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1. Introduction
Because of their nice topological properties K/hler mnifolds hve been

studied much more extensively than other kinds of almost Hermitian mani-
folds. In the study of non-K/hler almost Hermitian manifolds it is natural
to consider those whose almost complex structure satisfies similar but weaker
conditions than those of Kahler manifolds. Calabi and Eckmann [3] have
given several examples of complex non-Kahler manifolds which show that the
Betti numbers of complex manifolds are not as regularly determined as those
of Khler manifolds. In a different direction it is known [1], [9] that the
homogeneous spaces G/A S, F/A X A E/A. X A X A ,E/A. X A
Es/As, Es/A X E, and Es/A X A have homogeneous almost complex
structures which are not complex. Calabi [2] has also proved that orientable
six-dimensional hypersurfaces of R have almost complex structures which are
usually non-Kahlerian.

In 2 we propose several conditions for an almost complex manifold which
are slightly weaker than its being parallel (in which case the manifold would be
K/hler). The manifolds we discuss include complex and almost Kahler mani-
folds; also S with the almost complex structure derived from the Cayley
numbers falls into a class of manifolds which we call nearly Khlerian. Our
definitions were first given by Kot5 [12], but we have reformulated some of
them in terms of the exterior derivative d and the co-derivative .
We also determine the inclusion relations between the classes of manifolds

we discuss; these relations formally resemble those in the classification theory
of Riemann surfaces. Next comes the question of whether the various in-
clusions are strict. Two methods of constructing almost Hermitian manifolds
for the examples of strict inclusion are given. The first in 3 uses conformal
diffeomorphisms. In 4 we give the second method, which may be described
as follows: a certain class of seven-dimensional manifolds, which includes
parallelizable manifolds, is considered. These manifolds have a "vector cross
product tensor" which is defined by means of the Cayley numbers. Then
orientable (six-dimensional) hypersurfaces of these seven-dimensional mani-
folds are almost complex and provide a great many interesting examples.
Our work generalizes that of Calabi [2], who considered orientable hyper-
surfaces of R. A particularly interesting consequence of our work is that for
any orientable hypersurface of R with its almost complex structure induced
from the Cayley numbers, the Khler form (or fundamental 2-form) is co-
closed.
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2. Types of almost Hermitian manifolds
Let M be a C real differentiable manifold, (M) the ring of real-valued

differentiable functions on M, and (M) the module of derivations of (M).
Then (M) is a Lie algebra over the real numbers and the elements of (M)
are called vector fields. An almost complex manifold M is a differentiable
manifold equipped with a (1, 1) tensor J (which we may regard as an (M)-
linear map J (M) -- (M)) which satisfies J -I, where I is the
identity. Such a manifold is orientable and even-dimensional. M is almost
Hermitian provided it is almost complex and has a Riemannian metric
for which (JX, JY} (X, Y} for all X, Y e (M). Any Riemannian almost
complex manifold may be made almost Hermitian, and so we shall henceforth
deal only with almost Hermitian manifolds. To describe the geometry of an
almost Hermitian manifold M, it is useful to consider two special tensors.
The first is a 2-form F, called the Kghlerform, and it is defined for X, Y e (M)
by F(X, Y) (JX, Y}. Since it is skew symmetric, it is in fact a differential
form. The second, called the Nijenhuis tensor, is a (1, 2) tensor S defined by

(2.1) S(X, Y) [X, Y] + J[JX, Y] + J[X, JY] [JX, JY],

for X, Y e (M). It is easy to see that

S(X, Y) -S(Y, X), S(JX, Y) S(X, JY) -JS(X, Y).

If we extend the Riemannian connection Vx of M to be a derivative on the
tensor algebra of M, then we have the following formulas:

(2.2) Vx(J) Y) Vx(JY) JVx(Y),

(2.3) Vx(F) Y, Z) (Vx(J) (Y), Z).

It will be necessary to have explicit formulas for the exterior derivative and
the co-derivative of F. By standard formulas (cf. [11]) these are computed
to be

(2.4) dE(X, Y, Z) Vx(F)(Y, Z),

(2.5) F(X) -=1 {V,(F)(E ,Z) - Vj,(F)(JE ,Z)}

where denotes the cyclic sum over X, Y, Z e (M) and

{El, E, ,JE ,JE,}

is a frame field on an open subset of M.

