ON FINITE MODULES OVER A NOETHERIAN DOMAIN¹

 \mathbf{BY}

Louis J. Ratliff, Jr.

1. Introduction

An integral domain \mathfrak{o}^* is an affine ring over a subdomain \mathfrak{o} in case \mathfrak{o} is a Noetherian domain and \mathfrak{o}^* is finitely generated over \mathfrak{o} . The Noetherian domain \mathfrak{o} is said to satisfy the condition (F) in case each affine ring \mathfrak{o}^* over \mathfrak{o} is such that the integral closure of \mathfrak{o}^* in its quotient field is a finite \mathfrak{o}^* -module. \mathfrak{o} is said to satisfy the condition (SF) in case each separably generated affine ring \mathfrak{o}^* over \mathfrak{o} is such that the integral closure of \mathfrak{o}^* in its quotient field is a finite \mathfrak{o}^* -module. It is known that a pseudo-geometric integral domain (for example, a field or a complete local (Noetherian) domain) satisfies the condition (F) [1, p. 133], and a regular Noetherian domain satisfies the condition (SF) [3].

The terminology used in this note will be the same as that in [6, pp. 156–160 and 347–352]. Let $\mathfrak o$ be a Noetherian domain, let K be a finitely generated extension field of the quotient field of $\mathfrak o$, and let M be a finite (finitely generated) $\mathfrak o$ -module contained in K. In [4] it is proven that if $\mathfrak o$ is a field, then the integral closure M' of M in K is a finite $\mathfrak o$ -module, and in [5] it is proven that there exists a non-negative integer k such that $(M^{k+i})' = (M^k)'M^i$ for all $i \geq 0$ (where $M^0 = \mathfrak o$). It will be shown in this note that these two theorems can be generalized to the case where $\mathfrak o$ is a Noetherian domain which satisfies the condition (F) (or (SF)) and where K is a finitely generated (respectively a finite separable) extension field of the quotient field of $\mathfrak o$. It will also be shown that if $\mathfrak o$ is furthermore a local domain, then every finitely generated $\mathfrak o$ -module M contained in K has a minimal reduction N (see Section 3 for the definition), and, without the assumption that $\mathfrak o$ is local, that if N is a reduction of M, then N' = M'.

The methods used in Section 2 are similar to those used in [4] and [5].

2. Finiteness of the integral closure of a finite p-module

Throughout this section the following notation will be used. \mathfrak{o} is a Noetherian domain which satisfies the condition (F) (or (SF)), K is a finitely generated (respectively a finite separable) extension field of the quotient field E of \mathfrak{o} , and $M=(m_1,\cdots,m_r)$ is a finite \mathfrak{o} -module contained in K. Let t be an element which is transcendental over K. Set $M^*=tM$, and regard M^* as an \mathfrak{o} -module contained in the field K(t). Let $M^{*'}$ be the integral closure of M^* in K(t), and set $R^*=\mathfrak{o}[tm_1,\cdots,tm_r]=\sum_{q=0}^\infty M^{*q}$ (where $M^{*0}=\mathfrak{o}$). Let

Received July 7, 1964.

¹ This article is an extension of some results in the author's doctoral dissertation, and was partly supported by a National Science Foundation Grant.

F be the quotient field of R^* , let m be a nonzero element in M, and set $F_0 = E(m_1/m, \dots, m_r/m)$. Let F'_0 be the algebraic closure of F_0 in K, and let $R^{*\prime}$ be the integral closure of R^* in $F'_0(t)$. The following remark is a statement of results proved in [6, pp. 351–352].

Remark 2.1. (1) $R^*(R^{*\prime})$ is a graded subdomain of K[t], M^{*q} (respectively $R^{*\prime} \cap t^q F_0'$) being the set of homogeneous elements of degree q ($q \geq 0$). (2) $R^{*\prime}$ is the integral closure of R^* in K(t). (3) $(M^q)' = (1/t)^q (M^{*q})' = (1/t)^q (R^{*\prime} \cap t^q F_0')$. (If A is an \mathfrak{o} -module contained in K, then the integral closure of A in K is equal to the integral closure of A in K(t). Hence if A is an \mathfrak{o} -module contained in K(t), then A' will consistently be used to denote the integral closure of A in K(t).)

