a similar argument shows that max (I x I, y [)
(1 )Mx. Combining these results, we obtain

Hr(z, y) (1 + e)t(1 ’)M.
If v e T is p-adic,

Ix + y I Iv’ I/((1 )Mx’)

(1 )H(, y)

c I H(z, Y)-.
Similarly, if v e T is infinite,

I + y I c’ I/(( ’)M)

< It’ I (( + )’( ’)")
(1- )(- ’)H(,

I I H(=, Y)-*
if is sufficiently sm11. If a nd re linearly independent over Kr, then
infinitely mny rtios x/y must occur, since there re solutions x, y to (4)
with Cc’ rbitrrily smll; hence Hr(, y) is unbounded [8]. If a nd
re linearly dependent over Kr, the entire result is trivia].

I x (x, x, ..., z,)(A*)", put H*(x) ,mx,(I
Theorem 2.3 cn be generalized to m forms in n vrib]es, where m < n"

TEOM 2.5. Suppose m < n are positive integers. Assume T is finite,
and le X v e T, be positive real numbers satisfying X n/ 1. Let

H (a) O. Thena, i 1, 2, m, j 1, 2, n be T-adeles ih
(hee eiss a T-idele c (no( depending on $he a) uch tha if c, c, ..., c

x <x, x, ..., x) <K> o a, x I c, I H*<x>-,
for all v e T and i 1, 2, ..., m, have unbounded height.

We omit the proof, since it is straightforward generalization of the proof
of Theorem 2.3.
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The following results will be used later.

LEMMA 2.6. There exists a real constant c depending only on the field K,
ATsuch that every set of the form P(j, a) {x x a

_
j}, where a .is a

T-adele and j is a T-idele with J r >- c, contains a fundamental domain of
A/Kr.

Proof. Since any translate of a fundamental domain is a fundamental
domain, we may assume that a 0. Let i be a T-idele such that P(i, O)
contains Dr the fundamental domain defined in Section 1 Put

c d 11/(2/)R1 i It.
Then, if j is u T-idele with ]j [r c, there exists, by Corollary 2.2, k e Kr,
k 0, such that i g j. Then kDr kP(i, O) P(j, 0). U xeAr

DT x/ h KTlet y e be such that y e y exists since Dr is a fundamental
domain. Then ky e P (j, 0) and ky x kh e Kr, so that ky is a representa-
tive of x in P(j, 0). It follows that the image of P(j, 0) in Ar/Kr is all of
Ar/Kr. Hence P(j, 0) containsa fundamental domain.

gTIfiIr,putMr(i) {e i}

LEMMA 2.7. The cardinality of Mr(i) satisfies
Mr(i) C] i ]r/[ d / + 0(( i Ir)-/s),

as i [r , where C is defined in Section 1.

Proof. It clearly suffices to prove this lemma when T . In this case
it is a restatement of Theorem 1 of [7, p. 70].

LEMMA 2.8. There exists a constant c, depending only on the field K, such
that for all i e Ir

Mr(i) 1 ci
Proof. This is n immediate consequence of Lemm 2.7, when one ob-

serves that when i [r < 1, the only element of Mr(i) is 0.

LEMMA 2.9. For any real > 0 there exists a real positive constant c such
that ff i is any T-idele with i [r , then Mr(i)

Proof. Clear.

3. Kronecker’s theorem
Suppose 01,0, O are real numbers, linearly independent from 1 over

Q. Let a, a, ..., a be arbitrary real numbers. Kronecker’s theorem
asserts that for every real > O, there exists an integer ra and integers
rl, r, r such that

i= 1,2, .-.,n.

The following generalization is proved in [2].
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THEOREM 3.1. Let Li(x) 1ai x i 1, 2, n be n linear forms
with real coecients. Let al, a, a,, be real numbers.

Then the following conditions are equivalent:
A. If c c. c, are integers such that ’1 c L(x) has integral coe-

cients, when considered as a linear form in xl, x, x, then n1 C
is an integer.

B. For every s > O, there exist integers b, b., ..., b, and integers
r r r, such that if b (b b2 b,) then Li(b) a ri < ,
i- 1,2, ,n.

It is immediately clear that B implies A, and that the implication A im-
plies B contains the above-mentioned Kronecker’s theorem as a special case.

In this section we prove a similar theorem where the a. will be T-adeles.
A corollary of this theorem in the special case K Q, T oo will reduce to
Theorem 3.1. This same corollary, when specialized to the case K Q,
T {oo, p}, where p is a prime in Z, reduces to the form of Kronecker’s
theorem given in [9]. We also obtain some standard approximation theorems
of algebraic number theory as corollaries, and a standard theorem on solu-
tions of linear diophantine equations. The proof of the theorem is related
to some theorems of Hewitt and Zuckerman [5, p. 431, Th. 26.15].