THEOREM 2.1. Let X, Y, Z e (M). Then

(2.6) S(X, Y) -Vx(J)(JY) + Vjy(J)(Z) Vzx(J)(Y)

+ Vy(J)(JZ),

(2.7) 2Vx(F)(Y, Z) dF(Z, Y, Z) dR(X, JY, JZ) (Z, S(Y, JZ)},
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(2.8) 2V(F)(Y, Z) + 2Vx(F)(JY, Z)

dF(X, Y, Z) dF(X, JY, JZ) -t-- dF(Z, JX, JY)

+ dF Y, JZ, JX),

(2.9) 2V(F) Y, Z) 2V(F) (JY, Z)

(S(X, JY), Z) (S(X, Z) JY) (S(JY, Z),

Proof. The proof of (2.6) follows from the fact that

Vx(Y) Vr(X) [X, Y];

(2.7), (2.8) and (2.9) are consequences of (2.6) and the formula

(2.10) Vx(F)(JY, Z) Vx(F)(Y, JZ).

We shall call an almost Hermitian manifold Kghlerian if Vx(J) 0 for
all X Y(M), almost Kdhlerian if dF O, nearly K(hlerian if

Vx(J) (Y) + Vr(J) (X) 0

for all X, Y e (M), quasi-Kgihlerian if
Vx(J)(Y) -t- Vjx(J)(JY) 0

for all X, Y (M), semi-Kdhlerian if iF 0,and Hermitian if S 0. Kot5
[12] uses the terms H-space for almost Khlerian, K-space for nearly Kth-
lerian, .0-space for quasi-Khlerian, and almost semi-Kiihlerian for semi-
Khlerian. An almost complex manifold is complex if and only if S 0.
As a consequence of Theorem 2.1 we get the following corollary, which gives

a useful alternate characterization of Hermitian manifolds.

COROLLARY 2.2. Vx(F)(Y, Z) Vjx(F)(JY, Z) for all X, Y, Z e (M)
if and only if M is Hermitian. Vx(F)(Y, Z) -Vx(F)(JY, Z) if and only
if M is quasi-Kgihlerian.

Let , a,, 9,, ., $,, and 5C den.ore the classes of Kiihler, almost Kahler,
n.early Kiihler, quasi-Kiihler, semi-Kahler, and Hermitian manifolds re-
spectively.

THEOREM 2.3. We have

ca c
and 3 3C.

C9C

Furthermore

Proof. That a follows from (2.3) and (2.4), a

_ , from (2.3)
and (2.8), ., $ from (2.3) and (2.5), and

_
3C from (2.6). It is

obvious that

___
9,, and

___
(, is a consequence of (2.10). Further-



356 ALFRED GRAY

more n is obvious and the reverse inclusion follows from (2.9).
Finally if M 9 we have dF(X, Y, Z) 3V(F)(Y, Z), for X, Y, Z (M),
and hence 9 n a .
We remark that quasi-Kahlerian manifolds have the property that any

almost Hermitian submanifold is a minimal variety [8]. Theorem 2.3 is proved
by Kot5 [12] in a different form.

3. Conformal diffeomorphisms of almost Hermitian
manifolds

Let (M, ( }) and (M, { 0) be Riemannian manifolds and
M -* M a diffeomorphism. If J( e (M) let X e (M) be the vector

field on M corresponding to X induced by . Then is called a conformal
diffeomorphism provided there exists z e (M) such that

(3.1) <X0, r0>Oo e<X, y>
for 11 X, Y e(M). Forfe(M) define grdfe(M) by

(gradf, X) X f
for all X (M). Then we have

LEMMA 3.1. If M ---* M is a conformal diffeomorphism with

(Xo, rO)O o e.,(X, y),

then if Vx and Vxo are the Riemannian connections of M and M respectively

(3.2) Vxo(Y) {Vx(Y) - X(a)Y - Y(a)X (X, Y) grad a}o.
Proof. This follows from (3.1) and the formula

2(V(Y), Z) X(Y, Z) (X, IF, Z]) -t- Y(X, Z)

(Y, [X, Z]) Z(X, Y) - (Z, IX, Y]).

Next we suppose thut M -- M in addition to being conformal diffeo-
morphism is also almost complex; that is, we assume M has an almost complex
structureJ i(M) -- (M) which satisfiesJX (JX); then M is almost
Hermitian. Let F and S be the Khler form and the Nijenhuis tensor cor-
responding to jo,/to the coderivative of M determined by ( )o. Also let

* be the map induced by which takes differential forms on M back to
differential forms on M.