To prove that the integral closure of M in K is a finite \mathfrak{o} -module, it is sufficient by (3) of Remark 2.1 to prove that R^* ' \mathfrak{n} tF_0' is a finite \mathfrak{o} -module. Since K(t) is finitely generated over E (and is a finite separable extension of E if K is), $F_0'(t)$ is a finite algebraic (respectively finite separable algebraic) extension field of F. Hence, since \mathfrak{o} satisfies the condition (F) (respectively (SF)), R^* ' is a finite R^* -module.

Theorem 2.1. Let M be a finite \mathfrak{o} -module contained in K. Then the integral closure M' of M in K is a finite \mathfrak{o} -module.

Proof. Since $R^{*\prime}$ is a finite R^{*} -module, there exist elements x_{1} , \cdots , x_{g} in $R^{*\prime}$ such that $R^{*\prime}=x_{1}$ $R^{*}+\cdots+x_{g}$ R^{*} . Since $R^{*\prime}$ is a graded subring of $F'_{0}(t)$ (Remark 2.1), $x_{i}=f_{i0}+\cdots+f_{ih_{i}}$, where $f_{ij} \in t^{j}F'_{0}$. Since R^{*} is the graded ring $\sum_{q=0}^{\infty}M^{*q}$, if $y \in R^{*\prime}$ \cap tF'_{0} , then $y=\sum_{i=1}^{q}(m_{i1}^{*}f_{i0}+m_{i0}^{*}f_{i1})$, where $m_{ij}^{*} \in M^{*j}$. Therefore $tM'=R^{*\prime} \cap tF'_{0}$ is contained in the \mathfrak{o} -module generated by $(\mathfrak{o}, M^{*})(f_{10}, f_{11}, f_{20}, f_{21}, \cdots, f_{g0}, f_{g1})$. Since M^{*} is a finite \mathfrak{o} -module, and since \mathfrak{o} is Noetherian, tM' is a finite \mathfrak{o} -module, Q.E.D.

COROLLARY 2.1. If M is a finite \mathfrak{o} -module contained in K, then the integral closure in K of M^k $(k \geq 0)$ is a finite \mathfrak{o} -module.

Proof. M^k is a finite \mathfrak{o} -module, Q.E.D.

Let P denote the prime ideal $tK[t] \cap R^{*\prime}$. Since $R^{*\prime}$ is a graded Noetherian subdomain of K[t], and since an element x in K is in $(M^q)'$ if and only if xt^q is in $M^{*q} \subset R^{*\prime}$ (Remark 2.1), $P = (r_1 t^{u_1}, \dots, r_n t^{u_n}) R^{*\prime}$, where $r_i \in (M^{u_i})'$. Therefore an element x in K is in $(M^q)'$ ($q \ge 1$) if and only if xt^q is in P, hence if and only if $xt^q = f_1 r_1 t^{u_1} + \dots + f_n r_n t^{u_n}$, where $f_i \in R^{*\prime}$. It may clearly be assumed that $f_i = s_i t^{q-u_i}$ if $q \ge u_i$, and that $f_i = 0$ if $q < u_i$. Hence $x \in (M^q)'$ if and only if $x = s_1 r_1 + \dots + s_n r_n$, where $r_i \in (M^{u_i})'$ and $s_i \in (M^{q-u_i})'$ ($s_i = 0$ if $q < u_i$). Let u be the maximum of the u_i .

Lemma 2.1. With the preceding notation if $q \ge ku$ $(k \ge 1)$, then

$$(M^q)' = (\sum (M^{q-k_1u_1-\cdots-k_nu_n})' (M^{u_1})'^{k_1} \cdots (M^{u_n})'^{k_n})$$

 $(=N_{q,k}$, say) where the sum is over all non-negative integers k_1, \dots, k_n such that $k_1 + \dots + k_n = k$.

