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We begin by defining the term "representation lattice" used in the title.
Let G be a separable locally compact group. By a representation of G we
shall always mean a strongly continuous homomorphism of G into a group of
unitary operators acting on a (not necessarily separable) Hilbert space. Two
representations L and M of G are said to be disjoint, denoted L 5 M, if no
subrepresentation of L is (unitary) equivalent to any subrepresentation of M.
We say L covers M, denoted L M, if no subrepresentation of M is disjoint
from L. We say L is quasi-equivalent to M, denoted L M, if L covers M
and M covers L. (For all of these concepts, sce [10] and [11].) The col-
lection Q of all quasi-equivalence classes of representations of G forms a com-
plete distributive lattice with respect to the ordering given by the covering
relation. The lattice Q Q(G) will be called the representation lattice of G
The collection Q of all quasi-equivalence classes of separable representations
of G forms a z-coml)lete sublattice of Q(G), which we call the separable repre-
sentation lattice of G.
The properties of quasi-equivalence and the covering relation (cf. [10], [11]

and Proposition 1 of [6]) are reminiscent of a proiection lattice. Our first
theorem proves that this is not a mere impression. Q(G) is lattice isomorphic
to the lattice of all projections in an abelian von Neumann algebra. The
appropriate yon Neumann algebra is just the center of the big group algebra
(t(G), introduced in [7].
There has been a rather extensive study of Q, using the tool of direct

integral decomposition theory for representations. (Recall that a group G is
said to be type I if it admits only type I representations. A representation is
type I if its range generates a type I yon Neumann algebra.) In the case
where G is type I, G. W. Mackey has characterized Q(G) as being lattice
isomorphic to the lattice of all standard z-finite measure classes on the dual

of G. (Cf, [12].) ( denotes the set of unitary equivalence classes of
separable irreducible representations of G.) The measures on arise from the
central decomposition of separable multiplicity free representations, as a direct
integral of irreducible representations. If G is not type I, the lattice Q-r of
all quasi-equivalence classes of separable type I representations of G is lattice
isomorphic to some lattice 2r of standard z-finite measure classes on the dual
(. However is a proper sublattice of the latice of all standard z-finite
measure classes on . The characterization of 2z, when G is not type I, has
remained an open problem.
In [6], the author presented a generalization of the vIackey decomposition
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theory designed to cover the case where G is not type I. In this theory the
dual is replaced by the quasi-dual G, which is the set of all quasi-equivalence
classes of primary representations. (A representation is said to be primary if
the yon Neumann algebra generated by its range is a factor.) The two dual
objects and coincide in the type I case. Cf. [4]. It is shown in [6,
Theorem 2] that the central decomposition of any separable representation
may be taken over the space , relative to some measure on G. In this way
decomposition theory once again leads to a description of the separable repre-
sentation lattice Q of G, in terms of a measure lattice. Thus Q is lattice
isomorphic to a lattice Ci)() of standard a-finite measure classes on (.
C;() is called the canonical measure lattice on . However when G is not
type I, it is known that e(G) is a proper sublattice of the lattice of all stand-
ard a-finite measure classes. Thus the unsolved problem of identifying 2, in
the Mackey theory [12] emerges once again as the problem of identifying the
sublattice )(). Various attempts have been made to ameliorate this
situation. Thus Ed Effros [5] has designed a decomposition theory emphasiz-
ing a different kind of equivalence between representations (called weak
equivalence) specifically to circumvent this obstacle. A. Guichardet [9] has
obtained a number of results identifying some of the measures in ().
When the representations act on nonseparable Hilbert space, many of the

techniques of direct integral decomposition theory are no longer available.
Nevertheless a combination of the big group algebra theory ([7] and [8]) and
the structure theory for abelian yon Neumaun algebras does enable us to
characterize the representation lattice Q in terms of a measure lattice. Indeed
(Theorem 2) there exists a locally compact measure space (Z, ), called the
central space of G, such that Q is lattice isomorphic to the lattice 2(Z, ,) of all
measure classes on Z, absolutely continuous with respect to . Further the
sublattice Q of Q is isomorphic to the sublattice 2(Z, ,) of the -finite classes
2(Z, ,). The space (Z, ) is called the central space of G because the center
of the big group algebra a(G), (cf. [7]) is isomorphic to L(Z, ), the algebra of
-essentially bounded complex-valued measurable functions on Z.