PROPOSITION 3.2. We have the following formulas:

(3.3) F (Xo, yO) o eF(X, Y),

(3.4) *(F) eF,
(3.5) q*(dF) e{2 da ^ F - dE},
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(3.6) Vo(J)(Y) {Vx(J)(Y)+ JY((r)X- Y(z)JX- {JX, Y} grad - (X, Y)J grad z}0,
(3.7) Vo(F)(Y, Z) o e2{Vx(F)(Y, Z) + JY(a)<X, Z>

Y(z)F(X, Z) - F(X, Y)Z(a)

(X, Y>JZ(a)},
(3.8) F(X) o q F(X) + (n- 2)JX(a)

(n dim M 2m),

(3.9) sO(xO, yO) S(X, y)O, for X, Y, Z (M).

Proof. (3.3), (3.4), (3.5), and (3.6) are elementary consequences of (3.1)
and (3.2), while (3.9) follows from (2.1). For (3.8) we first observe that if

E1, E,,JE1, ,JE,}

is a frame field on an open subset of M, then

(e-E1),..., (e-Em), (e-JE), ..., (e-JE)}
is a frame field on an open subset of M. Hence by (3.7)

ZF(X) o q e- _,-- {V,o(F)(E, X) -t- V.,o(F) (J E )} o )

-= {V,(F)(E, X) -t- JE,(a)(E,, X) E,(a)(JE, ,X)

JX(a) -t- V,(F)(JE,, X) E,(a)(JE, X)
-]- JE,(a)(E X) JX(a)}
F(X) + (n- )JX().

THEOREM 3.3. Let ’M ---+ M be a conformal diffeomorphism between
almost Hermitian manifolds. If M e C then Me. On the other hand sup-
pose dim M >_ 4 and q is not homothetic (i.e., is non-constant). Then if M
is in one of the classes , (, 93, , or $, M is never in any of these classes.

Proof. The first statement follows from (3.9). Next suppose M is in one
of the classes , a, 9, ., or $;; then by Theorem 2.3, M e $. Con-
sequently by (3.8) for all Xe (M) we have

F(X) o q (n 2)JX(a).

Hence forn dimM > 2,F 0. HenceM$andsoMisnotin
any of the classes , (, 9,, or . either.

4. Vector cross products on seven-dimensional manifolds

Let M be a seven-dimensional Riemannian manifold. We shall assume
the existence on 2r of a vector cross product which is a (1, 2) tensor

P" (2,),X (2) --,
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(we also write P(A, B)
A, B, C ()
(4.1)

A >< B) having the following properties" for

AXB --BXA,

(A X B,C) (A,B X C),

(4.3) (A ><B) X C+A >< (B >< C) 2(A,C}B- (B,C}A (A,B)C.

Then ) i[(/) --+ (/), called the scalar triple product, is defined by

X(A, B, C) (A B, C);
by (4.1) and (4.2) it is a 3-form. Similarly a vector triple product is defined by

[A B C] A X B) >< C- (A, C)B + (B, C)A.
For example, any parallelizable manifold has such a tensor. Let

{Eo ....., E6}
be a frame field defined globally on , and consider {Eo, E6} as a basis
for a seven-dimensional vector space. We can add a vector I to make
{I, E0, E6} a basis for the Cayley numbers with I the identity. Then
the vector cross product X is the projection of the Cayley product onto the
space spanned by {E0, ..., E6}. In fact for A, B in this space we may
define X by

(4.4) AB -(A, B}I + A X B

where AB denotes the Cayley product. Explicitly, X is given by (4.1) and
cyclic permutation of the form

E. X E.+ E.+ (j Z);
each of these seven equations is to be permuted cyclically to yield fourteen
other equ.tions. We extend X to all of (/r) by (/)-linearity. Then
(4.1), (4.2), and (4.3) follow from (4.4) and the properties of Cayley mul-
tiplication [7].
Roughly speaking, P and X correspond to J and F, except that the former

have one more degree of contravariancy; we shall exploit this analogy in
Section 5.

PROPOSITION 4.1. Let /[ be a seven-dimensional manifold with Riemannian
connection , vector cross product denoted by P or X, and scalar triple product
We have the following formulas:
(4.5) Va(P)(B, C)
(4.6) V.(P)(B, C)
(4.7) <Va(P) (B, C), D)

Va(P)(B X C, D)
(4.S)

V(B X C) V(B) X C- B X Y(C),
--V.(P)(C,B),
<B, V.(P)(C, D)>,

+ V,(P)(B, C X D)

--B X V.(P)(C, D) V.(P)(B, C) X D,
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(4.9)

(4.10)

(4.11)

Va(k)(B, C, D) (Va(P)(B, C), D},

dk(A, B, C, D) ((R)Va(P)(B, C), D) VD(k)(A, B, C),

=o(V(P)(A, B), E)
_-0 (k)(E, A, B),

for A, B, C, D, (M) and {E0, E0} any frame field. Here denotes
the coderivative of

Proof. These formulas are consequences of (4.1), (4.2) and (4.3).

