A LOCALLY COMPACT CONNECTED GROUP ACTING ON THE PLANE HAS A CLOSED ORBIT ${ }^{1}$

BY
J. G. Horne, Jr.

The theorem of the title has its origin in a question concerning topological semigroups: Suppose S is a topological semigroup with identity 1 on a manifold. It is known that the set $H(1)$ of all elements having an inverse with respect to 1 is a Lie group [5]. Let G be the component of the identity of $H(1)$ and let L be the boundary of G. The question arises whether L (if non-empty) necessarily contains an idempotent. This was shown to be so in [5] if S is a plane. We had recently shown that this is so if S is Euclidean three-space and L is topologically a plane. For each case, use was made of the Lemma 2.5 in [5] that if G has a closed left orbit and a closed right orbit in L then L contains an idempotent. The question was thus raised whether a connected Lie group can act on the plane without a closed orbit. Using a technique developed to prove the result in the second of the two cases above, together with the result of Professor Hofmann in [2] of this journal, we prove that it cannot. Finally, we include an argument sent to us by Professor Hofmann which extends this theorem to locally compact connected groups.

A result which we use repeatedly is Theorem 2 of [3]. This asserts that if a one-parameter group P acts as a transformation group on the plane and an orbit $P x$ is unbounded in both directions (that is, $P x$ is topologically a line and neither component of $P x \backslash\{x\}$ has compact closure) then $P z=z$ for all $z \epsilon(P x)^{-} \backslash P x$. In fact, this result is needed under the assumption that P acts, not on the entire plane E, but only on a closed subset of E. An examination of the proof in [3] reveals that this is actually what is proved. This theorem allows us to obtain a closed orbit when an orbit exists which is unbounded in both directions. In case every orbit $P x$ has one of its ends bounded we apparently need the following lemma. (By an "end" of $P x$ is meant one of the components of $P x \backslash\{x\}$.)

Lemma 1. Let S be a subset of the plane and suppose that the multiplicative group P of positive real numbers acts as a transformation group of S. Let R denote one of the components of $P \backslash\{1\}$. Suppose x, y, z are points of S such that

$$
y \in(R x)^{-} \backslash P x \quad \text { and } \quad z \in(R y)^{-} \backslash P y
$$

Then $P z=z$.
Proof. Order P so that $p>1$ if and only if $p \in R$. Assume $P z \neq z$. Then there exists an interval $A=[a, b], a<1<b$, such that the map $p \rightarrow p w$ is a

[^0]homeomorphism on A for each w sufficiently close to z. Since $z \epsilon(R y)^{-} \backslash P y$, there is an unbounded sequence $\left\{p_{n}\right\}_{n}, p_{n} \in R$, such that $p_{n} y \rightarrow z$. Let D be a small disc about z. We may suppose that each of the arcs $A z$ and $A p_{n} y$, $n=1,2, \cdots$, cuts D. There exists a sub-arc of $A z \cap D$ which contains z and separates D into exactly two components. One of these will contain an infinite number of the points $p_{n} y$. Let E denote such a component and assume, without loss of generality that each $p_{n} y \in E$.
Choose a point q in the boundary of E but not in $A z$. Let B be an are from z to q lying, except for its end points, in the interior of E. Say that an arc goes across E if it has its end points on the boundary of E but not in $A z$, if these end points are on opposite sides of B and if, except for its end points, it is contained in the interior of E.

Consider the collection of components of the intersection of $R y$ with the interior of E. The closure of each member of this collection is a sub-arc of $R y$. Let \mathfrak{C} denote the collection of these arcs which go across E. It is clear that \mathfrak{C} can be linearly ordered so that later terms of \mathfrak{C} are nearer $A z$ than earlier terms. Even more: each member of \mathfrak{C} has an immediate successor and the members of \mathfrak{C} may be arranged in a sequence $C_{1}, C_{2}, \cdots, C_{n}, \cdots$ so that in general C_{n+1} is the successor of C_{n}. Now choose a (possibily new) sequence $r_{n} y \in R y$ so that $r_{n} y$ converges to z and $r_{n} y \in C_{n}$ for each n. Since each $r_{n} y$ belongs to $(R x)^{-} \backslash P x$, there exists a sequence $\left\{q_{n}\right\}_{n}, q_{n} \in R$, such that $q_{n} x$ is between $A r_{n-1} y$ and $A r_{n+1} y$ and so that $q_{n} x$ converges to z. The collection of arcs $A z,\left\{A r_{n} y\right\}_{n}$ and $\left\{A q_{n} x\right\}_{n}$ taken together forms an equicontinuous collection of arcs (see the proof of Theorem 1 of [2], for example). Therefore, by [1], we may assume that each of these arcs is a straight line segment.