This characterization helps one to understand the enigma of the canonical
measure lattice e((). Thus (Theorem 3) there exists a lattice isomorphism

of eaz(() onto the lattice 2(Z, ,) such that L(G, u) --- L(Z, ,(u)) for
all u in eN;((). The atoms of , correspond to the points of (. Thus a
measure in 2(Z, ,) which is concentrated on an atom of , corresponds to the
measure in eZ(() concentrated at the corresponding point of (.

In terms of the Maekey theory [12], this observation takes the following
form. There exists a measure ,z on the central space (Z, ,) of G such that
, << , and the lattice 2r of standard measure classes on G which arise from the
central decomposition of multiplicity free representations is lattice isomorphic
to the lattice of those elements of 2(Z, ,) which are absolutely continuous
with respect to ,.
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1. Preliminary considerations of separability
PROPOSITION 1. Every primary representation of a separable locally compact

group is quasi-equivalent to a separable primary representation.

Proof. Let L be a primary representation of G. Then L contains a cyclic
subrepresentation L’. Since G is separable, L’ must be separable. Since L
is primary, we conclude that L and L’ are quasi-equivalent.

COROLLARY. The quasi-dual of a separable locally compact group G is the
same whether one uses the set of quasi-equivalence classes of all primary representa-
tionsof G, or the set of quasi-equivalence classes of separable primary repre-
sentations of G.

We next generalize Theorem 8.3 of [7] to cover the case of nonseparable
representations. Recall that a normal ,-representation of a yon Neumann
algebra a is a ,-algebra homomorphism of a onto a yon Neumann algebra 63

which, when restricted to the positive cone of a, preserves least upper bounds.

PROPOSITION 2. Every strongly continuous unitary representation of a
separable locally compact group G has a unique extension to a normal ,-representa-
tion of its big group algebra a(G). (Cf. [7].) Further the restriction of any
normal ,-representation of ((G), to G, gives a strongly continuous unitary repre-
sentation of G.

Proof. Suppose L is a strongly continuous unitary representation of G.
Following the usual argument, one concludes that L is a direct sum of cyclic
representations, L }-x L. Since G is separable, we conclude that each
cyclic representation L is separable. We may then use Theorem 8.3 of [7] to
conclude that each L has a unique extension to a normal ,-representation
L’ of the big group algebra a(G). We may then form the direct sum
L’ A L’. Clearly L’ is a normal ,-representation of a(G) whose re-
striction to G is L. L’ is unique since G generates the yon Neumann algebra
a(G). (Theorem 7.2 of [7].)
We next let M denote a normal ,-representation of a(G). By Theorem 8.4

of [7] it follows that M is z-weak continuous. Let M’ denote its restriction to
G. Since the elements of G are unitary elements in a(G), (Theorem 2.3
of [7]) and since M is a ,-representation, it follows that M’ is a unitary repre-
sentation of G. Further the z-weak topology of a(G) induces the given
topology on G. (Corollary 5.8 of [7].) Thus M’ is a z-weakly and hence
strongly continuous unitary representation of G.

2. The representation lattice is a projection lattice

Proposition 2 shows that the study of normal ,-representations of von
Neumann algebras actually subsumes the theory of unitary representations of
separable locally compact groups. The main result of this section will be
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proved in the more general context of normal ,-representations of von Neu-
mann algebras. We assume the global concepts of unitary representations
([10] and [11]) such as unitary equivalence, quasi-equivalence, subrepresenta-
tion, primary representation etc., have been extended to normal ,-representa-
tions. For any representation L, the notation a(L) will always denote the
von Neumann algebra generated by the range of L. Often an adjective
referring to the von Neumann algebra a(L) will also be used to refer to the
normal ,-representation L. Once again Q Q(a) will denote the lattice of
all quasi-equivalence classes of normal ,-representations of a von Neumann
algebra a. The quasi-dual, denoted (, is the set of quasi-equivalence classes
of primary normal ,-representations of (.

PROPOSITION 3. Every normal ,-representation of a yon Neumann
algebra ( is a quasi-equivalent to an i’nduction, ( -- ( for some central pro-
jection E of (.

