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1. Introduction

Let F be the modular group, consisting of all linear fractional transforma-
tions

ar-b
crWd

where a, b, c, d are rational integers and ad bc 1. It is not difficult to
construct a sequence of subgroupsG of finite index in 1 such that (F: G) --.
as n --* oo, but such that the genus of G is 0. (See papers [1], [4] and [6].)
In conversation with the authors H. Rademacher conjectured that such a
construction was not possible using congruence subgroups of 1, and in fact
that the number of congruence subgroups of F having genus 0 is finite.
Whether this conjecture is true or not we do not know. It is both plausible
and difficult. In this note we make a contribution to this problem. In fact
we prove that a free congruence subgroup of F of level prime to 2.3.5.7.13 is
necessarily of positive genus. We also prove inclusion theorems for certain
subgroups of 1 which are of independent interest.

2. Preliminary results and definitions
We find it convenient to work with the representation of 1 as the multiplica-

rive group of 2 X 2 rational integral matrices of determinant 1 modulo its
centrum /-+-I}, where I is the identity matrix. If n is a positive integer,
then r(n) will denote the principal congruence subgroup of r of level n, which
consists of all elements of 1 congruent modulo n to =t=I. F(n) is a normal
subgroup of F. A subgroup of 1 is a congruence subgroup if it contains a
group F(n); it is of level n if n is the least such integer. We set

11)
Then F may be generated by S and W;

r= {s,w}.

An element of 1 is parabolic if it is of trace =2; it is then conjugate over r
to a power of S. if M e 1 and commutes with a non-trivial power of S then
M itself is a power of S.
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Let G be a subgroup of F of finite index #. By a complete system of parabolic
representatives, abbreviated c.s.p.r., we understand a set of parabolic elements
P1, P2 P of G such that

(1) every parabolic element of G is conjugate over G to some power of a
Pi, 1 <_ i <_ t;
no non-trivial power of P is conjugate over G to a power of P, 1 _< i,
j<_t,ij.

Then is the number of parabolic classes of G.
(It is easy to see that for a subgroup of finite index in F, is finite.)
It is an easy consequence of (1), (2) and of the properties of S that if M e G

and commutes with some non-trivial power of Pi, it is itself a power of P,
l_i<_t.
The group G is free if and only if it contains no elements of finite order (see

5]). In this case the genus g of G is given very simply by the formula

(3) g 1 +/12-- t/2.

(This is a straightforward consequence of the "hyperbolic area formula",
which in turn can be deduced from [3, p. 185, excercise 2].)
The congruence subgroup generated by S, F(n) will be denoted by F

(4) r {S, F (n)} J0 Sr(n).
The congruence subgroup consisting of all elements (a ) of 1 such that

c-- 0 (rood n) will be denoted by r0(n), and the genus of r0(n) by g. The
genus g has been computed explicitly (see [2]). We note only that if p is a
prime, then

g- (p- 13)/12, p 1 (mod12)

(p- 5)/12, p-- 5 (mod12)
(5)

(p-- 7)/12, p---- 7 (mod12)

(p + 1)/12, p 11 (mod 12).

Hence g >_ (p- 13)/12.
We set

(n) (r" r(n)) 6,

1/2’ II (1- 1/p),
Then (4) implies that

(F’F) (n)/n.

n=2

n>2.

If G, H are subgroups of finite index in F such that G D H, and if the genera
of G, H are g, h respectively then the genus formula for subgroups (see [3, p.
260]) implies that g <_ h. In particular this implies that gd <_ g, whenever
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3. An inclusion theorem
In this section we prove an inclusion theorem for subgroups of F containing
which is of interest in itself"

THEOREM 1.
dln, d > 1.

Suppose that F G Fn Then either G r or G c F0(d)

We break the proof up into a sequence of lemmas.

LEMMA 1.
an element

Suppose that F G F. Suppose further that G contains

with c, n 1. Then

Proof. We have

SM (a +c xc b + xd)d

Since (c, n) 1, x may be chosen so that a - xc 1 (mod n).Put
bl b+xd. Then

( bl ) (modn)SM 1 bl c

SM =- WcSbl (mod n).

Hence SM WcSblM M l?(n), and it follows that W e G. Since
(c, n) 1 and W" e G, this implies that W G. Hence G F, since S, W e G
and are generators of F.
Lemma 1 implies

LEMMA 2. Let p be a prime, F D G l? Then either G F or G l0(p).

Lemma 2 is the case n prime of the lemma that follows"

LEMMA 3. Suppose that n is square-free,
or G F0(d), din, d > 1.

Then either

Proof. The proof will be by induction on 2(n), the number of primes
dividing n. For 2(n) 0 the lemma is trivial, and for 2(n) 1 the lemma is
true by Lemma 2. Assume the lemma proved for all square-free m such that
2(m) < ]c, and let n be square-free with 2(n) ]c, / >_ 2. Let p be the
smallest prime dividing n. Then nip > 2 and

Gr(n/p)

Since (n/p) ]c 1, the induction hypothesis implies that either
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(6) Gr(nlp) r0(d), din d >
or

(7) Gr(n/p)-- r.
Since (6) implies that G c F0(d), where din d > I we may assume that (7)
holds. Then by one of the isomorphism theorems

(8) r/r(n/p) G/G r(n/p).

Put (F:G). Since

G n F(n/p) S, F(n)},

(r: {S/, r(n)}) (n)/p, and (p, n/p) 1, it follows from (8) that

(n/p)

(9) .Ip’- 1.

Now let q be the exponent of W modulo G. Since W" e G, q n. Furthermore
the cosets G, WG, WG, ..., Wq-G are distinct. Thus q . Combined
with (9), this implies that q p 1. Since n is square-free and since p is
the smallest prime dividing n, q is either 1 or a prime. If q 1 then G F,
since then W, S e G and W, S generate F.
Either G r0(q), or there is an element
Assume the latter. Then

Suppose then that q is prime.
)eGsuchthat (c, q) 1.