The discussion is now facilitated somewhat by thinking of $A z$ as lying along the X-axis with z at the origin and $a z$ "to the left" of the origin. Let $a_{1}, b_{1} \in P$ be such that $a<a_{1}<1<b_{1}<b$. Let L_{1} be the line perpendicular to $A z$ at $a_{1} z$ and let L_{2} be the line perpendicular to $A z$ at $b_{1} z$. There is no loss in generality in assuming that each $a r_{n} y$ and each $a q_{n} x$ lies to the left of L_{1} and each $b r_{n} y$ and each $b q_{n} x$ lies to the right of L_{2}.

An are will be said to cross $L_{1} L_{2}$ if it has one end point on L_{1}, the other end point on L_{2} and except for these points is contained between L_{1} and L_{2}. An are will be said to cross $L_{1} L_{2}$ in the right direction if it is a sub-arc of an arc having the form $A v$ for some $v \in E$, if it crosses $L_{1} L_{2}$ and if in the order it inherits from A, the smallest point is on L_{1} and the largest point is on L_{2}. If for such an arc the largest point is on L_{1} and the smallest point is on L_{2}, it will be said to cross $L_{1} L_{2}$ in the wrong direction.
Let $c_{n} y$ denote the intersection of L_{1} and $A r_{n} y$ and let $d_{n} y$ denote the intersection of L_{2} and $A r_{n} y$. Let Q_{n} denote the quadrilateral whose vertices are $c_{n} y, d_{n} y, c_{n+1} y$ and $d_{n+1} y$. There are now two cases according to whether $c_{n}>c_{n+1}$ or $c_{n+1}>c_{n}$. We consider the first case. The argument is similar in the second case and is omitted. Since C_{n+1} is the successor of C_{n}, no sub-
arc of $\left[d_{n}, d_{n+1}\right] y$ crosses $L_{1} L_{2}$ between $A r_{n} y$ and $A r_{n+1} y$. Furthermore there exist arbitrarily large integers n such that $q_{n} x$ is between $A r_{n} y$ and $A r_{n+1} y$. Choose such an integer. By [4, p. 173] there is an arc T joining $d_{n} y$ to $d_{n+1} y$ which, except for its end points, is contained in Q_{n} and which has only end points in common with $\left[d_{n}, d_{n+1}\right] y$. Similarly there is an arc S joining $c_{n} y$ to $c_{n+1} y$ which, except for its end points, is contained in Q_{n}, which misses not only $\left[d_{n}, d_{n+1}\right] y$ but T as well. The $\operatorname{arcs} S$ and T can be chosen to be polygonal and to intersect $A q_{n} x$ in one point each. Let C be the simple closed curve formed by joining T and $\left[d_{n}, d_{n+1}\right] y$. Then $A q_{n} x$ has points on opposite sides of C. Since $A q_{n} x$ intersects C in only one point, its end points are on opposite sides of C. Certainly the intersection of $A q_{n} x$ and S is on the opposite side of C from $b q_{n} x$. Since S has no points in common with C, $c_{n} y$ and $b q_{n} x$ lie on opposite sides of C. Again, since [$\left.a r_{n}, c_{n}\right] y$ has no points in common with $C, a r_{n} y$ and $b q_{n} x$ lie on opposite sides of C. Since $a r_{n} y \in(R x)^{-} \backslash P x$, there exist numbers $r, s \in R$ such that $s>r>b q_{n}$ and such that $r x$ is on L_{2} while $s x$ is on L_{1}. Thus there is a sub-arc of $[r, s] x$ which crosses $L_{1} L_{2}$ in the wrong direction.

We sketch a proof that all points in S sufficiently near z must lie on arcs which cross $L_{1} L_{2}$ in the right direction. Since the preceding result contradicts this fact, we conclude that $P z=z$ and the proof of the lemma will be complete.