Proof. The mp is normul homomorphism of 0 onto a yon Neumann
ulgebr (0). According to the structure theorem for normal homomorphisms
(Theorem 3, page 58 of [3]), is the composite of three maps,

;o2o

where is an exemplification ("ampliation" in French) of 0 onto a yon

Neumann algebra (, = is an induction + u, where F is a projection in the
commutator of and a is a spatial isomorphism of onto (a). Let F’
denote the central support of F. Then F’ (g and the induction may be
expressed as the composite of two inductions,

2 2 2

where , nd ,. Since F’ is the central support of F,
Proposition 2, pge 19 of [3] implies that is n isomorphism. Since n
exemplification is n isomorphism we hve that is n isomorphism and
E (F’) is centrM projection of a. Let ’ denote the induction a a.
We next verify that nd ’ hve the sme kernel. Indeed

T eKer (T)F’ 0 (T)(E) 0

(TE) 0 TE 0 T eKer’.
Thus there exists n isomorphism 0 of a onto (a) such that 0(’(T) (T)
for M1 T in a. It follows from Lemm 4 of [6] that nd ’ re qusi-equiv-
lent.

THEOnEM 1. Let a denote a yon Neumann algebra. Then the representation
lattice Q of a is isomorphic to the lattice P of central prqiections in a.

Proof. For each projection E in P, let (E) denote the quasi-equivalence
class containing the normal ,-representation a a. We proceed to verify
that is lttice isomorphism of P onto Q.
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Clearly if E and F are in P and F > E, then the representation a -+ a. is a
subrepresentation of a -+ aF. Thus (F) (E) and is order preserving.
Conversely if q(F) (E), then we must have F > E. Indeed if not, then
E E1 E where E1 < F and E2 is a non-zero central projection such that
E2 F 0. Thus the representation < -+ a.2 is a nontrivial subrepresentation
of a -+ a, which is disjoint from g -+ gF However this contradicts the fact
that (F) (E). Thus the inverse map of q is also order preserving.
We next verify that is one to one. Suppose E and F are distinct elements

of P. Let L denote the representation a -+ a, and let M denote the repre-
sentation -+ aF. Since E # F, either E EF - 0 or F EF O. With-
out loss of generality, we suppose the former. Then L’ ( -+ a(u_y) is a non-
trivial subrepresentation of L. Since L 0, we have that L’r 0foranyT
for which Mr 0. Thus no subrepresentation of L’ can be equivalent to a sub-
representation of M. Thus L’ is disjoint from M and hence L and M are not
quasi-equivalent. Hence (E) q(F).
The proof that maps P onto Q has been separated out in Proposition 3.

COROLLARY 1. Zf a is a yon Neumann algebra, then the quasi-dual is in
one-to-one correspondence with the set of minimal central projections in c.

Proof. The primary classes in Q are just the minimal classes relative to the
partial ordering in Q.

COROLLARY 2. Let G denote a separable locally compact group. Then the
representation lattice Q of G is isomorphic to the lattice of all central projections
in its big group algebra a(G).

Proof. This result is obtained by applying the previous theorem to the big
group algebra a(G), and then using Proposition 2 to obtain a statement about
the representation theory of G.

3. The representation lattice is a measure lattice

THEOREM 2. To each separable locally compact group G we may associate a
locally compact measure space (Z, u), called the central space of G, such that Z is
the support of and which has the following properties.

1. The representation lattice Q of G is isomorphic to the lattice 2(Z, u) of all
measure classes on Z, absolutely continuous with respect to u.

2. The separable representation lattice Q of G is isomorphic to the lattice
(Z, ) of all a-finite measure classes on Z, absolutely continuous with respect
to u.

Proof. We refer the reader to [1] and [2] for the terminology to be used in
referring to (not necessarily a-finite) measures on a locally compact space.
To obtain the central space (Z, v), we apply the structure theory for abelian

yon Neumann algebras to the center Z(G) of the big group algebra ((G).
Thus uccording to Theorem 1, page 117 of [3], there exists a locally compact
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space Z, a positive measure y on Z whose support is Z, and an isometric iso-
morphism between the normed .-algebra Z(G) and the normed .-algebra
L(Z, y). Here L(Z, y) denotes the algebra of y-measurable, essentially
bounded, complex-vMued functions on Z, where one identifies two functions
which are equal locally almost everywhere. (Cf. pp. 207-208 of [1].)