THEOREM 3.2. Let L(x) ax i 1, 2, n be n linear forms
with coeicients a e Ar. Let a , a be T-adeles. Then the following
cditions are equivalent.

A. U o, c2 c are T-adeles such that c L(x) has coeciens in
gT.Kr, when considered as a linear form in x, x, x, then c e

B. For every T-idele , here exists b (b, b2, b) e (Kr) such that
L(b) < , i 1,2, n.

Theorem 3.2, when specialized to the case K Q, T {o}, leads to a
generalization of Theorem 3.1, not involving approximation "mod 1".
We first prove

LEMMA 3.3. Let a, a, and L(x) be as in the statement of Theorem 3.2.
The following conditions are equivalent:

A. If el, c2, ..., c, are T-adeles such that - c L(x) has coeigicients
Iroin Kr, when considered as a linear form in x x x then c a

A’. If c, c, ..., c, are T-adeles such that -cL(x) has coecients
in Dr (Dr is defined in Section 1 ), when considered as a linear form in x x

x, then " Dr.i=l Ci i

Proof. Suppose condition A is satisfied, and ".. ci L(x) has coefficients
in Dr Let beK be such that bDr c Kr. Then ’.’_cbL(x) has co-
efficients in Kr, hence by condition A, b ’.- c a e Kr. Denote by (Dr)-the inverse ideal of DT so that

Dr(Dr)- Kr and (Dr)- {beK:bDrCKr}.
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We have just shown that (Dr)-II c a C Kr; but then 1c as is in
DT.the ideal inverse to (Dr)-1, i.e. _- c a e The converse is proved in

the same way.

Proof of Theorem 3.2. We observe first that every character x on (At)
can be written in the form

x(u , u.) x,( u,

where (v, w., vs) e (At) [5, p. 362] (x is defined in Section 1).

S {(L(x), L.(x), ..., L,(x)) z e (gr)}.
Let x be u churacter on (At) such that x(S) {1}. Then

x(L(z), L(x) x( ci L(x)

x,(,cr=, a x)
x( , c a)z)

Put

1,

for appropriate c, cs, ..., c eAr, and for all x e (Kr)m. Then, clearly,
Dr 2, m; hence by condition A’ of Lemma 3.3,=lca.e j 1, ...,
Dr. (a as as) 1 Thus by the duality=cae Then x ",

theorem for locally compact Abelian groups, (a, as, as) is in the closure
of S. The proof that B implies A is clear.

COROLLARY 3.4. (The adele form of Theorem 3.1). Let L(x)=ax i 1, 2, n, be n linear forms with coecients a e Let
a a., as be T-adeles. The following conditions are equivalent.

KTA. U c, c, c e are such that =cL(x) has coecients in
KT.Kr, when considered as a linear form in Xl, X2, x, then c a e

B. For every T-idele , there exist

b (bl, bs, bin) e (Kr) and r, r., r, e

such that L(b) r a < , i 1, 2, n.

Proof. Put L(x) L(x) x+, i 1, 2, n, and apply Theorem
3.2 to the forms L’(x) and a, a., ..., as. If the form c L(x) has
coefficients in Kr, then the coefficient of x+m being c, we have c e Kr. It
follows that in applying Theorem 3.2, one may restrict attention to
c, c., cs e Kr. The rest of the proof is clear.

COROLLARY 3.5. (The very strong approximation theorem [11, p. 77]).
Let vo be a fixed completion in I. Let a be a T-adele and e a T-idele. Then

Kthere exists be such that lb a I - Is I for all v vo.

Proof. Letabethe T-adele with a, lifv vo, anda, 0. Let a’
be the T-adele with a, a, ifv v0, anda, 0. Ifcisa T-adelesuch
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that caeKr, then, since (ca) 0, ca 0;hencec 0ifv v0. Thus
ca’ O. Now apply Theorem 3.2 to the linear form ax.

COROLLARY 3.6 [1, p. 100]. Let lax o,i 1, 2, ...,nben
consistent linear equations with coecients a and constant terms a e Kr.
The necessary and sucient condition that these equations should have a solution
x, x, ..., x eKr is that they have a solution x, x, ..., x e O for all
v T (0 is defined in Secti 1).

Proof. Since the equations are consistent, they have a solution y, y,.., yeK. If c, c, ..., c are T-adeles such that %cax
has coefficients in Kr, then

il Ci ai 1YlCa e g.

