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The theorem of the title has its origin in a question concerning topological
semigroups: Suppose S is a topological semigroup with identity 1 on a
manifold. It is known that the set H(1) of all elements having an inverse
with respect to 1 is a Lie group [5]. Let G be the component of the identity
of H(1) and let L be the boundary of G. The question arises whether L
(if non-empty) necessarily contains an idempotent. This was shown to be
so in [5] if S is a plane. We had recently shown that this is so if S is Euclidean
three-space and L is topologically a plane. For each case, use was made of
the Lemma 2.5 in [5] that if G has a closed left orbit and a closed right orbit
in L then L contains an idempotent. The question was thus raised whether
a connected Lie group can act on the plane without a closed orbit. Using a
technique .developed to prove the result in the second of the two cases above,
together with the result of Professor Hofmann in [2] of this journal, we prove
that it cannot. Finally, we include an argument sent to us by Professor
Hofmann which extends this theorem to locally compact connected groups.
A result which we use repeatedly is Theorem 2 of [3]. This asserts that if a

one-parameter group P acts as a transformation group on the plane and an
orbit Px is unbounded in both directions (that is, Px is topologically a line
and neither component of Px{xl has compact closure) then Pz z for
all z (Px)-.Px. In fact, this result is needed under the assumption that
P acts, not on the entire plane E, but only on a closed subset of E. An
examination of the proof in [3] reveals that this is actually what is proved.
This theorem allows us to obtain a closed orbit when an orbit exists which
is unbounded in both directions. In case every orbit Px has one of its ends
bounded we apparently need the following lemma. (By an "end" of Px
is meant one of the components of Px{x}.)

LEMM+/- 1. Let S be a subset of the plane and suppose that the multiplicative
group P of positive real numbers acts as a transformation group of S. Let R
denote one of the components of P,,,{ 1 }. Suppose x, y, z are points of S such
that

y (Rx)-Px and z e (Ry)-.Py.
Then Pz z.

Proof. Order P so that p > I if and only if p e R. Assume Pz z. Then
there exists an interval A [a, b], a < 1 < b, such that the map p -- pw is a
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homeomorphism on A for each w sufficiently close to z. Since z e (Ry)-Py,
there is an unbounded sequence {p}, p e R, such that p y -- z. Let D be a
small disc about z. We may suppose that each of the arcs Az and Ap y,
n 1, 2, cuts D. There exists a sub-arc of Az n D which contains z and
separates D into exactly two components. One of these will contain an infi-
nite number of the points p y. Let E denote such a component and as-
sume, without loss of generality that each p y e E.
Choose a point q in the boundary of E but not in Az. Let B be an arc

from z to q lying, except for its end points, in the interior of E. Say that an arc
goes across E if it has its end points on the boundary of E but not in Az,
if these end points are on opposite sides of B and if, except for its end points,
it is contained in the interior of E.

Consider the collection of components of the intersection of Ry with the
interior of E. The closure of each member of this collection is a sub-arc of
Ry. Let denote the collection of these arcs which go across E. It is clear
that can be linearly ordered so that later terms of are nearer Az than earlier
terms. Even more: each member of has an immediate successor and the
members of may be arranged in a sequence C1, C., C, so that
in general C+1 is the successor of C. Now choose a (possibily new) se-
quence r y Ry so that r y converges to z and r y e C for each n. Since
each r y belongs to (Rx)-Px, there exists a sequence {q}, q e R, such
that q x is between Ar_ y and Ar+ y and so that q x converges to z.
The collection of arcs Az, {Ar y} and {Aq x} taken together forms an
equicontinuous collection of arcs (see the proof of Theorem 1 of [2], .for ex-
ample). Therefore, by [1], we may assume that each of these arcs is a straight
line segment.