Since (Corollary 2 to Theorem 1) Q is isomorphic to the lattice of pro-
jections P in 7;(G), it is sufficient to show that there is a one-to-one order
preserving map of P onto 2(Z, y). It is an easy exercise to show that the
projections inL(Z, y) are just the functions of the form xx where X is a y-meas-

urable subset of Z and xx denotes its characteristic function. For each pro-
jection E in Z(G), let x(E) denote the corresponding function in L(Z, y).
For each E in P, let (E) denote the equivalence class of the measure x(E) "y.

We next note that if E1 and E2 are distinct projections in Z(G), then the cor-
responding measures tl x(E)’y and t. x(E)’y are not equivalent. In-
deed x(E1) (respectively x(E)) contains a characteristic function xx (re-
spectively xY) where X and Y are y-measurable sets and the functions xx and
xY are not equivalent. Thus the set (X Y) u (Y X) is not locally
y-negligible. Thus one of the sets (X Y) and (Y X) is not locally
y-negligible. If (X Y) is not locally y-negligible, then (X Y) is a locally
t-negligible set which is not a locally l-negligible set. Thus t and are not
equivalent. This result follows similarly if Y X) is not locally y-negligible.
Thus is a one-to-one mapping of P into 2(Z, y) which is clearly an order
isomorphism. It remains to show that maps P onto 2(Z, y).

Let denote an element of 2(Z, y) and let denote a measure in the class .
By the Lebesgue-Nikodym theorem (Theorem 2, page 47 of [2]), there exists a
finite nonnegative locally y-integrable function g on Z such that g.y. Let
X denote the measurable set (x:x eZ and g(x) 0}. Then xx is also a
finite nonnegative locally y-integrable function and xx’y is equivalent to g.y.
But xx is a projection in L(Z, y). If we denote this projection by the letter
E, we have (E) .
To prove part 2 of the theorem, we shall apply some well known facts about

the structure theory of abelian von Neumann algebras, summarized in exer-
cises 2 and 3, page 119 of [3]. A quasi-equivMence class of representations of
G will be called separable if it contains at least one separable representation.
Similarly a measure class will be cMled a-finite if it contains at least one z-finite
measure.

Suppose E is contained in P, and that X is the corresponding measurable
subset of Z such that xx is the associated projection in L(Z, v). Then Z(G)
is of countable type if and only if X is, up to a set locally v-negligible, the
union of a countable number of integrable sets. (Recall that a yon Neumann
algebra ( is said to be of countable type if every family of projections of (,
nonzero and two-by-two orthogonal, is countable.) Thus the measure xx" v

is equivMent to a C-finite measure on Z. Thus for each projection E in P,
Z(G) is of countable type if and only if (E) is a -finite measure class.
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Note that since the group G is separable, Corollary 5.8 and Theorem 7.2 of
[7] imply that the big group algebra 6(G) is eountably generated. Thus in
particular, for every E in P, 6(G)E is eountably generated.

Let L denote a separable quasi-equivalence class in Q and let E denote the
corresponding element of P. Then the restriction M of the induction
((G) -- 6(G)E to the group G, is contained in the quasi-equivalence class L.
Further L contains a separable representation L. Thus 6(M) 6(G), the
von Neumann algebra generated by the range of M, is isomorphic to the yon

Neumann algebra 6(L) generated by the range of L. Since 6(G)E is iso-
morphic to avon Neumann algebra acting on a separable Hilbert space, 6 (G)

Sis of countable type. [hu its center, Z(G). is also of countable type. Hence
(P(E) is a a-finite measure class.

Conversely suppose (E) is a z-finite measure class. Then Z(G) is of
countable type. Since 6(G)E is generated by a countable family of elements,
exercise 3e, page 119 of [3] implies that 6(G) is isomorphic to a von Neumann
algebra, say 63, acting on a separable Hilbert space. Let f denote the iso-
morphism of 6(G) onto 63. Then the restriction L of the composite map

to G, gives a separable strongly continuous unitary representation of G for
which 6(L) 63. (Cf. Theorem 8.3 of [7]). Thus the representation of G
determined by the induction 6(G) -- a(G). is quasi-equivalent to the separa-
ble representation L. Thus the quasi-equivalence class corresponding to the
projection E, and hence to the a-finite measure class (E), is separable.

