ON THE VANISHING OF TOR IN REGULAR LOCAL RINGS

BY

STEPHEN LICHTENBAUM

Introduction

The object of this paper is to provide a proof of the following conjecture of Auslander [1, p. 636]: Let C be a regular local ring, M and N C-modules of finite type. Then $\operatorname{Tor}_i^{\mathcal{C}}(M, N) = 0$ implies $\operatorname{Tor}_j^{\mathcal{C}}(M, N) = 0$ for $j \geq i$. This was previously known only when C is an unramified or equicharacteristic local ring. The proof uses two theorems of some independent interest, concerning the non-negativity of higher Euler characteristics.

The following notations and conventions are used throughout: If A is a ring, and M an A-module, l(M) denotes the length of M. If M and N are two A-modules, we define

$$\chi_j^A(M,N) = \sum_{i\geq j} (-1)^{i-j} l(\operatorname{Tor}_i^A(M,N)).$$

The use of these notations presupposes, in the first case, that M is an A-module of finite length, and in the second case, that $\operatorname{Tor}_i^A(M, N)$ is a module of finite length for $i \geq j$ and is 0 for i sufficiently large.

If A is a noetherian ring, and M an A-module of finite type, Supp M (the support of M) is the (closed) subset of Spec A consisting of all prime ideals p of A such that $M_p \neq 0$. The dimension of M (dim M) is the dimension of the noetherian topological space Supp M. We make the convention that dim (0) = -1. Tôr (M, N) denotes the "complete Tor." See [3 Chapter V] for details.

Statement and Proof of results

LEMMA 1. Let A be a noetherian local ring with maximal ideal m. Let x_1, x_2, \dots, x_d be an A-sequence contained in m generating an ideal I. Let M be an A-module of finite type. Assume that M/IM is an A-module of finite length. Then $Tor_i^A(A/I, M)$ is an A-module of finite length for $i \ge 1$ which is zero for i large, and $\chi_0^A(A/I, M) \ge 0$, with the equality holding iff dim M < d.

Proof. Since Supp $(\operatorname{Tor}_i^A(A/I, M))$ is included in Supp $(M/IM) = \{m\}$, it is clear that the $\operatorname{Tor}_i^A(A/I, M)$ have finite length. The resolution of A/I by the Koszul complex with respect to x_1, \dots, x_d shows that A/I has finite homological dimension. The rest of the proof proceeds by induction on d. If d = 0, the statement is obvious. So assume $d \ge 1$, and let $B = A/x_1$, let $x = x_1$. Then we have the spectral sequence

$$\operatorname{Tor}_{p}^{B}\left(A/I, \operatorname{Tor}_{q}^{A}\left(B, M\right)\right) \Rightarrow \operatorname{Tor}_{p+q}^{A}\left(A/I, M\right).$$

Since B has homological dimension 1 as an A-module, the spectral sequence degenerates into an exact sequence:

Received December 14, 1964.

$$\cdots \to \operatorname{Tor}_{j-1}^{B} \left(A/I, \operatorname{Tor}_{1}^{A} \left(B, M \right) \right) \to \operatorname{Tor}_{j}^{A} \left(A/I, M \right)$$
$$\to \operatorname{Tor}_{j}^{B} \left(A/I, B \otimes_{A} M \right) \to \cdots \to A/I \otimes_{B} \operatorname{Tor}_{1}^{A} \left(B, M \right)$$
$$\to \operatorname{Tor}_{1}^{A} \left(A/I, M \right) \to \operatorname{Tor}_{1}^{B} \left(A/I, B \otimes_{A} M \right) \to 0.$$

It is easy to see that all the modules in this sequence are modules of finite length, and that

(*)
$$\chi_0^A(A/I, M) = \chi_0^B(A/I, B \otimes_A M) - \chi_0^B(A/I, \operatorname{Tor}_1^A(B, M)).$$

Now, $B \otimes_A M$ is just M/xM. Multiplication by x induces a surjective map $\varphi_x : x^r M/x^{r+1}M \to x^{r+1}M/x^{r+2}M$

for all r. Let $K_r = \text{Ker } \varphi_r$. Since M is a noetherian module, K_r is zero for r large. Since x is a non-zero-divisor in A, $\text{Tor}_1^A(B, M)$ is just the set of elements of M killed by x. An immediate calculation then shows that

