TWIST-SPINNING SPHERES IN SPHERES

BY
W.-C. Hsiang and B. J. Sanderson ${ }^{1}$
\section*{I. Introduction}

Let $\theta^{m, n}, n>4$, denote the group of h-cobordism classes of pairs of spheres (S^{m}, Σ^{n}), where S^{m} denotes an m-sphere with its usual structure and Σ^{n} denotes an embedded n-sphere which may have an exotic structure, [2], [9].

Our aim is to introduce an operation, which will be called twist-spinning;

$$
\phi: \theta^{m, n} \times \pi_{l}(S O(n) \times S O(m-n)) \rightarrow \theta^{m+l, n+l}
$$

When $m=n+2$, the operation is twist-spinning as defined by Artin-Zeeman [1], [12], except that we have introduced tangential twisting by elements of $\pi_{l}(S O(n))$. The operation restricted to the embedded sphere Σ^{n} of the pair (S^{m}, Σ^{n}) is equivalent to a pairing of Milnor-Munkres [5], [6] (also Novikov [7]), except that the group $\pi_{l}(S O(n-1))$ has been replaced here by $\pi_{l}(S O(n))$. Another operation may be defined by replacing $\theta^{m, n}$ by $I^{m, n}$ the group of regular homotopy classes of immersions of S^{n} in S^{m}.

In §2, the operation is described and defined. In §3 it is related to a relative version of the Milnor-Munkres-Novikov pairing;

$$
\begin{aligned}
\pi_{0}\left(\operatorname{Diff}_{C}\left(R^{m-1}, R^{n-1}\right)\right) \otimes \pi_{l}(S O(n-1) \times S O & (m-n)) \\
& \rightarrow \pi_{0}\left(\operatorname{Diff}_{c}\left(R^{m+l-1}, R^{n+l-1}\right)\right)
\end{aligned}
$$

The resulting operation on normal bundles is investigated in $\S 4$ and found to be related to the Whitehead product pairing,

$$
\pi_{n} B S O(m-n) \otimes \pi_{l+1} B S O(m-n) \rightarrow \pi_{n+l} B S O(m-n)
$$

We are grateful to E. C. Zeeman for sending us a preprint of [12].

II. Twist-spinning

Let $\left(S^{m}, \Sigma^{n}\right)$ we a pair of spheres representing an element of $\theta^{m, n}$. Let D_{+}^{m}, D_{-}^{m} denote the upper and lower hemispheres of S^{m} respectively. Then $S^{m}=D_{+}^{m}$ u D_{-}^{m}. Now the pair $\left(S^{m}, \Sigma^{n}\right)$ is diffeomorphic to

$$
\left(D_{+}^{m} \mathrm{\cup} D_{-}^{m}, D_{+}^{n} \cup \Sigma^{n}-\operatorname{Int} D_{+}^{n}\right)
$$

where D_{+}^{n} is a disc embedded in Σ^{n} and the inclusion $D_{+}^{n} \subset D_{+}^{m}$ is assumed to be standard; further we may suppose the inclusion $\Sigma^{n}-\operatorname{Int} D_{+}^{n} \subset D_{-}^{m}$ coincides with the standard inclusion $D_{-}^{n} \subset D_{-}^{m}$ near the boundary of $\Sigma^{n}-\operatorname{Int} D_{+}^{n}$.

[^0]Now consider $D_{-}^{m}\left(x_{0}\right)$ as the disc ($\left.S^{m-1}, t, x_{0}\right)$ in the join sphere

$$
S^{m+l}=S^{m-1} \circ S^{l}=S^{m-1} \times D^{l+1} \cup D^{m} \times S^{l}
$$

where x_{0} is a point of S^{l} (Fig. 1).
The standard sphere $S^{n-1}=\partial\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right)$ bounds the standard disc D_{-}^{n} in D_{-}^{m}. Let D^{m-n} be the disc normal to D_{-}^{n} in D_{-}^{m}. As the point x moves along S^{l}, the disc $D_{-}^{m}(x)=D_{-}^{n} \times D^{m-n}$ is twisted by a representative of an element $[\gamma]=(\alpha, \beta)$ of

$$
\pi_{l}(S O(n) \times S O(m-n))=\pi_{l}(S O(n)) \oplus \pi_{l}(S O(m-n))
$$

The trace of $\Sigma^{n}-\operatorname{Int} D_{+}^{n}$ is an embedded homotopy sphere Σ^{n+l} in S^{m+l}. It is not difficult to see that the resulting operation, denoted by ϕ, is well defined.