Let D_{1}, D_{2} be two discs whose radii are slightly larger than one-half the distance from L_{1} to L_{2} and whose centers are at $a_{1} z$ and $b_{1} z$ respectively. Let $c z$ be a point in the intersection of the interiors of D_{1} and D_{2}. It is sufficient for our purposes to assume $a z \in D_{1}$ and $b z \in D_{2}$ so that $[a, c] z \subset D_{1}$ and $[c, b] z \subset D_{2}$. Corresponding to each $t \epsilon[a, c]$ there is an interval V containing t and a neighborhood W of z such that $V W \subset D_{1}$. By compactness, there exist a finite number of intervals V_{1}, \cdots, V_{n} which cover $[a, c]$ and an open set W_{1}, containing z such that $V_{i} W_{1} \subset D_{1}$ for each $i=1, \cdots, n$. We may evidently assume $c \epsilon V_{n}$ and that in fact $V_{n} W_{1} \subset D_{1} \cap D_{2}$. Similarly there exist open intervals V_{1}, \cdots, V_{n} covering $[c, b]$ and an open set W_{2} containing z such that $V_{i} W_{2} \subset D_{2}$ for $i=1, \cdots, m$. If $w \epsilon W_{1} \cap W_{2}$ then, since $A w=[a, c] w \cup[c, b] w, A w$ contains no sub-are which crosses $L_{1} L_{2}$ in the wrong direction. The proof of the lemma is complete.

Lemma 2. Let G be a connected Lie group acting as a transformation group on a space M. Let $x \in M$ and let P be a one-parameter subgroup of G. Then the following are equivalent.
(1) $G x \neq\{x\}$ and $G x=P x$;
(2) $\operatorname{dim} G x=1$ and P has no conjugate in the isotropy subgroup G_{x} of G.

Proof. Suppose $G x \neq\{x\}$ and $G x=P x$. Then $\operatorname{dim} G x=1$. If $g P g^{-1} \subset G_{x}$ for some $g \epsilon G$ then $P \subset g^{-1} G_{x} g$ so $P g^{-1} x=g^{-1} x$. However $g^{-1} x=p x$ for some $p \in P$ so $P p x=p x$. On the other hand $P p=P$ while $P x=G x \neq p x$. Thus P has no conjugate in $G x$.

Suppose $\operatorname{dim} G x=1$ and that P has no conjugate in G_{x}. Let G act on the left coset space G / G_{x} by left multiplication. Let $m=G_{x}$. Now $G x=P x$ provided $G m=P m$ under this action. Since G / G_{x} is a one-dimensional manifold, it is a line or a circle. Therefore, if $G m \neq P m$ then there exists $v \epsilon(P m)^{-} \backslash P m$ and $P v=v$ since otherwise $P v \cap P m \neq \emptyset$. There is $g \epsilon G$ such that $v=g m$. Since the isotropy group of v is $g G_{x} g^{-1}, P \subset g G_{x} g^{-1}$, so $g^{-1} P g \subset G_{x}$ which is a contradiction. Obviously, if $\operatorname{dim} G x=1$ then $G x \neq\{x\}$.

Hereafter, if G is a transformation group on a space M and $x \in M$ then G_{x} will denote the component of the identity of the isotropy group of x. We have already observed that Theorem 2 of [3] is true for arbitrary closed subsets of the plane. The same observation holds for Theorem 1 and we use it in this form without further mention. That theorem asserts that if P operates as a transformation group on the plane then every orbit of P is either a point, a simple closed curve or topologically a line.

Lemma 3. Let G be a connected Lie group acting as a transformation group on a closed subset S of the plane. If for some $x \in S, G x$ is a line and G_{x} is a normal subgroup then G has a closed orbit.

Proof. There exist one-parameter subgroups P_{1}, \cdots, P_{n} such that $P_{1} P_{2} \cdots P_{n}$ generates G and no P_{i} is contained in $G_{x}, i=1,2, \cdots, n$. Since G_{x} is normal, no P_{i} has a conjugate in G_{x} so $G x=P_{i} x$ for each $i=1,2, \cdots, n$ by the previous lemma. Furthermore, since G_{x} is normal, $G_{x} y=y$ for all $y \in(G x)^{-}$. Therefore, if $y \in(G x)^{-}$then either $\operatorname{dim} G y=0$ and $G y=y$ or $\operatorname{dim} G y=1$ and $G_{y}=G_{x}$. It follows that $G y=P_{i} y$ for $i=1,2, \cdots, n$ and $y \in(G x)^{-}$. If $G x$ is unbounded in both directions and $y \in(G x) \backslash G x$ then $P_{i} y=y$ for each i by Theorem 2 of [3]. Since $P_{1} P_{2} \cdots P_{3}$ generates $G, G y=y$ so G has a closed orbit.

