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1. Introduction

An integral domain o* is an affine ring over a subdomain o in case o is a
Noetherian domain and o* is finitely generated over o. The Noetherian
domain o is said to satisfy the condition (F) in case each affine ring o™ over o
is such that the integral closure of 0™ in its quotient field is a finite 0*-module.
o is said to satisfy the condition (SF) in case each separably generated affine
ring 0* over o is such that the integral closure of o™ in its quotient field is a
finite 0*-module. It is known that a pseudo-geometric integral domain (for
example, a field or a complete local (Noetherian) domain) satisfies the
condition (F) [1, p. 133], and a regular Noetherian domain satisfies the con-
dition (SF) [3].

The terminology used in this note will be the same as that in [6, pp. 156-160
and 347-352]. Let o be a Noetherian domain, let K be a finitely generated
extension field of the quotient field of o, and let M be a finite (finitely gener-
ated) o-module contained in K. 1In [4] it is proven that if o is a field, then the
integral closure M’ of M in K is a finite o-module, and in [5] it is proven that
there exists a non-negative integer k such that (M***)’ = (M"*)'M’ for all
¢ > 0 (where M° = o). It will be shown in this note that these two theorems
can be generalized to the case where o is a Noetherian domain which satisfies
the condition (F) (or (SF)) and where K is a finitely generated (respectively
a finite separable) extension field of the quotient field of ». It will also be
shown that if o is furthermore a local domain, then every finitely generated
o-module M contained in K has a minimal reduction N (see Section 3 for the
definition ), and, without the assumption that o is local, that if N is a reduction
of M, then N’ = M’.

The methods used in Section 2 are similar to those used in [4] and [5].

2. Finiteness of the integral closure of a finite o-module

Throughout this section the following notation will be used. o is a Noetherian
domain which satisfies the condition (F) (or (SF)), K is a finitely generated
(respectively a finite separable) extension field of the quotient field E of o,
and M = (ma, -+, m,) is a finite o-module contained in K. Let ¢ be an
element which is transcendental over K. Set M™* = ¢}, and regard M ™ as an
o-module contained in the field K(¢). Let M™ be the integral closure of M*
in K(t), and set R* = oftmy, -+, tm,] = D gm0 M (where M™ = 0). Let
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F be the quotient field of R* let m be a nonzero element in 3/, and set
Fo = E(my/m, -+, m,/m). Let Fq be the algebraic closure of Fy in K, and
let R* be the integral closure of R* in Fo(¢). The following remark is a state-
ment of results proved in [6, pp. 351-352].

Remark 2.1. (1) R* (R™) is a graded subdomain of K[t], M™*® (respec-
tively R™ n t%Fq) being the set of homogeneous elements of degree ¢ (¢ > 0).
(2) R™ is the integral closure of R* in K(¢). (3) (MY’ = (1/)%(M™*?) =
(1/)%(R™ n °F;). (If A is an o-module contained in K, then the integral
closure of A in K is equal to the integral closure of A in K(¢). Hence if A
is an p-module contained in K(t), then A’ will consistently be used to denote
the integral closure of 4 in K(¢).)

To prove that the integral closure of M in K is a finite o-module, it is suffi-
cient by (3) of Remark 2.1 to prove that R* n tFy is a finite 0-module. Since
K (t) is finitely generated over E (and is a finite separable extension of E if
K is), Fo(t) is a finite algebraic (respectively finite separable algebraic) ex-
tension field of F. Hence, since o satisfies the condition (F) (respectively
(SF)), R* is a finite R*-module.

TaEOREM 2.1. Let M be a finite o-module contained in K. Then the inlegral
closure M’ of M in K s a finite o-module.

Proof. Since R™ is a finite R*-module, there exist elements 2, , - - - , z, in
R* such that R* = 2, R* 4+ --- + 2, R*. Since R is a graded subring of
Fo(t) (Remark 2.1), #; = fio + -+ =+ fin, , where fi; e t'Fg . Since R is the
graded ring D oo M*, if ye R™ n tFo, then y = D %y (mfi fio + misfa),
where m}; e M*. Therefore tM’ = R* n tFq is contained in the o-module
generated by (0, M™)(fio, fu, feo, for, =+ 5 Joo, for). Since M* is a finite
p-module, and since o is Noetherian, ¢M’ is a finite o-module, hence M’ is a
finite p-module, Q.E.D.