Wq(:bd) (a b)c W xqa d W xqb

and since (c, qa) 1, x may be chosen so that (c - xqa, n) 1 (for example,
by Dirichlet’s theorem on primes in arithmetic progressions). By Lemma 1,
G F. Hence in all cases we have shown that either G F or G c F0(d),
din, d > 1 and the proof of the lemma is complete.

LEMMA 4. Suppose that n is square-free, and suppose that m is an integer
divisible only by primes dividing n. Then if

either G r or G r0(d), d mn, d > 1.

Proof. Assume that G I’. We have that

Gr(n) r..
By Lemma 3, either

(10) Gr(n) r0(d),

or

(11) Gr(n) r.

dln, d > 1
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If (10) holds, then G c r0(d), d lmn d > 1 and the proof of the lemma is
concluded. We need only show that (11) cannot hold. Since G F,
it follows from Lemma 1 that if

then (c, ran) > 1; and hence (c n) > 1 since every prime dividing m also
divides n. Thus if ( ) eGF(n) then (% n) > 1 andso (11) cannot hold.
The proof of the lemma is concluded.

Combining the previous lemmas, we obtain the theorem.

4. The parabolic class number formula
We are going to develop a formula involving parabolic class numbers for

subgroups of the modular group. The formula actually holds for subgroups of
finite index in an arbitrary H-group (see [3, p. 266] for the definition) but we
content ourselves with the statement for the modular group. We will prove

THEOREM 2. Let G, H be subgroups of finite index in I’, H a normal sub-
group of G, (G’H) . Let P1, P2 Pt be a c.s.p.r, for G, and suppose
that P is of exponent m modulo H, 1 <_ i <_ t. Then the number r of parabolic
classes of H is given by

i/m,.

Proof. Let P by any parabolic element of H. Since P e G, P AP. A-where A e G, a is a non-zero integer, and I _< i _< t. Since H is a normal sub-
group ofG. P eH;andsoa=m. HenceP=.._ NowAP A

mi --1and AP.’A- belong to the same parabolic class, since AP A e H. Thus
we need only determine for each i, 1 _< i <_ t, the number of expressions

ApmiA-1Q .-_ AeG,

which are not coniugate over H. (Because of (2), two expressions Q cor-
responding to different subscripts i cannot be conjugate over G and so are
certainly not conjugate over H.)
Suppose that

G _. HRk

is a right coset decomposition of G modulo H. Then A may be written as
BRk, where Bell and 1 _< ] _< . Thus

DmD--1D-1Q AP. A- BR
and so Q is conjugate over H to

DruiD--1

Furthermore the group G/H has the cyclic subgroup K {HP} of order mi.
Hence we can write

HR HSIP
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where HSt, 1 <_ j <_ /mi runs over the coset representatives of G/H modulo
K and nk is an integer. It follows that Q is coniugate over H to

(12) St . ,.-:.1 1 < j < /mi

The expressions (12) for a fixed i are not conjugate over H. For suppose
that

S. P.’,q:’-l_ TS T-1,
Tell, 1 j, /m. Put M STS. Then M commutes with
P nd so must be power of P. Thus for some integer

TS StP
But this implies that j l, since the HSt’s are distinct modulo K. It
follows that the number of parabolic classes in H arising from Pi is just /m,
and the theorem follows by summation.
Easy corollaries of Theorem 2 for normal subgroups of F follows:

COnOLLAY 1. Let G be a normal subgroup of F such that (F’G) t and
such that S is of exponent m modulo G. Then the number of parabolic classes
of G is given by t/m.

ConoLnv 2. The number of parabolic classes of F(n) is tt (n)/n.

5. The principal results
We assume now that G is a congruence subgroup of F of level n. We

continue to denote the number of parabolic classes of G by t, and (F’G) by. Let P, P, Pt be a c.s.p.r, for G and assume that P is of exponent
m modulo F (n), 1_< i <_ t. Then the results of Section 4 imply that

1
n t i=z m i=zmi

Since the n-th power of any parabolic element of F is in F(n), ech m is
divisor of n. For each divisor d of n let r(d) be the number of P for which
m d, 1 _i_< t. Then

-.,1, r(n/d) t,

(14) 1 dr(n/d) .
Assume now that G is free. Then (3), (13) and (14) imply that the genus

g of G is given by

(15) g (1/12)1 (d- 6)r(n/d) + 1.

no
Assume further that (n, 2.3.5) 1. Let q be the smallest prime dividing
Suppose first that r(n) O. Then (15) implies that

g >_ 1 + (q- 6)/12 (q + 6)/12.
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Now suppose that r(n) > 0; i.e. that some conjugate of S, say ASA-I, be-
longs to G. The groups G and A-1GA being conjugate subgroups of 1 are
simultaneously free, of level n, and of the same genus. There is no loss of
generality therefore in assuming that S e G, so that G Fn. Then Theorem 1
implies that G F0(d), din, d > 1. Hence

g >_ gd >_ minln g
and so by (5),

g >_ minin (p- 13)/12 (q-- 13)/12.

It follows that in either case

g >_ minlg >_ (q- 13)/12.

We have proved therefore

THEOREM 3. Let G be a free congruence subgroup of F of level n, where
(n, 2-3.5) 1. Let q be the least prime dividing n. Then the genus g of G
satisfies

g >_ minlg >_ (q- 13)/12.

Theorem 3 and (5) readily imply the result mentioned in the introduction:
THEOREM 4. A free congruence subgroup of r of level prime to 2.3.5.7.13

is of positive genus.
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