Now if v t T, let x, x, ..., x be a solution of the given equations in
O. Then

ica [ lxica 1;

gT.hence =c a e By Theorem 3.2, for every T-idele e, there exists
gTx, x, xe such that =ax a < e. But if e]r < 1,

then since i ai x1 a e Kr, we huve a x a, i 1, 2, n.
The following lemma will be used in Section 4.

LEMMA 3.7. Let O be a T-adele satisfying O e K. Then for any T-idele e,
there exists a T-idele m, such that for any T-adele b, the inequality

xO+y-b<e

has a solution x, y e Kr, with x m.
Proof. By Corollary 3.4, the range of xO + y (x, y

We may assume without loss of generality that b e Dr, (Dr is the fundamental
domain for Ar/Kr defined in Section 1). The lemmu now follows from the
compactness of Ar/Kr. . 0niform distribution

Letf be a function with domain Kr and range At; f is uniformly distributed if

(1) [(f(Mr(J) + Kr) n P(e, a)] ,rP(e, a)
Mr(j)

as j (here, und throughout this section, j runs through T-ideles and the
limit is to be tuken in the sense of nets under the direction induced by ),
where a is any T-ndele, e any T-idele, Mr(j) is defined in Section 2, and
as usuul, indicates crdinality. By Lemm 2.7, (1) is the same as

(2) [f(Mr(j) + gr) n P(e, a)]/[ j {r go[ e r,
where d0 (2"+’’)/] d ]. By a step function, we mean finite linear
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combination (with complex coefficients) of characteristic functions of sets
of the form P(e, a). Then the function f is uniformly distributed, if and
only if, for all step functions s,

(3) lim ( s(l -ff f(a) ))/ Mr(j) ---. fa s d/I d z
jo keKT a_j T

KTwhere the inner sum is over those a e satisfying a _< j. It is easy to verify
that the step functions are dense (in the uniform norm) in the complex-
valued continuous functions on Ar which have compact support. Since, Ar,
as a topological space is normal, the characteristic function of a set of the
form P(e, a) can be bounded from above and below by continuous functions
with compact support, with the property that the integral over Ar of their
difference can be made arbitrarily small. It follows that f is uniformly dis-
tributed if and only if (3) holds for all continuous functions s on Ar with
compact support.
We say a complex-valued function g on AT is periodic (mod Kr) if

g(x 4- k) g(x) for all/c e Kr and x e Ar. If s is a complex-valued con-
tinuous function with compact support, then

(4) (x) (x + )
is continuous and periodic (rood Kr). Then (3) becomes

(5) lim g(f(a))/M(j) ---, I d/i d

Krwhere the summation is over those a e satisfying a _< j. If g is a complex-
valued continuous function which is periodic mod Kr, then g can be written
in the form (4) where s is continuous and has compact support (Proof: Let h
be a non-negative continuous function with compact support which strictly
includes Dr. Put s(x) h(x)g(x)/,r h(t - x)); it follows that f
is uniformly distributed if and only if (5) holds for all complex-valued con-
tinuous functions, periodic (mod Kr). Since the linear combinations of the
characters of Ar which equal 1 on Kr are dense (in the uniform norm) in
the space of continuous functions on Ar which are periodic (rood Kr), f
is uniformly distributed if and only if (5) holds for every g of the form g x
a character on Ar equal to 1 on Kr. If x is the principal character (i.e.
x(Ar) {1} then (5) holds trivially. Since every churcter x which equals
1 on Kris of the form x(x) x(bx) withbeDr, where x and Dr are
defined in Section 1, and since any non-principal character x with x(Kr) 1}
satisfies f.r x(a)d(a) 0, we obtain the analogue of Weyl’s classical
criterion for uniform distribution"

THEOnEM 4.1. The function f is uniformly distributed (rood Kr) if and
ly if, for every non-zero b Dr,
(6) lim., (, x(bf(a) )/I j [r 0
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where the summation is over those a Kr satisfying a

_
j.

By an irrational T-adele O, we mean a T-adele 0 K. If i and j are two
T-ideles we shall let i @ j denote a T-idele satisfying

(ij)v =[’max(lilv,ljlv) whenvisp-adic

1 [i lvl+.. J I
[/)

when v is real
(! i + J when v is complex.

Ifa, beAranda_ i,b gj, thena+ b_ ij. Further for any T-idele
j, mr(i j)/mr(i) --+ 1 as i - oo, where mr(i) Mr(i).