We now give a more precise description of twist-spinning. This time we begin with an immersion $f: S^{n} \rightarrow S^{m}, m>n+1$.

Let $S^{n}=D_{+}^{n} \mathbf{U}_{g} D_{-}^{n}$ and $S^{m}=D_{+}^{m} \mathbf{U}_{h} D_{-}^{m}$ and now suppose

$$
f: D_{+}^{n} \text { บ } D_{-}^{n} \rightarrow D_{+}^{m} \text { ч } D_{-}^{m}
$$

is standard on D_{+}^{n} and on a neighborhood of the boundary of D_{-}^{n}. Let

$$
\begin{aligned}
& S^{n+l}=S^{n-1} \times D^{l+1} \mathrm{u}_{1} D^{n} \times S^{l} \\
& S^{m+l}=S^{m-1} \times D^{l+1} \mathrm{u}_{1} D^{m} \times S^{l}
\end{aligned}
$$

be the standard decompositions of S^{n+l} and S^{m+l} respectively. For any element $[\gamma]=(\alpha, \beta)$ in $\pi_{l}(S O(n) \times S O(m-n))$, an immersion

$$
\phi(f, \gamma): S^{n+l} \rightarrow S^{m+l}
$$

is defined by

$$
\begin{aligned}
& S^{n+l} \quad \phi(f, \gamma) \longrightarrow S^{m+l} \\
& =S^{n-1} \times D^{l+1} \mathbf{u}_{1} D^{n} \times S^{l} \quad=S^{m-1} \times D^{l+1} \mathrm{u}_{1} D^{m} \times S^{l} \\
& \downarrow 1 \mathrm{u}\left(g^{\prime} \times 1\right)^{-1} \circ F^{-1} \quad 1 \cup\left(h^{\prime} \times 1\right)^{-1} \circ F^{-1} \downarrow \\
& \partial D_{-}^{n} \times D^{l+1} \mathbf{u}_{F \circ(g \times 1)} D_{-}^{n} \times S^{l} \xrightarrow[\text { incl u } f \times 1]{ } \partial D_{-}^{m} \times D^{l+1} \mathbf{U}_{F \circ(h+1)} D_{-}^{m} \times S^{l}
\end{aligned}
$$

Figure 1
where h^{\prime}, g^{\prime} are extensions of h, g respectively. The vertical maps are diffeomorphisms and

$$
F: D_{-}^{m} \times S^{l} \rightarrow D_{-}^{m} \times S^{l}
$$

is given by $F(x, y)=(\gamma(y) x, y)$. It is clear that the twist-spins of f, and an immersion f^{\prime} regularly homotopic to f will be regularly homotopic since assuming f^{\prime} is standard on D_{+}^{n} and on a neighborhood of ∂D_{-}^{n} we may suppose the regular homotopy takes place in the interior of D_{-}^{m} since $m>n+1$. It is also readily seen that the regular homotopy class of the twist-spun immersion is independent of the choice of representative for $[\gamma]=(\alpha, \beta)$. The corresponding description of twist-spinning h-cobordism classes of pairs (S^{m}, Σ^{n}) is simpler, since we do not need to worry about maps but only sphere pairs. As before suppose that the pair (S^{m}, Σ^{n}) is decomposed into

$$
\left(D_{+}^{m} \mathbf{U}_{h} D_{-}^{m}, D_{+}^{n} \mathbf{U}_{h}\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right)\right)
$$

where h is a diffeomorphism of $\left(\partial D_{-}^{m}, \partial\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right)\right.$) onto $\left(\partial D_{+}^{m}, \partial D_{+}^{n}\right)$. Then the twist-spin of the pair is

$$
\begin{aligned}
&\left(\partial D_{-}^{m} \times D^{l+1} \mathbf{U}_{F \circ(h \times 1)} D_{-}^{m} \times S^{l},\right. \\
&\left.\partial\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right) \times D^{l+1} \mathbf{U}_{F \circ(h \times 1)}\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right) \times S^{l}\right)
\end{aligned}
$$