The discussion is now facilitated somewhat by thinking of Az as lying
along the X-axis with z at the origin and az "to the left" of the origin. Let
a, bl e P be such that a < a < 1 < bl < b. Let L be the line perpendicular
to Az at az and let L2 be the line perpendicular to Az at bl z. There is
no loss in generality in assuming that each arm y and each aq x lies to the
left of L1 and each br y and each bq x lies to the right of L2.
An arc will be said to cross L L if it has one end point on L, the other end

point on L and except for these points is contained between L1 and L.
An arc will be said to cross L L in the right direction if it is a sub-arc of an
arc having the form Av for some v e E, if it crosses L L. and if in the order it
inherits from A, the smallest point is on L and the largest point is on L..
If for such an arc the largest point is on L and the smallest point is on L2,
it will be said to cross L,_ L in the wrong direction.

Let c y denote the intersection of L1 and Ar y and let d y denote the
intersection of L. and Arm y. Let Q denote the quadrilateral whose vertices
are c y, d y, c+ y and d+ y. There are now two cases according to whether
c > C+l or c+ > c. We consider the first case. The argument is similar
in the second case and is omitted. Since C+ is the successor of C, no sub-
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arc of [dm, dm+l]y crosses L1 L2 between Arm y and Arm+l y. Furthermore there
exist arbitrarily large integers n such that qm x is between Ar y and Ar+ y.
Choose such an integer. By [4, p. 173] there is an arc T joining dm y to dm+ y
which, except for its end points, is contained in Qm and which has only end
points in common with Ida, dm+]y. Similarly there is an arc S joining cm y
to c+1 y which, except for its end points, is contained in Qn, which misses
not only [din, dn+]y but T as well. The arcs S and T can be chosen to be
polygonal and to intersect Aq x in one point each. Let C be the simple
closed curve formed by joining T and [dn, d,+l]y. Then Aq, x has points on
opposite sides of C. Since Aq x intersects C in only one point, its end points
are on opposite sides of C. Certainly the intersection of Aqm x and S is on the
opposite side of C from bqm x. Since S has no points in common with C,
cm y and bqm x lie on opposite sides of C. Again, since [arm, cm]y has no points
in common with C, ary and bqx lie on opposite sides of C. Since
arm y (Rx)-Px, there exist numbers r, s e R such that s > r > bqn and
such that rx is on L2 while sx is on L. Thus there is a sub-arc of [r, six
which crosses L L in the wrong direction.
We sketch a proof that 11 points in S sufficiently near z must lie on arcs

which cross L L in the right direction. Since the preceding result contradicts
this fact, we conclude that Pz z and the proof of the lemma will be com-
plete.

Let D, D be two discs whose radii are slightly larger than one-half the
distance from L to L and whose centers are at al z and b z respectively.
Let cz be a point in the intersection of the interiors of D and D2. It is
sufficient for our purposes to assume az D and bz D so that [a, c]z c D
and [c, b]z D.. Corresponding to each e [a, c] there is an interval V
containing and neighborhood W of z such that VW DI. By compact-
ness, there exist a finite number of intervals V1, V which cover [a, c]
and an open set W, containing z such that V W1 D for each i 1, n.
We may evidently assume c e Vm and that in fact Vm W D D. Similarly
there exist open intervals V, ..., Vn covering [c, b] and an open set W
containing z such that V W D2 for i 1, m. If w e W a W then,
since Aw [a, c]w o [c, b]w, Aw contains no sub-arc which crosses L L
in the wrong direction. The proof of the lemma is complete.

LEMMA 2. Let G be a connected Lie group acting as a transformation group
on a space M. Let x M and let P be a one-parameter subgroup of G. Then
the following are equivalent.

(1) Gx {x} and Gx Px
(2) dim Gx 1 and P has no conjugate in the isotropy subgroup G of G.

Proof. Suppose Gx {x} and Gx Px. Then dim Gx 1. If
-1G --igPg- Gx for some g G then P c g g so .pg-lx g x. However

--1g x pxforsomepePsoPpx px. On the other handPp Pwhile
Px Gx px. Thus P has no conjugate in Gx.
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Suppose dim Gx 1 and that P has no conjugate in Gx. Let G act on
the left coset space G/Gx by left multiplication. Let m G. Now Gx Px
provided Gm Pm under this action. Since G/G is a one-dimensional
manifold, it is a line or a circle. Therefore, if Gm Pm then there exists
ve(Pm)-Pm and Pv v since otherwise PvnPm l. There is geG
suchthutv gin. Since theisotropy group of visg g ,P gGg ,so
g-Pg G which is a contradiction. Obviously, if dim Gx 1 then
Gz {x}.