THEOREM 4.2. If 0 is an irrational T-adele, then the function f(]) kO
is uniformly distributed.

Proof. Rather than estimate the sums (6), we proceed directly, For
T-ideles i and j, and a e Ar, put

Fj(i, a) (OMr(j) - Kr) n P(i, a).
It is easy to verify that

f)r Fj(i, a) dr(a) Mr(j)trP(i, a).(7)

For any T-idele e, there exists by Lemma 3.7, au idele m such that for any
b e the inequality

has a solution k, q e Kr, with k _< m.
From this we obtain

(8) F+,(i e, a) >_ F(i, b),

for any T-adeles a and b. In fact suppose

r, seKr, r_j and rO-q-seP(i,a),

gr
so that r0 -k s a < i. Take k, q e such that/ _< m and k0 -F q -F a-
b _< e; then

(k W r)O q- (q W s) b

_
i $ e and k q- r _j S m.

Integrating both sides of (8) over Dr with respect to a, we obtain, by use of
(7)

Mr(j - m)#rP(i e, a) >_ F(i, b)l d 11/,
or

F(i,b) < Mr(j m) rP(i e,a)
% Mr(j) % Mr(j) d

Letting j -- oo, and then e --+ 0, we obtain

lim sup._ (F(i, b)/ Mr(j)) <_ trP(i, a)/I d /

rp .(i, b)/I d
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Similarly, by integrating the right side of (8) with respect to b; then letting
j -- , and then e -- 0, we obtain the opposite inequality with "lim sup"
replaced by "lim inf". Hence

lim. F(i, b)/ Mr(j) rP(i, b)/i d Ili;
but this is the definition of uniform distribution.

COROLLARY 4.3. For any irrational T-idele 0 and any nonzero b e Dr,
lim(a xl(abO)/[ j [r) 0,

where the summation is over those a e satisfying a

_
j.

THEOREM 4.4. Let f(q) be a function from KT to AT. If for each non-zero
h e Kr, the function g(q) f(q + h) f(q) is uniformly distributed, then
f is uniformly distributed.

We first prove (following [2, p. 71, Lemma 3])

LEMMA 4.5. Let u be a complex-valued function with domain Kr. Then
for T-ideles Q and R we have

mr(R)
(9)

where the summations are over h, q e Kr; in the next to last sum, 0 h

_
R R;

and in the last sum q

_
Q and q + h

_
Q; A (R, h) is the (finite) number of

solutions to r s h with r, s

_
R, r, s e Kr; mr (R) Mr(R).

Proof. We may assume that u(q) 0 if q P(Q, 0). Throughout this
proof all summation indices will run through specified subsets of Kr. Then

Tm (R)< u(q) <<u(p r).
By the Schwarz inequality,

(10) mr(R)l q< u(q)

_
mr(Q R) u(p r)(p s),

where the last sum is over p, r, s satisfying p

_
Q @ R, r

_
R, s

_
R. Now

any non-zero term of the form [u(q) appears in the last sum of (10) pre-
cisely Mr(R) times, namely whenq p r p s. For givenqand
h, terms of the form u(q)(q - h) or (q)u(q + h) can only be non-zero
when both q

_
Q and q + h

_
Q; then each such term occurs once for each

solution of q p r, q + h p s; hence once for each solution of r s h
withr_ R,s_ R. Thus (10) is

mr(R)[ ,q u(q)l <_ mr(Q @ R)[_,q

+

_
A(R, h) _,q (u(q)Z(q + h) -t- a(q)u(q -t- h))],

where the next to last sum is over non-zero h

_
R @ R and the last sum is

over q satisfying q

_
Q, q -t- h

_
Q. Taking absolute values in the last sum

on the right completes the proof.
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Proof of Theorem 4.4. Let b be a non-zero element of Dr and put
u(q) xl(bf(q) ). For each h e K, (f(q + h) f(q) is uniformly dis-
tributed. Hence by Theorem 4.1

_,q<x(b(f(q -[- h) f(q))) .,q<u(q)Z(q + h) O( Q

sQ .
Since Q h r/] Q r 1 as Q , we have

qu(q + h)a(q) 0( Q ),
where the sum is over q satisfying q Q, q h Q. We now fix a T-adele R
and apply Lemma 4.5. Since [u(q) 1 and A(R, h) Mr(R), we obtain

u(q) 

mr(Q R)mr(R)[mr(Q) + mr(R R).o(I Q

Dividing by mr(R)mr(Q), we obtain, as Q ,
Iu I/(l Q ) c/mr(R) W o(1)

where c is a constant independent of R and Q. Since R is arbitrary,

u(q)l Q

as Q . By Theorem 4.1, the function f(q) is uniformly distributed.