Proof. The case k=1 is true by the preceding paragraph. Hence let k^* be greater than one and assume that the statement holds for values of $k < k^*$. Now $(M^q)' \supseteq N_{q,k^*}$, since $(AB)' \supseteq A'B'$ and $(A+B)' \supseteq A'+B'$ holds for all \mathfrak{o} -modules A and B [6, pp. 348–349]. Hence let $x \in (M^q)'$. Then

$$x = s_1 r_1 + \cdots + s_n r_n,$$

where $s_i \in (M^{q-u_i})'$. Since $q - u_i \ge q - u \ge (k^* - 1)u$, by induction each $s_i \in N_{q-u_i,k^*-1}$. Since $r_i \in (M^{u_i})'$, $x \in N_{q,k^*}$, Q.E.D.

Corollary 2.2 If q > ku, then $(M^{*q})'$ is contained in the ideal P^{k+1} .

Proof. If $xt^q \in (M^{*q})'$, then $xt^q \in P$. Therefore

$$xt^q = (s_1 r_1 + \cdots + s_n r_n)t^q,$$

where $s_i \in (M^{q-u_i})'$, hence $s_i t^{q-u_i} \in (M^{*q-u_i})'$. Since

$$q - u_i \ge q - u > (k - 1)u,$$

the conclusion follows by induction on k, Q.E.D.

LEMMA 2.2. If M is a finite o-module contained in K, then there exists a positive integer q (depending on M) such that $(M')^{q+i} = (M')^q M^i$, for all $i \geq 0$.

Proof. If $x \in M'$, then x satisfies an equation of the form

$$X^{g} + m_{1} X^{g-1} + \cdots + m_{g} = 0,$$

where $m_i \in M^i$, hence

$$x^{g} \in M(\sum_{i=1}^{g} M^{i-1}(M')^{g-i}) \subseteq M(M')^{g-1}.$$

Let $M' = (x_1, \dots, x_k)$ (Theorem 2.1), let g_i be an integer such that $x_i^{q_i} \in M(M')^{g_i-1}$, and let g be the maximum of the g_i . Since $(M')^r$ is generated by the power products of degree r of the x_i , if q = k(g-1), then each power product of degree q + 1 is in $M(M')^q$. Hence $(M')^{q+1} = (M')^q M$, and the conclusion follows immediately, Q.E.D.

Theorem 2.2. If M is a finite o-module contained in K, then there exists a positive integer q (depending on M) such that $(M^{q+i})' = (M^q)'M^i$, for all $i \geq 0$.

Proof. Given M, the ring R^{*} can be constructed, hence a basis

$$(r_1 t^{u_1}, \cdots, r_n t^{u_n})$$

of $tK[t] \cap R^{*'}$ can be found. By Lemma 2.2 let g_j $(j=1,\dots,n)$ be positive integers such that $(M^{u_j})^{rg_j+i}=(M^{u_j})^{rg_j}(M^{u_j})^i$. Let g be the maximum of the g_j , and let k be a positive integer such that if k_1,\dots,k_n are positive integers which sum to k, then $k_j \geq g+1$ for at least one j. Let g=ku-1,

and let $i \geq 1$. By Lemma 2.1, $(M')^{q+i} = N_{q+i,k}$, and each summand of $N_{q+i,k}$ has a factor $(M^{u_1})'^{k_1} \cdots (M^{u_n})'^{k_n}$. Since $k_j \geq g+1 \geq g_j+1$ for some j, each summand of $N_{q+i,k}$ has M as a factor (since $u_j \geq 1$). Therefore $(M^{q+i})' = AM$, where A is $N_{q+i,k}$ with M factored out of each summand. By the properties of the integral closure of a sum of products, A is clearly contained in $(M^{q+i-1})'$. Hence

$$(M^{q+i})' = MA \subseteq M(M^{q+i-1})' \subseteq (M^{q+i})',$$

so $(M^{q+i})' = M(M^{q+i-1})'$ $(i \ge 1)$. Therefore by induction on $i \ge 0$, $(M^{q+i})' = (M^q)'M^i$, Q.E.D.

COROLLARY 2.3. Let q be such that $(M^{q+i})' = (M^q)'M^i$ for all $i \geq 0$, and set $N = (M^q)'$. Then $(N^j)' = N^j$ for all $j \geq 1$.