4. The canonical measure lattice e;(O)
In [6], the author developed a decomposition theory which associated, with

each separable unitary representation L of G, a measure class e(L) on the
quasi-dual of quasi-equivalence classes of primary representations. This
result sets up a lattice isomorphism between the separable representation lat-
tice Q and a lattice e() of c-finite measure classes on . eN;(() is called
the canonical measure lattice on . When G is not type I, eycC(() is a proper
sublattice of the lattice of all standard z-finite measure classes on G and the
identification of this sublattiee has remained an open problem.

THEOREM 3. Let G denote a separable locally compact group, (Z, ) its
central space, and e91Z() its canonical measure lattice. Then there exists a
lattice isomorphism q of the lattice 2(Z, ) of all a-finite measure classes on Z
which are absolutely continuous with respect to , onto the canonical measure
lattice eOZ( O). The map q has the additional property that

L (Z, ),
for every in 2(Z, ).

Proof. Note that both eaz(() and (Z, ,) are lattice isomorphic to Q.
(Cf. Theorems 3 and 4 of [6] and Theorem 2 above.) Thus there exists a
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lattice isomorphism of (Z, ) onto effl((). Let t* ,(Z, v) and let /
denote the corresponding element of Q,. (Cf. Theorem 2.) Then for any L
in the class L, L((, (t*) is isomorphic to the algebra of diagonalizable oper-
ators in the central decomposition of L. That is to say, L(G, (t)) is
isomorphic to the center of the von Neumann algebra a(L) generated by the
range of L. On the other hand the measure class contains a measure of the
form xx’, where xx is the characteristic function of a measurable set X and xx
is a projection E, in L (Z, v). Thus L(Z, u) ----- L (Z, xx" ) is isomorphic
to 2;(G),, which is the center of a(G). But a(G)., is the algebra a(M)
generated by the range of the representation M of G, determined by the in-
duction ((G) -+ ((G). By the definition of , L and M are quasi-equiva-
lent. Hence by Lemma 4 of [6], the center of a(L) is isomorphic to the center
of a(M). Thus L(Z, ) L(G, (t,) ).

Rernartc. A nontrivial measure class u, which is minimal in the lattice
(Z, ) will be called a measure aton of ,. It is an easy exercise to show that
each measure atom of is the class of a finite measure of compact support.
Note that the points of ( correspond to the measure atoms of ,. Thus a
measure atom t* in (Z, ,) corresponds to the measure in e(G) concentrated
at the corresponding point of G.

This same procedure may be used to describe the lattice x of those standard
z-finite measure classes on the dual 0 which arise from the central decomposi-
tion of separable multiplicity free representations. (Cf. [12].) It should be
pointed out that J. Dixmier [4] has shown that is Borel isomorphic to the
Borel subset Gx of G, consisting of the type I classes in G. With respect to
this isomorphism, 2, corresponds to the sublattice of e(G) consisting of the
measure classes which arise from the central decomposition of type I repre-
sentations.

COROLLARY. Let G denote a separable locally compact group, its dual and
(Z, ,,) its central space. Then there exists a measure v, on Z, absolutely con-
tinuous with respect to , such that the lattice 2 of standard measure classes on
which arise from the central decomposition of separable multiplicity free repre-
sentations of G, is lattice isomorphic to the lattice ,(Z, v) of all r-finite measure
classes on Z which are absolutely continuous with respect to vz.

Proof. Since the lattice of unitary equivalence classes of separable multi-
plicity free representations is lattice isomorphic to the lattice of quasi-equiva-
lence classes of separable type I representations, we simply identify the sub-
lattice of 2(Z, ) which, by the isomorphism of Theorem 2, corresponds to the
type I representations. By Corollary 1, page 121 of [3], there exists a maximal
central projection Ex of a(G) such that a(G)z is type I. Since Z(G) is iso-
morphic to L(Z, ), E corresponds to a non-negative function of L(Z, ).
Let x Then since the type I separable representations all correspond
to inductions of the form a(G) a(G), where E is a central projection for
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which E _< E, it follows that the type I elements of Q correspond to those
measures in. (Z, ) which are absolutely continuous with respect to .
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