Suppose $G x$ is not unbounded in both directions. Let C be a component of $G x \backslash\{x\}$ such that C^{-}is compact. For each $i=1,2, \cdots n$, let R_{i} be the component of $P_{i} \backslash\{1\}$ such that $R_{i} x=C$. Let $y \in C^{-} \backslash G x$. If $G y$ is closed, there is nothing further to prove. Otherwise, $G y$ is a line contained in C^{-}. Furthermore, $R_{i} y=R_{j} y$ for $i, j=1,2, \cdots, n$. For since $G x$ is a line, $G \backslash G_{x}$ is the union of two components A and B. Since G_{x} is normal, if s belongs to one of these components then s^{-1} belongs to the other and each component is a subsemigroup of G. It follows that for each i, j, R_{i} and R_{j} belong to the same component of $G \backslash G_{x}$. For if R_{i} and R_{j} belong to different components then there exist elements $s \in A$ and $y \in B$ such that $s x=t x$. Hence $t^{-1} s \in G_{x}$. However, both t^{-1} and s belong to A which is impossible since A is closed under multiplication. Now if R_{i} and R_{j} belong to a common component of $G \backslash G_{x}$ then $R_{i} y=R_{j} y$. To see this, recall that $P_{i} y=P_{j} y$ so $R_{i} y=S_{j} y$ where S_{j} is the component of $P_{j} \backslash\{1\}$ which belongs to the component of $G \backslash G_{x}$ which contains R_{i}. Since this is R_{j}, it follows that $R_{i} y=R_{j} y$ for all i, j.

Since $R_{1} y$ is contained in a compact set, there exists an element

$$
z \epsilon\left(R_{1} y\right)^{-} \backslash P_{1} y
$$

Since $R_{1} y=R_{i} y, z \epsilon\left(R_{i} y\right)^{-} \backslash P_{i} y$ for each i. By Lemma $1, P_{i} z=z$ for each i. Hence $G z=z$ and it follows that G has a closed orbit.

Theorem 1. Let G be a connected Lie group acting as a transformation group on a closed connected subset S of the plane. Then there exists $w \in S$ such that $G w$ is closed.

Proof. If there exists $x \in S$ with $G x=S$, there is nothing to prove. Suppose there exists $v \in S$ with $\operatorname{dim} G v=2$ but $G v \neq S$. Then $G v$ has a boundary point x and for every such point, $\operatorname{dim} G x<2$. For if $\operatorname{dim} G x=2$ then, since $G x$ is homogeneous $G x$ is open and hence $G x \cap G v \neq \emptyset$ which is impossible. Now if $\operatorname{dim} G y=0$ for any $y \in S, G y=y$ so G has a closed orbit. The proof of the theorem has thus been reduced to the following situation: Either G already has a closed orbit, or there exists $x \in S$ such that $G y$ is a line for all $y \epsilon(G x)^{-}$. Furthermore, by the previous lemma, we may assume that G_{x} is not normal.

Let \mathfrak{S} be the sub-algebra of the Lie algebra of G corresponding to G_{x}. Let N be the normal subgroup of G which is contained in G_{x} and which corresponds to the ideal \mathfrak{F} of Theorem I of [2]. Of course, N may not be closed, but N^{-}is still normal and contained in G_{x}. Thus there is no loss in generality in assuming that G / N is either abelian, locally isomorphic to $s l(2)$ or isomorphic to the non-commutative group on the plane.

Let $H=G / N$. Since $N y=y$ for all $y \epsilon(G x)^{-}, H$ operates on $(G x)^{-}$according to the rule

$$
(g N) y=g y
$$

Furthermore, every orbit of H on $(G x)^{-}$is an orbit of G. Hence if we prove that H has a closed orbit it follows that G has a closed orbit.