which is the result of performing relative surgery on the pair

$$
\left(S^{m} \times S^{l}, \Sigma^{n} \times S^{l}\right)
$$

Now $\partial D_{-}^{n} \times D^{l+1} \mathbf{u}_{F \circ(h \times 1)} D_{-}^{m} \times S^{l}$ is diffeomorphic to S^{m+l} since h extends to a diffeomorphism of D_{-}^{m} onto itself and F extends to $D_{-}^{m} \times S^{l}$. The submanifold is homeomorphic to a sphere since Σ^{n} - Int D_{+}^{n} is homeomorphic to a disc [9] and so $h \mid \partial D_{+}^{n}$ extends to a homeomorphism of $\Sigma^{n}-$ Int D_{+}^{n} onto itself and F extends over $\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right) S^{l}$ similarly.

III. Bilinearity of twist-spinning and the operation of Milnor-Munkres

Let ϕ be the twist-spinning operation and let ϕ_{n-1} be defined by restricting the range of ϕ to $\theta^{m, n} \pi_{l}^{n-1}$, where π_{l}^{n-1} denotes the image of

$$
\pi_{l}(S O(n-1) \times S O(m-n))
$$

in

$$
\pi_{l}(S O(n) \times S O(m-n))
$$

Theorem 1. The operation ϕ is linear on the second factor and ϕ_{n-1} is bilinear.

Proof. Let $\left(S^{m}, \Sigma^{n}\right)$ be a representative of the element σ in $\theta^{m, n}$ and let

$$
\gamma_{i}: S^{l} \rightarrow S O(n) \times S O(m-n)
$$

be a representative of the element $\left[\gamma_{i}\right]=\left(\alpha_{i}, \beta_{i}\right) i=1,2$ in

$$
\pi_{l}(S O(n) \times S O(m-n))
$$

We may assume that γ_{1} is equal to the identity on the hemisphere D_{-}^{l} of S^{l} while γ_{2} is equal to the identity on D_{+}^{l}. The map
defined by

$$
\gamma: S^{l} \rightarrow S O(n) \times S O(m-n)
$$

$$
\begin{array}{llll}
\gamma=\gamma_{1} & \text { on } & D_{+}^{l} \\
\gamma=\gamma_{2} & \text { on } & D_{-}^{l}
\end{array}
$$

represents the element $[\gamma]=\left[\gamma_{1}\right]+\left[\gamma_{2}\right]$. It follows from the construction that $\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma \mid D_{+}^{l}\right)$ and $\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma \mid D_{-}^{l}\right)$ are two relative disc pairs $\left(D_{+}^{m+l}, D_{+}^{n+l}\right),\left(D_{-}^{m+l}, D_{-}^{n+l}\right)$ with common boundary $\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma \mid \partial D_{+}^{l}\right)$. Thus $\phi(\sigma, \gamma)$ is represented by (S^{m+l}, Σ^{n+l}) defined by attaching (D_{+}^{m+l}, D_{+}^{n+l}) and (D_{-}^{m+l}, D_{-}^{n+l}) along their common boundary. Consider the relative disc pairs

$$
\begin{aligned}
\left(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l}\right) & =\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma_{1} \mid D_{-}^{l}\right) \\
\left(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l}\right) & =\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma_{2} \mid D_{+}^{l}\right)
\end{aligned}
$$

Now ($\left.\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l}\right)$ and $\left(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l}\right)$ also have boundary

$$
\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma \mid \partial D_{+}^{l}\right)
$$

Joining $\left(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l}\right)$ to $\left(D_{+}^{m+l}, D_{+}^{n+l}\right)$ and $\left(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l}\right)$ to $\left(D_{-}^{m+l}, D_{-}^{n+l}\right)$ along the common boundary we have the twist-spun pairs

$$
\left(S^{m+l}, \Sigma_{1}^{n+l}\right)=\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma_{1}\right) \quad \text { and } \quad\left(S^{m+l}, \Sigma_{2}^{n+l}\right)=\phi\left(\left(S^{m}, \Sigma^{n}\right), \gamma_{2}\right)
$$