Remarks. For R we may choose {E0, ..., E0} parallel. Then P is
parallel, i.e., V(P) 0, and so

(4.12)

for all A, B, C
For three-dimensional manifolds a vector cross product may be defined

in a similar fashion via the quaternions. In this case we have (4.1), (4.2),
and

(A X B) X C -(C, A}B + (B, A)C
which implies (4.3) and that [A B C] 0. A three-dimensional Riemannian
manifold has a vector cross product if and only if it is orientable, in which
case we may assume (A X B, C) co(A, B, C) where co is the volume element.
From this it follows that B C .(B h C) and that

V(B C) V(B) X C + B X V(C)

so that the vector cross product is always parallel. Dimensions three and seven
are essentially the only ones where a vector cross product can be defined
(cf. [5], [16]).

5. Certain six-dimensional almost Hermitian manifolds

Let M be a Riemannian manifold imbedded in another Riemannian manifold
/r. Let

(M) {XJ i [X(3r)};
then we may write (M) (M) @ (M) where (M) is the collection of
vector fields normal to M. Let

PM (M) (M)

be the natural projection. The configuration tensor [8] is an (M)-linear map

T" (M) X (M)---. (M)
defined by

Tx(Y) Vx(Y) Vx(Y) forX, Y e(M)

k(A,B)



360 ALFRED GRAY

and
Tx(Z) PMVx(Z) for X e (M), Z e (M).

Then Tx(,(M)) Y.(M) , Tx(Y.(M)’) X(M) for Z e(M),
Tx(Y) Tr(X) for X, Y e (M), and (Tx(Z), W --(Tx(W), Z) for
W, X (M), Z e (M). The configuration tensor is equivalent to the
classical second fundamental form, which in our terminology would be the
linear trunsformution X --+ Tx(Z) for X e (M), Z e (M). The mean curva-
ture vector H of M in/1 is defined by H T(E,) where n dim M
and {E, E} is frame field on an open subset of M; this definition is
independent of the choice of {E, E}. M is called a minimal variety if
H 0. Similarly if T 0, M is called totally geodesic, and if Tx(X)
Tr(Y) for 11 X, Y, (i) with X y II, i is called totally umbilic
(cf. [8], [14]).
We now consider special case. Suppose 2l is a seven-dimensional orient-

able Riemunniun munifold on which there exists a vector cross product denoted
by either P(A, B) or A X B, und let M be u (six-dimensional) orientable
hypersurface of /]r. Then we may choose unit vector field N globully
defined on M, which is a basis for (M)’. Since N has constant length, it is
easy to see that Tx(N) Vx(N). Define J" (M) -->(M) byJA
N X A. On account of (4.1) and (4.2)we have (N, JA)= 0so actually
J" (M) --. (M). Furthermore from (4.3) it follows that JA
--A nd from (4.2) and (4.3) that(JA,JB) (A, B)for A, B e (M). From
(4.3) we Mso hve the useful formulu

JA X B -J A X B) (A, B)N.

Let F be the K/hler form of M; by (4.2) we have F(A, B) (N, A X B)
for A, B e (M). We my choose canonical frames on M so that E0 N;
such frames then have the form {N, E, JE, E, JE., E,, JE,}.

THEORE 5.1. We have the following formulas for A, B, C e (M)"

(5.1) V(F)(B, C) (V.(P)(B, C) T.(B X C), N)

(k)(B, C, N) (T(B X C), N),

(5.2) V(F)(B, C) % Vs(F)(A, C)

V(X)(B, C, N) + V,(,)(A, C, N)

-(T.(B C) -[- TB(A X C), N),

(5.3) V(F)(B, C) + Vj.(F)(JB, C)

V.(),)(B, C, N) --[- V,.(,)(JB, C, N)

--((T,- T.J)(B X C), N),



SOME EXAMPLES OF ALMOST HERMITIAN MANIFOLDS 361

(5.4) V(F)(B, C) V(F)(JB, C)

V()(B, C, N) V()(JB, C, N)

{(T + TJ) (B X C), N},

(5.5) <H, N> , {V,(X)(E, E, N) V+,(X)(JE, E N)

V,(F)(E, E) + Vz,(F)(JE,, E)}

{dF(E,,JE,JE) + dX(N,E,,JE,JE)}

{dF(E,, E, E) + dX(Y, E,, E, E)},

(5.6) SF(A) X(A, N),

for A, B, C e (M). Here E X E E.