Hereafter, if G is a transformation group on a space M and x e M then
G will denote the component of the identity of the isotropy group of x.
We have ulready observed that Theorem 2 of [3] is true for arbitrary
closed subsets of the plane. The same observation holds for Theorem 1
nd we use it in this form without further mention. That theorem asserts
that if P operates as a transformation group on the plane then every orbit
of P is either a point, simple closed curve or topologically a line.

LEMMA 3. Let G be a connected Lie group acting as a transformation group on
a closed subset S of the plane. If for some x S, Gx is a line and G is a normal
subgroup then G has a closed orbit.

Proof. There exist one-parameter subgroups P1,"’, P, such that
P1P2"" P generates G and no Pi is contained in G, i 1, 2,..., n.
Since Gx is normal, no Pi has a conjugate in G so Gx Pix for each
i 1, 2, n by the previous lemma. Furthermore, since G is normal,
G y y for all y (Gx)-. Therefore, if y e (Gx)- then either dim Gy 0
and Gy yordimGy 1 and Gy G. It follows that Gy Py for
i 1, 2, n and y (Gx)-. If Gx is unbounded in both directions and
y (Gx)-\Gx then Piy y for each i by Theorem 2 of [3]. Since P1 P. P
generates G, Gy y so G has a closed orbit.

Suppose Gx is not unbounded in both directions. Let C be a component of
Gx\lx} such that C- is compact. For each i 1, 2, n, let R be the compo-
nent of Pi\{ 1/ such that R x C. Let y e C-\Gx. If Gy is closed, there is
nothing further to prove. Otherwise, Gy is a line contained in C-. Further-
more, R y R. y for i, j 1, 2, n. For since Gx is a line, GG is the
union of two components A and B. Since Gx is normal, if s belongs to one of
these components then s- belongs to the other and each component is a sub-
semigroup of G. It follows that for each i, j, R and R. belong to the same
component of GG. For if R and R. belong to different components then
there exist elements seA and yeB such that sx tx. Hence t-seG.
However, both - and s belong to A which is impossible since A is closed under
multiplication. Now if R and R. belong to a common component of G\G
then R y R. y. To see this, recall that P y P y so R y S. y where
S is the component of P.\{ 11 which belongs to the component of GG which
contains R. Since this is R., it follows that R y R. y for all i, j.
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Since R1 y is contained in a compact set, there exists an element

z e (R1 y)-\PI y.

SinceRy Riy, ze(Ry)-\Piyforeachi. By Lemma 1, Pz zfor
each i. Hence Gz z and it follows that G has a closed orbit.

THEOREM 1. Let G be a connected Lie group acting as a transformation group
on a closed connected subset S of the plane. Then there exists w S such that
Gw is closed.

Proof. If there exists x e S with Gx S, there is nothing to prove. Sup-
pose there exists v e S with dim Gv 2 but Gv S. Then Gv has a boundary
point x and for every such point, dim Gx < 2. For if dim Gx 2 then, since
Gx is homogeneous Gx is open and hence Gx n Gv which is impossible.
Now if dim Gy 0 for any y S, Gy y so G has a closed orbit. The proof of
the theorem has thus been reduced to the following situation: Either G already
has a closed orbit, or there exists x e S such that Gy is a line for all y (Gx)-.
Furthermore, by the previous lemma, we may assume that Gx is not normal.

Let @ be the sub-algebra of the Lie algebra of G corresponding to Gx. Let
N be the normal subgroup of G which is contained in G and which corresponds
to the ideal ( of Theorem I of [2]. Of course, N may not be closed, but N- is
still normal and contained in G. Thus there is no loss in generality in as-
suming that GIN is either abelian, locally isomorphic to sl(2) or isomorphic to
the non-commutative group on the plane.