Since ($\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l}$) is obtainable from $\left(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l}\right)$ by reflection, there exists an h-cobordism between

$$
\left(D_{-}^{m+l}, D_{-}^{n+l}\right) \mathbf{u}\left(\bar{D}_{+}^{m+l}, \bar{D}_{-}^{n+l}\right) \#\left(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l}\right) \mathbf{u}\left(D_{+}^{m+l}, D_{-}^{n+l}\right)
$$

which is $\left(S^{m+l}, \Sigma_{1}\right) \#\left(S^{m+l}, \Sigma_{2}\right)$, and

$$
\left(S^{m+l}, \Sigma^{n+l}\right)=\left(D_{-}^{m+l}, D_{-}^{n+l}\right) \cup\left(D_{+}^{m+l}, D_{-}^{n+l}\right)
$$

which cancels out the interior connected sum $\left(\bar{D}_{+}^{m+l}, \bar{D}_{+}^{n+l}\right) \#\left(\bar{D}_{-}^{m+l}, \bar{D}_{-}^{n+l}\right)$. This completes the proof of linearity of ϕ on the second factor.

Now let $[\gamma]=(\alpha, \beta)$ be in the image of $\pi_{l}(S O(n-1) \times S O(m-n))$ under the standard inclusion, then

$$
\gamma: S^{l} \rightarrow S O(n-1) \times S O(m-n) \subset S O(n) \times S O(m-n)
$$

Let $\sigma_{1}, \sigma_{2} \in \theta^{m, n}$ be represented by $\left(S^{m}, \Sigma_{i}^{n}\right) i=1,2$. Without loss of generality we may assume that $\left(S^{m}, \Sigma_{1}^{n}\right)\left(\left(S^{m}, \Sigma_{2}^{n}\right)\right)$ is standard on the upper hemisphere D_{+}^{m} and the left (right) half $D_{-l}^{m}\left(D_{-r}^{m}\right)$ of the lower hemisphere D_{-}^{m} (Fig. 2).
D_{-l}^{m} and D_{-r}^{m} meet in the disc $D^{m-1}=D_{-l}^{m} \cap D_{-r}^{m}$. Since $[\gamma]$ is in the image of $\pi_{l}(S O(n-1) \times S O(m-n))$ under the standard inclusion, the trace

$$
\phi\left(\Sigma_{1}^{n} \cap D_{-r}^{m}, \gamma\right), \quad\left(\phi\left(\Sigma_{1}^{n} \cap D_{-l}^{m}, \gamma\right)\right)
$$

Figure 2
in $\phi\left(D_{-r}^{m}, \gamma\right),\left(\phi\left(D_{-l}^{m}, \gamma\right)\right)$ is a relative disc pair

$$
\left(D_{+}^{m+l}, D_{+}^{n+l}\right), \quad\left(\left(D_{-}^{m+l}, D_{-}^{n+l}\right)\right)
$$

The disc pairs $\left(D_{+}^{m+l}, D_{+}^{n+l}\right)$ and (D_{-}^{m+l}, D_{-}^{n+l}) have common boundary ($\left.\phi\left(D^{m-1}, \gamma\right), \phi\left(D^{m-1} \cap \Sigma_{i}^{n}, \gamma\right)\right)$ which is diffeomorphic to the standard pair ($\left.S^{m+l-1}, S^{n+l-1}\right)$. The element $\phi\left(\sigma_{1}+\sigma_{2}, \gamma\right)$ is represented by the twist-spun pair (S^{m+l}, Σ^{n+l}) obtained by joining $\left(D_{+}^{m+l}, D_{+}^{n+l}\right.$) and (D_{-}^{m+l}, D_{-}^{n+l}) along their common boundary. Now using arguments analogous to those used in the proof of the first half of the theorem we conclude that ϕ_{n-1} is bilinear.

Remark. One can prove similarly that ϕ is linear and ϕ_{n-1} is bilinear when $\theta^{m, n}$ is replaced by $I^{m, n}$.

The following corollary is an immediate consequence of Theorem 1.
Corollary 2. The spin of a sphere pair $\left(S^{m}, \Sigma^{n}\right)$, without twist, is h-cobordant to the standard pair and the result of twist-spinning the standard pair (S^{m}, S^{n}) by an element $[\gamma] \epsilon \pi_{l}^{n-1}$ is h-cobordant to the standard pair.