Proof. For (5.1) we have

V(f) (S, C) <V(N X B) N X V(B), C>
<V(P)(N, B) + V(N) X B, C>
<V(P)(B, C), N> + <T(N) X B, C>
<V(B)(B, C), N> <T(B X C), N>.

The proofs of (5.2), (5.3), and (5.4) are obous consequences of (5.1).
For (5.5) we have

{<T,(E X E), N>- <T,(JE X E), N>}

{V,(X)(E ,E ,N) V,,(X)(JE ,E ,N)

V,(F)(E ,E) + V,(F)(JE ,E)}

by (5.1). For the second part of (5.5) we compute the Lie derivative
L(X). We have

L(X)(E,, E, E) NX(E,, E, E) X([N, E,], E, E)

+ + N).

Similarly

L(X)(E,, JE, JE) (T(E,) + T(JE) + T(JE), N).
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Hence we have

(5.7) L(h)(E ,JE ,JE) L()(E E+ E)

2_, (T,(E,) + T+,(JE,), N)

2(H, N).

Let denote the interior product operator; we have [10, p. 35]

(5.8) L ) de ) d dF d.

The second part of (5.5) now follows from (5.7) and (5.8).
For (5.6) we may assume without loss of generality that A E. Then

F(E) --V.(F)(E, E,) V.(F)(JE, E,) V(F)(E, E)

V(E)(JE E)

--())(E, E,, N) .(X)(JE, E,, N)

(),)(E, E,, N) (X)(JE, E,, N)

((T TJ)(E X E,), N)- ((T TJ)(E X E,), N)

X(E, N) - (T(E) T(JE) T(E) -t- T(JE), N)

N).

COROLLARY 5.2. If M is totally geodesic in I, (5.1) reduces to

(5.9) Va(f)(B, C) Va(,)(B, C, N).

M is totally umbilic in /1 if and only if
Va(f)(B, C) -k- Vn(F)(A, C)

(5.10)
Va(X)(B, C, N) + ?n(X)(A, C, N).

If M is either Hermitian or almost K(ihlerian, (5.5) reduces to

(H, N) {V,(),)(E, E, N) V,(X)(JE, E, N)}
(5.11)

1/2 d),(N, E,, JE, JE) 1/2 dX(N, E,, E, E).

Proof. The proofs of (5.9) and (5.11) are obvious, while (5.10) follows
from the fact that there is a function M --. R such that

T.t(U) (A, B)N for all A, Be (i).

In the next section we investigate in detail orientable hypersurfaces of
R7. Other parallelizable seven-dimensional manifolds re, for exumple, seven-
dimensionul hyperbolic space, the seven-dimensional sphere, and U(4)/U(3),
which with an appropriate invariant metric is diffeomorphic but not isometric
to the seven-dimensional sphere. For these manifolds the covariant derivative
of ), does not vanish.
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6. Orientable six-dimensional hypersurfaces of R
As we have noted, the vector cross product on R is parallel and so Theorem

5.1 simplifies considerably in this case.

TEOEM 6.1. Let M be an orientable hypersurface of R with its almost
complex structure induced from the Cayley numbers. Then

(6.1) M 3 if and only if M is totally geodesic, i.e., M is a hyperplane of R.
(6.2) M 9 if and only if M is locally isometric to a sphere.

(6.3) M3 if and only if T. TJ for all A e(M).

(6.4) M C if and only if T T.J for all A (M).

(6.5) If either M e C or M e (, then M is a minimal variety of R.
(6.6) M a if and only if T. TJ for all A (M) and M is a minimal
variety of R.
(6.7) M e $.

Proof. (6.1), (6.3), (6.4), (6.5), and (6.7) follow from Theorem 5.1,
and (6.2) follows from Corollary 5.2, since Ss(r, p) is totally umbilic. For
(6.6) we observe that if M e a, then M e . and so T TJ; this with
(6.5) proves the necessity. For the sufficiency we first note that T TJ
for all A e (M) implies M e . Now for any quasi-Kiihler manifold M we
have

(6.8) dF(JA, B, C) dF(A, JB, C) dF(A, B, JC)

for all A, P, C e (M). Hence if M is minimal variety (5.5) reduces to

(6.9) dF(E E E) O.