Proof. $(M^{q+q})' = (M^q)'M^q \subseteq (M^q)'(M^q)' \subseteq (M^qM^q)' = (M^{2q})'$, hence $(M^{2q})' = (M^q)'^2$, and by induction $(M^{qn})' = (M^q)'^n$. Therefore $N^n = (M^{qn})' = ((M^q)'^n)' = (N^n)'$, Q.E.D.

3. Reductions of n-modules

In [2] a reduction of an ideal A in a Noetherian ring Q was defined to be an ideal B in Q such that $B \subseteq A$ and $BA^n = A^{n+1}$ for some $n \ge 1$. B was defined to be a minimal reduction of A in case B is a reduction of A and B is minimal with this property. It was proved in [2] that if Q is a local ring, then every ideal A in Q has a minimal reduction B, and that if A contains an element which is not a zero-divisor in Q, then the integral closure A' of A in Q is equal to the integral closure B' of B in Q. Further B is a reduction of B' = A', and if B is a reduction of C, then $C \subseteq B'$. In this section it will be proved that, with the same domain $\mathfrak o$ and field K of Section 2 these results can be extended to a finite $\mathfrak o$ -module M contained in K. However, to prove the existence of a minimal reduction of M it was necessary to assume that $\mathfrak o$ is a local domain.

Let $\mathfrak o$ and K be as in Section 2, and let M be a finite $\mathfrak o$ -module contained in K. An $\mathfrak o$ -module $N \subseteq M$ is a reduction of M in case $M^{n+1} = NM^n$, for some n > 0. N is a minimal reduction of M in case if L is a reduction of M which is contained in N, then L = N. It should be noted that if N is a reduction of M, then N is a finite $\mathfrak o$ -module (since $\mathfrak o$ is Noetherian), and that M is a reduction of M. Further, if N is a reduction of M, then N is a reduction of every $\mathfrak o$ -module L such that $N \subseteq L \subseteq M$. (That L is also a reduction of M follows immediately from the next paragraph.) Finally, if N is a reduction of M, say $M^{n+1} = NM^n$, then $M^{n+i} = N^iM^n$, for all $i \ge 0$.

By Lemma 2.2, M is a reduction of M' (where A' denotes the integral closure in K of an \mathfrak{o} -module A). Also, if N is a reduction of M, then $NM^n = MM^n$, for some n, therefore $(NM^n)' = (MM^n)'$. Hence, since M^n is a finite \mathfrak{o} -module, N' = M' [6, p. 348]. Further N' = M' is the largest \mathfrak{o} -module for which N is a reduction, for if N is a reduction of L, then $N \subset L \subset L' = N'$. In summary,

Theorem 3.1. If M is a finite v-module contained in K, then M is a reduction of M'. If N is a reduction of M, then N' = M', N is a reduction of L, where $N \subseteq L \subseteq N'$, and L is a reduction of N' = L'.

If \mathfrak{o} is a local domain (which does not necessarily have the property (F) (or (SF))), then the proof given in [2] that every ideal has a minimal reduction carries over with minor changes to proof of

Theorem 3.2. Let $\mathfrak o$ be a local domain, and let K be an extension field of the quotient field of $\mathfrak o$. If M is a finite $\mathfrak o$ -module contained in K, then there exists a minimal reduction of M.

REFERENCES

- 1. M. NAGATA, Local Rings, New York, Interscience, 1962.
- D. G. NORTHCOTT AND D. REES, Reduction of ideals in local rings, Proc. Cambridge Philos. Soc., vol. 50 (1954), pp. 145-158.
- L. J. Ratliff, Jr., Separably generated spots and affine rings over regular rings, Amer. J. Math., vol. 85 (1963), pp. 126-130.
- 4. E. Snapper, Integral closure of modules and complete linear systems, Algebraic geometry and topology, Princeton, Princeton University Press, pp. 167-176, 1957.
- 5. ———, Higher-dimensional field theory, I, the integral closure of a module, Compositio Math., vol. 13 (1956), pp. 1-15.
- O. Zariski and P. Samuel, Commutative algebra, volume II, Princeton, D. Van Nostrand, 1960.

University of California Riverside, California