THEOREM 4.6. Suppose f(x) =oa is a polynomial with coecients
W.a e U at least one of the coecients a with j > O, is irratial, then f(q)

is uniformly distributed.

Proof. Induction on s, the degree of f. For s 1, the theorem follows
from Theorem 4.2. Suppose now that s > 1, and the theorem has been proved.
for s 1. If a, is irrational, then for each h e Kr, f(q + h) f(q) is a poly-
nomial of degree s’ < 1 with leading coefficient irrational; hence by the in-
duction hypothesis f(q W h) f(q) is u(iformly distributed for each h e Kr.
By Theorem 4.6, so is f(q). If a is rational, then there exists > 0 such that

gT
a is irrational and a+, a+, a, are rational. Let n e be such that
na+,..., na are in Kr. It clearly suffices to show that the functions

gT"f(nq + m) are uniformly distributed for each m e But f(nq W m) when
written us polynomiM in q, differs only by an element of Kr from a poly-
nomial of degree whose leading coefficieat is irrationM. Hence by the in-
ductive hypothesis f(nq W m) is uniformly distributed.

5. Metrical theory

If a and b are real numbers, we say that a < b (mod 1 if there exists m e Z
such that [a- ml < b. Lets1, e2, e3,"" be a sequence of positive real
numbers. A classical theorem of Khintchine [2] asserts that the inequalities
nO a < e (mod 1) for n 1, 2, 3, have infinitely many solutions



692 DAVID G. CANTOR

for almost all pairs (t, a)e if and only if .-1 e diverges. Another
theorem of Khintchine asserts that if the e are monotically decreasing, then
the inequalities nO < v. (rood 1 have infinitely many solutions for almost all
0 if and only if -1 diverges. The purpose of this section is to prove the
analogous theorems for T-adeles, (at least when T 2); see Theorems 5.6,
5.7, 5.12.

If a and b are T-adeles, we say that a < b (rood KT) if there exists m e KT

such that a m < b. Throughout this section, o, c, ca, will denote
real positive constants, which in every case can be evaluated, but the exact
values are irrelevant for our purposes. We note here that all sets of T-adeles
referred to in this section are obviously measurable.

LEMMA 5.1. Let i be a T-idele; let a be a T-adele satisfying a T < 2-N; and
let 0 be an element of KT. Put

S {SeAT’ <_ i and 0 <_ a(modKT)}.

Then there exist positive real numbers dl and d not depending on k or a such that

(1) 41 a] T _< T(S)

Proof. For each q e KT, put
Sq {Be "8_< i and kO- q <_ a}.

We first show that the Sq are pairwise disjoint. In fact, suppose that
0eSq n Sq,, with q q’. Then k0- q _< a and kO- q’ <_ a. Hence
q--q’l--HlalforallveT. Then]-X,TIq--q’[_<2NI ai T<l,hence

q q’ O. Thus(S) q(Sq). If0eSq, then for each veT, we
have 0- q/tc l <- a/ki, and O l _< [il. Hence

(2) q/k ]

_
H, max

Then Sq is empty if q .does not satisfy (2) for all v T. Suppose q satisfies
(2). For each v e T, put

Then Sq II s and T(Sq) II #(sq) If v is p-adic, an easy computa-
tion shows that

,(S) min (i i I a/k I);
while if v is infinite, then

and if q satisfies

(3)

then

t(S)

_
8 rain (I i I, la/k l),

max (I i [, [a/] I),



DIOPHANTINE APPROXIMATION OER ADELE RINGS I 3

Combining these results, we see that if q satisfies (2) for all v e T, then

r(S) <- 8 II min

if in addition q satisfies (3) for all v e 2,, then

r(Sq) >- 2- I min

By Lemma 2.7, there exists real constants c, c > 0 such that the number of
Krq e satisfying (2) for all v e T is less than

c I-I, max
Krwhile the number of q e satisfying (3) for all v e T is greater than

c II max (I i] I,, a I).
Thus

r(S) - 8c, I’I min (] i I a/k I) max

Similarly r(S) >_ 2-c i ]rla r.
LEMMA 5.2. Let a be a T-adele with a r < 2-, and let 0 be in Kr.

Put S { e DT" kO

_
a(mod Kr)}. Then there exist positive constants c

and c not depending on a or t such that

Proof. Clearly r(S) is independent of the choice of fundamental domain
Dr. Since there exist sets of the form P(i, 0) which include a fundamental
domain and others which are included in a fundamental domain, this lemma is
an immediate consequence of Lemma 5.1.