Furthermore by drect calculation we have

dF(JF, E, E) (-T(JE) + T(JE)
and

dF(gE,, JE, JE) (T,,(JE) - T(JE)
therefore by (6.8)

(6.10) dF(JE E E) dF(JE JE JE) O.

By using (6.8) and linearity any expression dF(A, B, C) can be reduced to
either (6.9) or (6.10). Hence dF 0 and M

Parts of this theorem are given in a different form by Calabi [2] and
Fukami and Ishiham [6].

COROLLAY 6.2. Let M be an orientable hypersurface of R with its almost
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complex structure induced from the Cayley numbers.
M C, M cannot be compact.

Then if either M e ( or

Proof. M must be a minimal variety, but there are no compact minimal
varieties of R (cf. [13], [15]).

No examples of six-dimensional hypersurfaces of R which are almost
Kthlerian but not Khlerian are known.
We next investigate some special cases of Theorem 6.1.

THEOREM 6.3. Let R be a three-dimensional linear subspace of R closed
under the vector cross product, and let M1 be a surface in R. Detine
M M1 X R4, where R is the orthogonal complement of R. Then [2] we
may assume that {E0, E6} is a frame field on M such that Eo N is normal
to M and. El and E. are tangent to M.
(6.11) M e , M ( u9 if and only ifM is locally isometric to a sphere
S2(r, p).

(6.12) M e , M if and only if M is a nonplanar minimal surface of R.
(6.13) M e $, M u C if and only ifM is neither a minimal surface nor
locally isometric to a sphere.

Proof. If A e(M) let A1 denote the component of A tangent to M,
and let T1 be the configuration tensor of M1 in R. Then

T(B) T,(B1) TLI(B)

for all A, B e i(M). Moreover M1 is an almost Hermitian submanifold of
M;thatis, JA (JA)I. IfMe then

T,(B) Tj(JB) TIjI(JB1)

for all A, B e(M). In particular T(E) TI(JE) T(E); this
implies that M is totally umbilic, and therefore locally isometric to a sphere.
Conversely, if M is locally isometric to a sphere it is totally umbilic and so

T(A) TI,(A) T(JA1) T,(JA).

This implies M e.
Furthermore M a, since if H denotes the mean curvature vector of

M we have H T,(E) T(E) 2Tl(E1) 0. Also M ,,
since

TI(E X E6) - T(E E) T(E) T(E) T,(E1) 0

This proves (6.11); (6.12) and (6.13) can be proved in a similar fashion.

7. The strictness of the inclusions

he olowio beore oeheri heoe . deerne 11
inclusion relations among the various classes of almost Hermitian manifolds
defined in 2, and shows that they are all strict.
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THEOREM 7.1.

and

We have

au < <u (s n) < $

$3n $u (C.

Here a stands for the class of all almost Hermitian manifolds.
Proof. < . Let S be imbedded in R with its almost complex

structure determined from the Cayley numbers. Then S e by Corollary
5.2, but S .

< a. Dombrowski [4] has shown that the tangent bundle of any
Riemannian manifold whose curvature does not vanish has an almost com-
plex structure which is almost Kahlerian but not Kahlerian.
a < a u . Since an wehave

a ua .
< a . The proof is similar to that of a < a .
ao < . By (6.11) S XRebutS XRaowhere

the Mmost complex structure is induced from the Cayley numbers.
($ n ) < $. Let M be a surface in R which is neither minimal

nor locMly isometric to a sphere, and let M M X R R. With the
Mmost complex structure induced from the Cayley numbers M e $ but

< u ($n). From the relationn wehave

< $ n . Let M be a minimal surface inRa. Then by (6.12),
M X Re$ n but M X R, where the Mmost complex structure is
induced from the Cayley numbers.
$ n < $. This is a consequence of the strict inclusion

o($n) <
$ n < . Let M be conformMly flat, but not flat, and even-dimen-

sional. For example, we may take M to be hyperbolic space, or a sphere
minus a point. With the almost complex structure induced via the con-
formal diffeomorphism of M into Euclidean space M e but M $ by
Theorem 3.3.
$ < $. Wehave$o$ $n 9.

< $ . Similarly$u $$n.
$ < a. Let M be conformMly equivMent to a manifold e $

for which M . For example, we may take S{p} and M R
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with the stereographic proiection as the conformal diffeomorphism. Then
M e a but M $ t .
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