CoroLLARY 2.1. If M s a finite o-module contained in K, then the integral
closure in K of M* (k > 0) is a finite o-module.

Proof. M" is a finite o-module, Q.E.D.

Let P denote the prime ideal tK[f] n R*. Since R* is a graded Noetherian
subdomain of K[t], and since an element z in K is in (M?)’ if and only if z¢?is
in M* < R* (Remark 2.1), P = (118", -+ -, 1, t*")R™, where r; ¢ (M*)’.
Therefore an element z in K is in (M?)’ (¢ > 1) if and only if ¢* is in P, hence
if and only if 22 = fir £ + - -+ + fo 7 t“*, where f; e R*. It may clearly be
assumed that f; = s#¥ ™ if ¢ > u;, and that f; = 0 if ¢ < u;. Hence
xe(M?) if and only if £ = &7 + -+ + Su7s, Where r;e (M)’ and
sie (MT™) (s; = 0if ¢ < u;). Let u be the maximum of the u; .

Lemma 2.1, With the preceding notation if ¢ > ku (k > 1), then
(MQ)I — (Z (Mq—klul“‘""‘kn“n)/ (Mul)lkl ... (M“n)lkn)
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(=N, say) where the sum s over all non-negative integers ky, -+ - , k, such
thatky + - -+ + k. = k.

Proof. The case k = 1 is true by the preceding paragraph. Hence let &*
be greater than one and assume that the statement holds for values of k < k*.
Now (M?)" 2 Ngus, since (AB)' 2 A’B’ and (A 4+ B)' D A’ + B’ holds
for all p-modules 4 and B [6, pp. 348-349]. Hence let x ¢ (M?)’. Then

T =81+ o+ Suta,

where s; ¢ (M%), Since ¢ — u; > ¢ — u > (k™ — 1)u, by induction each
S; € Nqﬁu.- J*—1 . Since r;€ (M“‘)', X € Nq,k* 5 QED

CoROLLARY 2.2 If ¢ > ku, then (M™) is contained in the ideal P*.
Proof. If xt% e (M™)’, then xt* e P. Therefore
wt! = (s1ryF o+ sa 1)l
where s; ¢ (M%), hence s; t*™ ¢ (M™*")’. Since
¢—us2q—u>(k—1u,
the conclusion follows by induction on %k, Q.E.D.

Lemma 2.2. If M s a finite 0-module contained in K, then there exists a
positive integer q (depending on M) such that (M) = (M')*M", for all
i > 0.

Proof. Ifxz e M’, then x satisfies an equation of the form

’ X +m X4 s+ my =0,
where m; e M", hence
e M(D 0y M7 (M) c M(M")*™.

Let M’ = (a1, -+, o) (Theorem 2.1), let g; be an integer such that
2% ¢ M(M')* ™", and let g be the maximum of the g;. Since (M’)" is gener-
ated by the power products of degree r of the z;, if ¢ = k(g — 1), then each
power product of degree ¢ 4 1 is in M(M’)% Hence (M) = (M')'M,
and the conclusion follows immediately, Q.E.D.

TueorEM 2.2.  If M is a finite o-module contained in K, then there exisis o
positive integer q (depending on M) such that (M) = (M%)’ M", for all i > 0.
Proof. Given M, the ring R* can be constructed, hence a basis
(rot™, oo, rat™)

of tK[t] n R* can be found. By Lemma 2.2 let g; (j = 1, - -+ ,n) be positive
integers such that (M™)"%" = (M")"%(M")*. Let g be the maximum of
the g;, and let k be a positive integer such that if k,, - -+, k, are positive
integers which sum to k, then k; > ¢ 4 1 for at least onej. Letq = ku — 1,



ON FINITE MODULES OVER A NOETHERIAN DOMAIN 59

and let ¢ > 1. By Lemma 2.1, (M")*"* = N,.., and each summand of
Ngvin has a factor (M™)™ ... (M*)"*, Sincek; > g 4+ 1 > ¢g; + 1 for
some j, each summand of N,y has M as a factor (since u; > 1). Therefore
(M™% = AM, where A is Ngi with M factored out of each summand.
By the properties of the integral closure of a sum of products, 4 is clearly
contained in (M?*)’. Hence

(MY = MA € MM™TY (MY,

SO (Mq“)’ = M (M”H)’ (z > 1). Therefore by induction on z > 0,
(M™% = (MY'M°, QE.D.