Fora, x Ar, putrid(x) 1 if x _< a (mod Kr), otherwise t,(x) 0. Then
if k Kr, ] 0, and if a r < 2-, we have by Lemma 5.2

c a r <_ f)r (kx) dr(x)

Since any translate Dr
a, a e Ar, of a fundamental domain is a fundamental

domain, we obtain"

LEMMA 5.3. /f a, a e Ar, k e Kr, k 0, and a r < 2-, then

]r <_ f)r (kxel

LEMM 5.4. There exist real positive constants c, c such that if a, b
p, q e and p q, then

c lab r

_
ff (pO + a)a(qO

while if p q, then

ca a r

_
ff (pO + a) dr(0)
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Dr Dr.where both integrals are over 0, a) X

Proof. The inequalities for the second integral follow from Lemma 5.3 by
integrating first with respect to 0. By substituting s q p,
the first integral is transformed into

ff /

where the integral is still over Dr Dr. Integrating first with respect to
then with respect to a’, by applying Lemma 5.3 completes the proof.

LEMMA 5.5. Suppose there exists a completion Vo T (i.e. T ), and that
E is a measurable subset of (At) with (/ff)(E) > 0, where

T() " X X X

he product measure on (At)’. Then almost all points of (At) are contained
in Kr.E + (Kr)m.

Proof. Sets of the form (P(i, b) )’, i Ir, b Ar, form a neighborhood basis
for (At). By the density theorem for Haar measures on locally compact
groups [3], there exists, for any real positive , a set of the form (P(i, b))’
such that i r < 1 and

(r)[(p(i, b)) n E] > (1 S)(tr)m(P(i, b)).

Since T , there exists q e Kr with q ]r > 1. Let be the least non-
negative integer such that at] i r > c, where c is the constant of Lemma 2.6.
Call Ft (P(iq, bq))’. Then

(gr)[Ft n qtE] > (1 ) (ttr)’’Ft.
But by Lemma 2.6, Ft contains a fundamental domain G of (Ar)m/(Kr).
Then

(r)’(qE n G) > (tr)G

Now, (tr)mFt is bounded, (since i r is bounded) say by M. Translating
qtE by (Kr) we see that

(r),( (arE + (gr)) n (Dr)m) > (r),( (Dr),) M.

Since is arbitrary, the proof is complete. We do not know if Lemma 5.5
remains true when the hypothesis T is omitted.

THEOnEM 5.6. Suppose, for each q Kr, we are given a T-adele sq such that
q,Kr r < . Then, for each a Ar, and for almost all 0 Ar, there exist

Konly finitely many solutions q to

(4) qO- a <_ e (modKr).

Proof. Without loss of generality, assume that eq ]r < 2- for all q e Kr.
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By Lemma 5.2, for fixed q and a, the set of 0 e Dr satisfying (4) has measure
at most c=l el r. Assume now that a is fixed. Then if L is a finite subset of
Kr, the set of 0 e Dr for which (4) has a solution q e L has measure at most
c,. , e r. Thus, the set of e Dr for which (4) has infinitely many
solutions has measure at most infL c= L q r 0.

THEOREM 5.7. Suppose that T , and that for q Kr, we are given a
T-adele sq Then there exists, for almost all (0, a) X A, infinitely many
solutions to qO a <_ q (mod K) if and only if q lea r .

Proof. If qleq r < , the theorem follows immediately from Theorem
5.6. Hence assume that q vq r . For any T-idele h, let zXh(O, a) be
the number of q KT, q O, satisfying q0 a _< q and q _< h. Put

Ml(h) ff Ah(0, a) dgr(0) dgr(a)

M(h) jj d,r(0) d#r(a),

where both integrals are over Dr X Dr. For x e/kr, put q(x) 1 if x eq
otherwise q(x) O. Then k(0, a) q< q(qO a). Hence

Mt(h) [f sq(qO a) dr(a).
qh dd

By Lemma 5.4, Mt(h) ca eq it. Similarly,

M=(h)
h

hence, by Lemmu 5.4,

i (h) g +
Since q[q ]T , there exists a rel, positive constant c, such that

M(h) c M(h) for all large h (say, for all h 1 ). By a lemma of Paley-
Zygmund [2, p. 122], the set of 0 for which (0, a) (c/2)M(h) has meas-
ure at least (c/4)(r(D)). Since A(0, a) increases as h increases (in the
sense of ) there is a set S Dr X Dr of positive measure for which
(0, a) as h , whenever (0, a) e S. Now let rq be T-idele for
each q e Kr, such that q[q Tq ]T and such that for every T-idele i,
there exists a T-idele j such that if q P(j, 0), then rq i (roughly speuking
rq 0 as q ). It is easy to construct such rq. Bywhat we have
already proved, there exists a set S Dr X Dr of positive measure such that
the inequalities qO a rq q (modKr) huve infinitdy many solutions
Krq e whenever (0, a) e S. By Lemmu 5.5, lmost all points of (At) can