We now show that in general ϕ is non-trivial. Let $\pi_{0}\left(\operatorname{Diff}_{c}\left(R^{m-1}, R^{n-1}\right)\right)$ denote the group of path components of orientation-preserving diffeomorphisms, of the standard pair (R^{m-1}, R^{n-1}) onto itself with compact support, in the C^{∞} topology. An operation

$$
\begin{aligned}
\psi: \pi_{0} \operatorname{Diff}_{C}\left(R^{m-1}, R^{n-1}\right) \times \pi_{l}(S O(n-1) \times S O & (m-n)) \\
& \rightarrow \pi_{0} \operatorname{Diff}_{C}\left(R^{m+l-1}, R^{n+l-1}\right)
\end{aligned}
$$

is defined as follows. Let $[h] \in \pi_{0} \operatorname{Diff}_{C}\left(R^{m-1}, R^{n-1}\right)$ and let

$$
[\gamma]=(\alpha, \beta) \epsilon \pi_{l}(S O(n-1) \times S O(m-n))
$$

be represented by the map

$$
f: R^{l} \rightarrow S O(n-1) \times S O(m-n)
$$

with compact support. Let

$$
F: R^{m-1} \times R^{l} \rightarrow R^{m-1} \times R^{l}
$$

be given by $F(x, y)=(f(y) \cdot x, y)$. The operation ψ is defined by

$$
\psi([h],[\gamma])=(h \times 1)^{-1} \circ F \circ(h \times 1) \circ F^{-1}
$$

Now let $\pi_{0} \operatorname{Diff}_{c}\left(R_{+}^{m}, R_{+}^{n}\right)$ denote the abelian group of path components of orientation-preserving diffeomorphisms with compact support of the closed half space pair (R_{+}^{m}, R_{+}^{n}) onto itself. Let

$$
i_{*}: \pi_{0} \operatorname{Diff}_{c}\left(R_{+}^{m}, R_{+}^{n}\right) \rightarrow \pi_{0} \operatorname{Diff}_{c}\left(R^{m-1}, R^{n-1}\right)
$$

be induced by restriction. Let $\hat{\theta}^{m, n}$ denote the group of h-cobordism classes of pairs ($\mathbf{\Sigma}^{m}, \Sigma^{n}$).

Theorem 3. Suppose $m-n>2$ and $n>4$. Then

$$
\frac{\pi_{0} \operatorname{Diff}_{C}\left(R^{m-1}, R^{n-1}\right)}{i_{*} \pi_{0} \operatorname{Diff}_{C}\left(R_{+}^{m}, R_{+}^{n}\right)}
$$

is isomorphic to $\hat{\theta}^{m, n}$, and the operation ψ induces a pairing

$$
\hat{\psi}: \hat{\theta}^{m, n} \otimes \pi_{l}(S O(n-1) \times S O(m-n)) \rightarrow \hat{\theta}^{m+l, n+l}
$$

Proof. It follows from Corollary 3.2 of [10] that $\hat{\theta}^{m, n}$ is just the group of diffeomorphism classes of sphere pairs, if $m-n>2 n>4$, and any sphere pair is representable as a union $\left(D^{m}, D^{n}\right) \mathbf{u}\left(D^{m}, D^{n}\right)$ where $\left(D^{m}, D^{n}\right)$ denotes the standard disc pair. To see this consider an arbitrary sphere pair (Σ^{m}, Σ^{n}) as the union of two standard disc pairs and a third manifold pair. Smale's Corollary (3.2 of [10]) allows us to eliminate the manifold pair. The following theorem gives us the relation between $\hat{\psi}$ and ϕ.

Theorem 4. Suppose $m-n>2$ and $n>4$. Then

$$
\phi=\hat{\psi} \mid \theta^{m, n} \otimes \pi_{l} S O(n-1) \times S O(m-n)
$$

Proof. Consider the relative surgery description of twist-spinning given in §1. Since F is defined on $D_{-}^{m} \times S^{l}$ and $h \times 1$ is defined on $\partial D_{-}^{m} \times D^{l+1}$ the twist-spin is diffeomorphic, and hence h-cobordant, to the pair

$$
\begin{aligned}
& \left(\partial D_{-}^{m} \times D^{l+1} \mathbf{U}_{(h+1)^{-1} \circ F_{\circ}(h+1) \circ F^{-1}} D_{-}^{m} \times S^{l},\right. \\
& \left.\left.\quad \partial\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right) \times D^{l+1} \mathbf{U}_{(h+1)^{-1 \circ F \circ(h+1) \circ F^{-1}}}\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right) \times S^{l}\right)\right)
\end{aligned}
$$

But now $(h+1)^{-1} \circ F \circ(h+1) \circ F^{-1} \mid \partial D_{-}^{m} \times S^{l}=1$ and the result follows from the isomorphism of Theorem 3.