CoroLLARY 2.3. Let g be such that (M™% = (M'M* for all £ > 0, and
set N = (M?)'. Then (N’) = N’forallj > 1.

Proof. (M™)" = (M%'M* < (MY (M%)’ c (M°M?%)’ = (M*)’, hence
(M*) = (M%"” and by induction (M™) = (M?%"™. Therefore
N" = (M™) = (M)™)" = (N"), QE.D.

3. Reductions of p-modules

In [2] a reduction of an ideal 4 in a Noetherian ring ¢ was defined to be an
ideal B in Q such that B ¢ A and BA™ = A™" for some n > 1. B was de-
fined to be a minimal reduction of A in case B is a reduction of A and B is
minimal with this property. It was proved in [2] that if @ is a local ring, then
every ideal 4 in @ has a minimal reduction B, and that if A contains an element
which is not a zero-divisor in @, then the integral closure A’ of A in @ is equal
to the integral closure B’ of B in Q. Further B is a reduction of B’ = A/, and
if B is a reduction of C, then C ¢ B’. In this section it will be proved that,
with the same domain o and field K of Section 2 these results can be extended
to a finite o-module M contained in K. However, to prove the existence of a
minimal reduction of M it was necessary to agssume that o is a local domain.

Let 0 and K be as in Section 2, and let M be a finite p-module contained in K.
An o-module N C M is a reduction of M in case M = NM", for some n > 0.
N is a minimal reduction of M in case if L is a reduction of M which is contained
in N, then L = N. Tt should be noted that if N is a reduction of M, then N
is a finite 0-module (since o is Noetherian), and that M is a reduction of M.
Further, if N is a reduction of M, then N is a reduction of every n-module L
suchthat N ¢ L ¢ M. (That L is also a reduction of M follows immediately
from the next paragraph.) Finally, if N is a reduction of M, say M"* = NM",
then M"™* = N'M", for all i > 0.

By Lemma 2.2, M is a reduction of M’ (where A’ denotes the integral
closure in K of an p-module A). Also, if N is a reduction of M, then
NM" = MM", for some n, therefore (NM")' = (MM")’. Hence, since M" is
a finite p-module, N’ = M’ [6, p. 348]. Further N’ = M’ is the largest
o-module for which N is a reduction, for if N is a reduction of L, then
N cL cL’ = N’'. Insummary,
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TurorEM 3.1. If M is a finite o-module contained in K, then M is a re-
duction of M’. If N is a reduction of M, then N’ = M’, N s a reduction of L,
where N ¢ L c N/, and L 7s a reduction of N' = L.

If o is a local domain (which does not necessarily have the property (F)
(or (SF))), then the proof given in [2] that every ideal has a minimal reduction
carries over with minor changes to proof of

TureoreM 3.2. Let o be a local domain, and let K be an extension field of the
quotient field of 0. If M 1s a finite 0-module contained in K, then there exists a
manimal reduction of M.

REFERENCES

. M. Nagara, Local Rings, New York, Interscience, 1962.
. D. G. NorTHCOTT AND D. REES, Reduction of ideals in local rings, Proc. Cambridge
Philos. Soc., vol. 50 (1954), pp. 145-158.
. L. J. RaTuirF, JR., Separably generated spots and affine rings over regular rings, Amer.
J. Math., vol. 85 (1963), pp. 126-130.
4. E. SNAPPER, Integral closure of modules and complete linear systems, Algebraic geom-
etry and topology, Princeton, Princeton University Press, pp. 167-176, 1957.
5. ———, Higher-dimensional field theory, I, the integral closure of a module, Compositio
Math., vol. 13 (1956), pp. 1-15.
6. O. Zarisk1 aND P. SAMUEL, Commutative algebra, volume II, Princeton, D. Van Nos-
trand, 1960.

[

w

UNIVERSITY OF CALIFORNIA
Ri1versiDE, CALIFORNIA