be written in the form (x0 + y, xa + z) where x, y, z e Kr and (0, a) e S. For
any such point there are infinitely many q e Kr such that

qO a

_
’q eq (modKr);
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hence
q(xO + y) (xa + z) <_ eq (rood Kr).

Since rq x _< 1 with only finitely many exceptions (by the choice of rq), the in-
equality

q(xO + y) (xa + z) <_ (modKr)
has infinitely many solutions.

KToLet ql, q., q3, be a sequence of non-zero elements e We shall call
such a sequence regular if there exists a T-idele jl and finite subsets of
K, V, V2, V3, with cardinalities v, v,

R1.

R2.
R3.

R4.

R5.

satisfying the following"

qV CKr,forn- 1,2,3,....

V P(j, 0), for n 1, 2, 3, ....
The V. are pairwise disjoint.

(1/q) <_ jl for all n for which v 0.

There exists a real positive constant c such that

for all sufficiently large positive integers m.

If a, b e Z, then as usual (a, b) denotes the greatest common divisor of a
and b.

LEMMA 5.8. Suppose T is finite and k is a fixed positive integer; then the
sequence q n is regular.

Proof. Let P be the product of those primes p for which P Iv < 1 for
some v e T. Let , ., be an integral basis for the ring of algebraic
integers of K. If (n, P) 1, let V.. be the set of those x e K which can be
written in the form x (__x)/n where xZ (x, P) 1 and
1 _< x _< n. If (n, P) 1, let V be the empty set. Then, clearly R1-4
are satisfied with jl 1. We now prove R5. Put e(n) (n) if
(n, P) 1, otherwise put (n) 0 ((n) is the Euler Totient). As
In1r _< n,wehave

(l/m) ’2-- vll q, :> (lim) ’2- (e(n)ln)
>

by Holder’s inequality. Since e(n) n-.(n), it is enough to show the
existence of a positive constant c such that

s, (l/m)

_
qe(n)/n >_ c.

But s >_ t (l/m) ... @(n)/n where indicates summation over n
congruent to 1 modulo P. Now (n) n il(d)/d where I is the
Moebius function. As there are m/(Pd) -{- 0(1 multiples of d between i and
m which are congruent to 1 modulo P, we have
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t (l/m) --1 (m/(Pd) + O(1))u(d)/d

(l/P) -1 u(d)/d + O((1/m) Z,I l/d)-- 6/(Pr) s m [4, p. 250, Th. 287].

LEMMA 5.9. Suppose k e Z, 2 and k 1 for all v e T. Then q, k
is a regular sequence.

Proof. Let V, be the set of those x e K which cn be written in the form
x (x )/k", where ech x is n integer relatively prime to k nd
1 x k". As in Lemm 5.8, RI re esily verified with j 1. Now
v ((k)) and r , since k 1 at all p-adic v T. Hence,

(l/m)

_
v./I q (l/m)

_
((k")lk")

> 0,

since (k) k-(k) hence R5 is satisfied.

REMARK 5.10. We list some other regular sequences, leaving the proof to the
react. We make the blanket restrictis that any element q, in any of the follow-
ing sequences shall satisfy q, ] 1 for all p-adic v e T, and that the elements in
the sequence shall be distinct:

Any infinite sequence of distinct primes p Z.
(b) Let r be a fixed positive integer. Any sequence, every element of which

has at most r distinct prime factors (this generalizes Lemma 5.9).
c For a fixed positive integer k, the subsequence of {n} csisting of those

n where n lies in a fixed arithmetic progression (this generalizes Lemma 5.8).

REMARK 5.11. Suppose q, is a sequence of elements of K and has a subse-
quence q, which is regular. If there is a real cstant k > 0 such that n < ki
and the n are increasing then the sequence q, is regular. (One chooses V to be
the empty set if n is not of the form n .)

THEOREM 5.12. Suppose T , that q q qa is a regular sequence of
elements of Kr and that , , , is a sequence of T-ideles for which

r ]r ..., and for which there exists a T-idele j such that
j for all i. Then there exist, for almost all 0 e At, infinitely many solutis

to q (mod Kr) if and ly if e, [r .
Proof. If r < , then the theorem follows from Theorem 5.6.