When $m=n, \hat{\psi}$ reduces to the operation used for investigating Diff S^{m-1}, of Milnor [5], Munkres [6] and Novikov [7]. From Theorem 4 and examples given in their work we deduce the non-triviality of ϕ. The following corollary is an immediate consequence of Theorem 4.

Corollary 5. Suppose the Milnor-Munkres-Novikov operations applied to Σ^{n} gives Σ^{n+l} and suppose Σ^{n} is embeddable in S^{n+t}. Then Σ^{n+l} is embeddable in Σ^{n+l+t}.

IV. Twist-spun normal bundles

In this section we shall show how the normal bundle of a twist-spun sphere is determined by the normal bundle of the original sphere and the normal twist. Let $B S O(m-n)$ be the classifying space of $S O(m-n)$, and let

$$
\pi_{n}(B S O(m-n)) \otimes \pi_{l+1}(B S O(m-n)) \xrightarrow{W} \pi_{l+n}(B S O(m-n))
$$

be the Whitehead product pairing.
Theorem 6. The following diagram is commutative:

$$
\begin{aligned}
& \theta^{m, n} \times \pi_{l}(S O(n) \times S O(m-n)) \longrightarrow \theta^{m+l, n+l} \\
& \text { (or } I^{m, n} \text {) (or } I^{m+l, n+l} \text {) } \\
& \downarrow \times p \quad \downarrow \eta \\
& \pi_{n}(B S O(m-n)) \otimes \pi_{l+1}(B S O(m-n)) \xrightarrow{-W} \pi_{n+l+1}(B S O(m-n)) .
\end{aligned}
$$

Here η assigns to each embedding (or immersion) its normal bundle and p is projection followed by the transgression isomorphism

$$
\sigma: \pi_{l}(S O(m-n)) \rightarrow \pi_{l+1}(B S O(m-n))
$$

It is well known that the Whitehead product is related to the Samelson product by the following diagram,

$$
\begin{gathered}
\pi_{i}(S O(t)) \otimes \pi_{j}(S O(t)) \xrightarrow{S} \pi_{i+j}(S O(t)) \\
\downarrow \sigma \otimes \sigma \\
\downarrow_{i+1}(B S O(t)) \otimes \pi_{j+1}(B S O(t)) \xrightarrow{(-)^{i} W}
\end{gathered}
$$

where S denotes Samelson product [8].
A non-triviality of the Samelson product of the characteristic class of the normal bundle of the embedded (immersed) sphere with an element $\gamma \in \pi_{l}(S O(m-n))$ will lead to a twist-spun sphere with non-trivial normal bundle. As the condition on the characteristic class of the normal bundle of an embedded sphere is very restrictive [3], we are unable to produce any example, but there are several examples in the case of immersions. For instance it follows from [4], that there always exists an immersion $S^{4 k} \subset S^{8 k-1}$ such that the result of twist-spinning by some element in $\pi_{4 k-1}(S O(4 k-1))$ has nontrivial normal bundle.

Proof of Theorem 6. Let the embedding $\Sigma^{n} \subset S^{m}$, which is the standard inclusion $D_{+}^{n} \subset D_{+}^{m}$ on the upper hemisphere, be a representative of the element $\sigma \epsilon \theta^{m, n}$. Let ν be the normal bundle of this embedding. The classifying map $f: \Sigma^{n} \rightarrow B S O(m-n)$ of ν can be described as follows. Let F_{0} be the standard normal frame over D_{+}^{n} and let F_{1} be a normal frame on $E^{n}-\operatorname{Int} D_{+}^{n}$.