 $K_r = (\mathrm{Tor}_1^A(B, M) \cap x^r M) / \mathrm{Tor}_1^A(B, M) \cap x^{r+1} M.$

Let $N = x^n M / x^{n+1} M$, where *n* is large enough so that φ_r is an isomorphism for $r \ge n$. Then one sees easily by the additivity of the Euler characteristic that

$$(**) \quad \chi_0^B(A/I, N) = \chi_0^B(A/I, B \otimes_A M) - \chi_0^B(A/I, \operatorname{Tor}_1^A(B, M)).$$

Hence, putting (*) and (**) together, we see that $\chi_0^A(A/I, M) \ge 0$ by the induction hypothesis.

Knowing this, we may reduce the last statement of the lemma to the case when M = A/P, P a prime ideal in A, by replacing M by a composition series for M whose factors are of the form A/P. Now we have two cases: either xis a non-zero-divisor on A/P, or x kills A/P. In the first case, $\operatorname{Tor}_1^A(B, M) = 0$ and dim $M \otimes_A B = \dim M - 1$, so $\chi_0^A(A/I, M) = \chi_0^B(A/I, B \otimes_A M)$, and we are done by induction. In the second case, we have on the one hand $M \simeq B \otimes_A M \simeq \operatorname{Tor}_1^A(B, M)$ so $\chi_0^A(A/I, M) = 0$, and on the other hand $M/(x_2 \cdots x_d)M$ has finite length, so dim $M \leq d - 1$.

THEOREM 1. Let A be a noetherian local ring with maximal ideal m, M an A-module of finite type. Let $x_1 \cdots x_d$ be an A-sequence contained in m. Assume that there exists a j such that $\operatorname{Tor}_j^A(A/I, M)$ is an A-module of finite length, where $I = (x_1 \cdots x_d)$. Then $\operatorname{Tor}_k^A(A/I, M)$ is an A-module of finite length for $k \geq j$, and $\chi_j^A(A/I, M) \geq 0$. If $j \geq 1$ and $\chi_j = 0$, then $\operatorname{Tor}_j^A(A/I, M) = 0$.

Proof. The case when j = 0 has been proved in Lemma 1, and by replacing M by a suitable module of syzygies, we may reduce the case $j \ge 1$ to the case j = 1. We prove this by induction on d. If d = 0, it is obvious. If $d \ge 1$, we let $x = x_1$, B = A/x, and consider the spectral sequence degenerating into an exact sequence which we used in Lemma 1. First we note that

$$l(\operatorname{Tor}_{1}^{A}(A/I, M)) < \infty$$

$$\Rightarrow l(\operatorname{Tor}_{1}^{B}(A/I, B \otimes_{A} M)) < \infty$$

- $\Rightarrow \quad \text{[by the induction hypothesis)} \quad l(\operatorname{Tor}_{k}^{B}(A/I, B \otimes_{A} M)) < \infty \text{ for } k \geq 2.$
- \Rightarrow (by the exact sequence) $l(A/I \otimes_B \operatorname{Tor}_1^A(B, M)) < \infty$
- $\Rightarrow \quad (\text{Lemma 1}) \quad l(\operatorname{Tor}_k^B(A/I,\operatorname{Tor}_1^A(B,M))) < \infty \text{ for } k \ge 1.$
- $\Rightarrow \text{ (by the exact sequence)} \quad l(\operatorname{Tor}_{k}^{A}(A/I, M)) < \infty \text{ for } k \geq 1.$

Hence $\chi_1^A(A/I, M) = \chi_1^B(A/I, B \otimes_A M) + \chi_0^B(A/I, \operatorname{Tor}_1^A(B, M))$. So by induction and Lemma 1, $\chi_1^A(A/I, M) \ge 0$. If $\chi_1^A(A/I, M) = 0$, we must have

$$\chi_1^B(A/I, B \otimes_A M) = 0$$
 and $\chi_0^B(A/I, \operatorname{Tor}_1^A(B, M)) = 0$,

hence $\operatorname{Tor}_{1}^{B}(A/I, B \otimes_{A} M) = 0$ and dim $\operatorname{Tor}_{1}^{A}(B, M) \leq d - 2$. I claim that this implies that $\operatorname{Tor}_{1}^{A}(B, M) = 0$.