Assume then that ]e. ]r , and without loss of generality that
e. ]r < 2- for all n. We may also assume that R5 holds for all m 1.
Since q is regular, we have u sequence of sets Vx, V, V, with cardinalities
v, v, ca, satisfying R1-5. Put j j (j/j) (j is defined in R1 and
R4) Then if O e satisfies p e/q, where p e V, we have j.
For e A, put B(0) 1 if 0 e/q, otherwise .() 0. Put ()
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fl(0 x) where the sum is over x e V 3’(0) is the number of x e V
satisfying 0 x <_ e,,/q, if x’e V also satisfies this inequality, then
% x q x’ e ;hence,

qx- qx’r <2r < 1 and x x’,
gT.since q x, % x’e Thus (0) is 0 or 1. For positive he Z, put

hr(0) =(0) and

Ml(h) J rh(0) dr(0), M(h) ] Fh(0) dr(O),
where the integrals are over 0 e Ar, 0 <_ j. Note that rh(0) 0 outside of
the range of integration.

h TLEMMA 5.13. There exists real cs > 0 such that M(h) > cs ’,--1 ,
Proof. We have

Hence,

by R5.

f %,(0) dgr(O) f ,(0 x) d#r(0)

LEMMA 5.14. There exists c > 0 such that if m # n, then

oO

Clearly, I,, ,: ,. (Wt), where

W:, {Oe "0 s e/q=, 0 e./q}.

Then,

(5)

We now estimatehowmany Wst are non-empty. Note that s # since by R3,
Kr s’V nd V re disjoint. Put s’ q, s, t’ q, so that s’, e nd

_
jq,

t’

_
jq, by R1 ndR2. Puta q,%(s t) q,,s’ q,t’ 0;then

a e K, moreover
a I --< mx (I q-, Iv, iq-I:)

if v T; while if v e T, then, since s t] _< H max (I s=/q= Iv, e,,/q, [) we
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hve

Thus by Lemma 2.8, the total number of distinct a which may occur is less
than

For a given value of a, we now determine an upper bound for the number of
pairs s’, t’ which satisfy a q s’ q t’. Once s’ is known, t’ is determined,
hence we need only estimate the number of s’ for which there exists t’ satis-
fying q s’ q t’ a. Suppose that q, s" q t" a. Then q(s’ s")
q:(t’ t") hence

Is’-- s"[_< min(i,]q/ql) if veT,
while

Ig- s" I <- Hljq,l if veT.

Thus by Lemma 2.9, the total number of pairs s’ s" which can occur is less
than

c Iq-I i-L (min (I q-[, q [)/I q-[)
(7)

c ]q Ilq Hmin (] q I, q

by Artin’s product formula (see Section 1). The total number of possible
values of s’ is less than

(8)
1 -t- c1 q rlq i’Ir min (] q. I, q I)

_< c q Ilq 1I, rain (I q l, q [)

since the product in (7) is bounded away from 0. Then I. is less than the
product of (5), (6), and (8). Hence

q: q= I,rain (I q I, [q= I)
c.[i (I /q I, e=/q I:)’max (1 q-e I:, q I:)]
q q= ]r++r [max

by Artin’s product formula.

LEMMA 5.15. We have M2(h) < c15 M(h).
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or
M.(h)

_
cM(h) - M(h) <_ c M(h).

LEMMA 5.16. There exists a set of positive measure in Ar on which rh(o) - ,as h-- .
Proof. By Lemma 5.15, M(h) >_ c M.(h), hence by the Paley-Zygmund

Lemma [2, p. 122], the set of where F(O) _> (c/2)M(h) has measure
>_ (c/4)rP(j, 0).

Proof of Theorem 5.12 (Concluded). Let ., n 1, 2, 3, be sequence
of T-ideles such tha r >_ r. >_ r >_ that -1 e, r [r , and that
for every T-idele i there exists an integer no such that r.

_
i if n >_ no. It is

easy to construct such sequences.
By Lemma 5.16 applied to the e. r. instead of the e,, there exists a set of

positive measure S such that the inequalities q. 0

_
s. r, have infinitely

many solutions for e S. By Lemma 5.5 almost all points of Ar can be written
Kw.in the form x0 y, with 0 e S, x, y e For any such point there are in-

finitely many solutions to q.

_
e. r,, hence to q,,(xO - y)

_
s r. x(mod Kr).

For all large n, we have r x

_
1, hence there are infinitely many solutions

to q.(xO - y)

_
e(mod Kr).
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