Let H GIN. Since Ny y for all y e (Gx)-, H operates on (Gx)- ac-
cording to the rule

(gN)y--- gy.

Furthermore, every orbit of H on (Gx)- is an orbit of G. Hence if we prove
that H has a closed orbit it follows that G has a closed orbit.
We consider the possibilities for H separately. If H is abelian then H has a

closed orbit by Lemma 3 since every subgroup of H is normal. Suppose H
is locally isomorphic to s/(2). Thus H is isomorphic to the quotient of the
covering group K of sl(2) modulo a discrete central subgroup. Now H is a
planar subgroup. Let P be a one-parameter group of H which is the image
under the natural map of a one-parameter subgroup of K which intersects the
center non-trivially. Such P can have no coniugate in any planar subgroup
of H. Hence, Hx Px. In fact, Hy Py for all y (Hx)- since under our
present assumptions, H is a planar group for each such y. If Hx is unbounded
in both directions then Hx is closed since if y (Hx)-Hx, Py y by [3] (as
extended to arbitrary closed sets in the plane). This is a contradiction.
Therefore suppose that Hx is not unbounded in both directions and let R de-
note a component of P{1} such that (Rx)- is compact. Choose
y (Rx)-Px. We may suppose that Py is not closed. Thus Ry is not
closed so there exists z e (Ry)-Py. But then by Lemma 1, Pz z which is
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a contradiction. We have proved that if GIN is locally isomorphic to sl(2)
then G has a closed orbit.

Finally, suppose H is the non-commutative group on the plane. If H, is
the normal one-parameter subgroup Q of H there is nothing further to prove in
virtue of Lemma 3. Otherwise, Hx Qx since then Q is the only one-param-
eter subgroup of H having no conjugate in H,. If Hx is unbounded in both
directions we may assume that Hx is closed since otherwise there exists
z (Hx)-Hx and for such z, Qz z as we know. Hence by Lemma 3 again,
H has a closed orbit. Thus suppose one end Rx of Qx has compact closure and
let y e (Rx)-Qx. Unless Hy is closed, there is z e (Ry)-Qy. But then by
Lemma 1, Qz z so by Lemma 3 again, H has a closed orbit. All cases have
now been considered and the proof of the theorem is complete.

In virtue of Lemma 2.5 of [5] mentioned in the beginning we have the
following"

COROLLARY. Let S be a topological semigroup with identity 1. Assume that
the set G of all elements in S which have an inverse with respect to 1 is a connected
Lie group. Let L be a connected non-empty ideal in S which is homeomorphic to
a closed subset of the plane. Then L contains an idempotent.

Professor Hofmann has observed to us that Theorem 1 actually holds for
any locally compact group G such that G/Go is compact, where Go is the compo-
nent of the identity in G. His observations run as follows: Under this as-
sumption G is the proiective limit of Lie groups (cf. [6]). Let M be a compact
normal subgroup such that G/M is a Lie group. Let N be the subgroup of all
geGsuchthat gx xfor allxeS. ThenNis closed and normal. So is
M a N. Now M/M N is a compact group acting effectively on the plane;
hence the component of the identity of M/M N is a Lie group [6, p. 259] and
hence M/M N is finite-dimensional. If M/M N is not itself a Lie group it
contains a totally disconnected non-discrete subgroup [6, p. 237] which contra-
dicts the fact that no such group can act effectively on the plane [6, p. 249].
Thus M/M N is a Lie group. But G/M is a Lie group with a finite number of
components, so G/M N is a Lie group with a finite number of components.
Therefore GIN is a Lie group. But GIN is the group which actually acts in
the plane. Thus the following theorem is proved:

TnoM 2. (Hofmann). Let G be a locally compact group acting as a group
of homeomorphisms on the plane and let Go be its identity component. If G/Go is
compact then G has a closed orbit.
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