We consider the possibilities for H separately. If H is abelian then H has a closed orbit by Lemma 3 since every subgroup of H is normal. Suppose H is locally isomorphic to $s l(2)$. Thus H is isomorphic to the quotient of the covering group K of $s l(2)$ modulo a discrete central subgroup. Now H_{x} is a planar subgroup. Let P be a one-parameter group of H which is the image under the natural map of a one-parameter subgroup of K which intersects the center non-trivially. Such P can have no conjugate in any planar subgroup of H. Hence, $H x=P x$. In fact, $H y=P y$ for all $y \epsilon(H x)^{-}$since under our present assumptions, H_{y} is a planar group for each such y. If $H x$ is unbounded in both directions then $H x$ is closed since if $y \epsilon(H x)^{-} \backslash H x, P y=y$ by [3] (as extended to arbitrary closed sets in the plane). This is a contradiction. Therefore suppose that $H x$ is not unbounded in both directions and let R denote a component of $P \backslash\{1\}$ such that $(R x)^{-}$is compact. Choose $y \in(R x)^{-} \backslash P x$. We may suppose that $P y$ is not closed. Thus $R y$ is not closed so there exists $z \in(R y)^{-} \backslash P y$. But then by Lemma $1, P z=z$ which is
a contradiction. We have proved that if G / N is locally isomorphic to $s l(2)$ then G has a closed orbit.

Finally, suppose H is the non-commutative group on the plane. If H_{x} is the normal one-parameter subgroup Q of H there is nothing further to prove in virtue of Lemma 3. Otherwise, $H x=Q x$ since then Q is the only one-parameter subgroup of H having no conjugate in H_{x}. If $H x$ is unbounded in both directions we may assume that $H x$ is closed since otherwise there exists $z \epsilon(H x)^{-} \backslash H x$ and for such $z, Q z=z$ as we know. Hence by Lemma 3 again, H has a closed orbit. Thus suppose one end $R x$ of $Q x$ has compact closure and let $y \in(R x)^{-} \backslash Q x$. Unless $H y$ is closed, there is $z \epsilon(R y)^{-} \backslash Q y$. But then by Lemma $1, Q z=z$ so by Lemma 3 again, H has a closed orbit. All cases have now been considered and the proof of the theorem is complete.

In virtue of Lemma 2.5 of [5] mentioned in the beginning we have the following:

Corollary. Let S be a topological semigroup with identity 1. Assume that the set G of all elements in S which have an inverse with respect to 1 is a connected Lie group. Let L be a connected non-empty ideal in S which is homeomorphic to a closed subset of the plane. Then L contains an idempotent.

Professor Hofmann has observed to us that Theorem 1 actually holds for any locally compact group G such that G / G_{0} is compact, where G_{0} is the component of the identity in G. His observations run as follows: Under this assumption G is the projective limit of Lie groups (cf. [6]). Let M be a compact normal subgroup such that G / M is a Lie group. Let N be the subgroup of all $g \epsilon G$ such that $g x=x$ for all $x \in S$. Then N is closed and normal. So is $M \cap N$. Now $M / M \cap N$ is a compact group acting effectively on the plane; hence the component of the identity of $M / M \cap N$ is a Lie group [6, p. 259] and hence $M / M \cap N$ is finite-dimensional. If $M / M \cap N$ is not itself a Lie group it contains a totally disconnected non-discrete subgroup [6, p. 237] which contradicts the fact that no such group can act effectively on the plane [6, p. 249]. Thus $M / M \cap N$ is a Lie group. But G / M is a Lie group with a finite number of components, so $G / M \cap N$ is a Lie group with a finite number of components. Therefore G / N is a Lie group. But G / N is the group which actually acts in the plane. Thus the following theorem is proved:

Theorem 2. (Hofmann). Let G be a locally compact group acting as a group of homeomorphisms on the plane and let G_{0} be its identity component. If G / G_{0} is compact then G has a closed orbit.

References

1. B. J. Ball, Continuous and equicontinuous collections of arcs, Duke Math. J., vol. 19 (1952), pp. 423-433.
2. K. H. Hofmann, Lie algebras with subalgebra of codimension one, Illinois J. Math., vol. 9 (1965), pp. 636-643 (this issue).
3. J. G. Horne, Jr., One-parameter subgroups in semigroups on the plane, Michigan Math. J., vol. 9 (1962), pp. 177-186.
4. R. L. Moore, Foundations of point set theory (rev. ed.), Amer. Math. Soc. Colloquium Publication, vol. 13, 1932.
5. P. S. Mostert and A. L. Shields, Semigroups with identity on a manifold, Trans. Amer. Math. Soc., vol. 9 (1959), pp. 380-389.
6. D. Montgomery and L. Zippin, Topological transformation groups, New York, Interscience, 1955.

University of Georgia
Athens, Georgia

[^0]: Received April 23, 1964.
 ${ }^{1}$ Work was supported in part by the National Science Foundation.