The difference between F_{0} and F_{1} determines a map

$$
\hat{g}: S^{n-1}=\partial\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right) \rightarrow S O(m-n)
$$

Consider $S O(m-n)$ as the fibre of the universal bundle;

$$
S O(m-n) \rightarrow E S O(m-n) \xrightarrow{p} B S O(m-n) .
$$

Since $\operatorname{ESO}(m-n)$ is contractible, g extends to a map

$$
\begin{aligned}
g:\left(D_{-}^{n}=\left(\Sigma^{n}-\operatorname{Int} D_{+}^{n}\right), S^{n-1}=\partial\left(\Sigma^{n}-\right.\right. & \left.\left.\operatorname{Int} D_{+}^{n}\right)\right) \\
& \rightarrow(E S O(m-n), S O(m-n))
\end{aligned}
$$

Then $f=p \circ g$. Now let $\Sigma^{n+l} \subset S^{m+l}$ be the result of spinning Σ^{n} in S^{m} around S^{l}. Then we have induced frames $F_{0}^{\prime}, F_{1}^{\prime}$ on the two halves $\partial D_{-}^{n} \times D^{l+1}$ and $D_{-}^{n} \times S^{l}$ of Σ^{n+l} in S^{m+l} and the difference is given by the map

$$
\hat{g} \circ p_{1}: \partial D_{-}^{n} \times S^{l} \rightarrow \partial D_{-}^{n} \rightarrow S O(m-n)
$$

Now the frame $F_{0}^{\prime \prime}$ induced from F_{0}^{\prime} by twist-spinning differs from F_{0}^{\prime} by the map

$$
\hat{h} \circ p_{2}: \partial D_{-}^{n} \times S^{l} \rightarrow S^{l} \rightarrow S O(m-n)
$$

where \hat{h} is a representative for the element β of

$$
\gamma=(\alpha, \beta) \in \pi_{l}(S O(n) \times S O(m-n)) .
$$

Thus extending $\hat{g} \circ p_{1}, \hat{h} \circ p_{2}$ to maps

$$
G:\left(D_{-}^{n} \times S^{l}, \partial D_{-}^{n} \times S^{l}\right) \rightarrow(E S O(m-n), B S O(m-n))
$$

and

$$
H:\left(\partial D_{-}^{n} \times D^{l+1}, \partial D_{-}^{n} \times S^{l}\right) \rightarrow(E S O(m-n), S O(m-n))
$$

we are able to define a map,

$$
k: \Sigma^{n+l} \rightarrow B S O(m-n)
$$

by

$$
\begin{array}{ll}
k=p G & \text { on } \quad D_{-}^{n} \times S^{l} \\
k=p H & \text { on } \quad \partial D_{-}^{n} \times D^{l+1}
\end{array}
$$

It follows from [11, p. 102] that k is the classifying map for the normal bundle of the embedding $\Sigma^{n+l} \subset S^{n+l}$. On the other hand, it follows from the definition of the Whitehead product that k is a representative of $[\nu,-\sigma(\beta)]=$ $-[\nu, p(\gamma)]$. This completes the proof of our assertion for embeddings. The proof for immersions goes through in the same way.

References

1. E. Artin, Zur Isotopie zweidemensionalen Flächen im R_{4}, Abh. Math. Sem. Univ. Hamburg, vol. 4 (1926), pp. 174-177.
2. A. Haefliger, Knotted ($4 k-1$)-spheres in $6 k$-space, Ann. of Math. (3), vol. 75 (1962), pp. 452-466.
3. W. C. Hsiang, J. Levine and R. H. Szczarba, On the normal bundle of a homotopy sphere embedded in euclidean space, Topology, vol. 3 (1965), pp. 173-181.
4. I. M. James and E. Thomas, Which Lie groups are homotopy abelian?, Proc. Nat. Acad. Sci., vol. 45 (1959), pp. 737-740.
5. J. Milnor, Diffeomorphisms of a sphere, unpublished.
6. J. R. Munkres, Killing exotic spheres, unpublished.
7. S. P. Novikov, Homotopy properties of the group of diffeomorphisms of a sphere, Dokl. Akad. Nauk SSSR, vol. 148 (1963), pp. 32-35.
8. H. Samelson, A connection between the Whitehead and the Pontryagin product, Amer. J. Math., vol. 75 (1953), pp. 744-752.
9. S. Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2), vol. 74 (1961), pp. 391-406.
10. - On the structure of manifolds, Amer. J. Math. (3), vol. 84 (1962), pp. 387-399.
11. N. E. Steenrod, The topology of fibre bundles, Princeton, Princeton University Press, 1951. to appear.
12. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc., to appear.

Yale University
New Haven, Connecticut

[^0]: Received April 27, 1964.
 ${ }^{1}$ During the preparation of this paper, the authors were partially supported by a National Science Foundation Grant.