Let K be $\operatorname{Tor}_{1}^{4}(B, M)$, so that we have the exact sequence

 $0 \to K \to M \to xM \to M/xM \to 0.$

Let $M_1 = M/K$. Let $K_1 = \operatorname{Tor}_1^A (B, M_1)$. Now M/xM has depth $\geq d - 1$, since

$$\operatorname{Tor}_{1}^{B}(B/(x_{2}\cdots x_{d}), M/xM) = 0$$

and $x_2 \cdots x_d$ form a *B*-sequence. I claim that the hypotheses imply that M_1/xM_1 is isomorphic to M/xM and K_1 is isomorphic to *K*. We have the exact sequence

$$\begin{array}{l} 0 \to \operatorname{Tor}_1^A \left(B, K \right) \to \operatorname{Tor}_1^A \left(B, M \right) \to \operatorname{Tor}_1^A \left(B, M_1 \right) \\ & \qquad \to K/xK \to M/xM \to M_1/xM_1 \to 0 \end{array}$$

whose last four terms reduce to

$$0 \to K_1 \to K \to M/xM \to M_1/xM_1 \to 0.$$

Since depth $M/xM \ge d - 1$, all the associated primes of M/xM have dimension $\ge d - 1$. [3, IV, p. 14]. Since K has dimension $\le d - 2$, the map of K to M/xM must be the zero map, so we are done. Letting

$$M_n = M_{n-1}/K_{n-1}$$
 and $K_n = \text{Tor}_1^A (B, M_n)$

we find by induction that $K_n \simeq K$. Hence if $K \neq 0$, the M_n form an infinite strictly decreasing sequence of quotient modules of M, which is impossible since M is noetherian. So $\operatorname{Tor}_1^A(B, M) = 0$. It now follows that $\operatorname{Tor}_1^A(A/I, M) = 0$, and we have completed the proof.

THEOREM 2. Let B be a complete unramified regular local ring and let M and N be B-modules of finite type. (1) If $\operatorname{Tor}_{i}^{B}(M, N) = 0$ then $\operatorname{Tor}_{j}^{B}(M, N) = 0$ for $j \geq i$. (2) If $\operatorname{Tor}_{i}^{B}(M, N)$ has finite length, then $\operatorname{Tor}_{j}^{B}(M, N)$ has finite length for $j \geq i$ and $\chi_{i}^{B}(M, N) \geq 0$. (3) If $i \geq 2$ and $\chi_{i}^{B}(M, N) = 0$ then $\operatorname{Tor}_{i}^{B}(M, N) = 0$. (4) If $\chi_{1}^{B}(M, N) = 0$ and either M or N is a torsion-free B-module, then $\operatorname{Tor}_{1}^{B}(M, N) = 0$. *Proof.* By the Cohen structure-theory for such rings, (see [2] for example). *B* is isomorphic to $R[[T_1 \cdots T_n]]$ where *R* is a discrete valuation ring or a field and the T_i 's are indeterminates. Let $A = B \otimes_R^* B$. Then Serre shows in [3], that there exists a spectral sequence

$$\operatorname{Tor}_p^{A}(B,\operatorname{Tôr}_q^{R}(M,N)) \ \Rightarrow \ \operatorname{Tor}_{p+q}^{B}(M,N).$$

Since the homological dimension of R is ≤ 1 , the spectral sequence degenerates into an exact sequence

$$\cdots \to \operatorname{Tor}_{j-1}^{A} (B, \operatorname{Tôr}_{1}^{R} (M, N)) \to \operatorname{Tor}_{j}^{B} (M, N) \to \operatorname{Tor}_{j}^{A} (B, M \otimes_{R}^{*} N) \to \cdots \to B \otimes_{A} \operatorname{Tôr}_{1}^{R} (M, N) \to \operatorname{Tor}_{1}^{B} (M, N) \to \operatorname{Tor}_{1}^{A} (B, M \otimes_{R}^{*} N) \to 0.$$

Since A and B are regular, we see that the ideal I in A defining B is generated by an A-sequence of length n.

If $\operatorname{Tor}_{1}^{B}(M, N) = 0$, then $\operatorname{Tor}_{1}^{A}(B, M \otimes_{R}^{R} N) = 0$, hence by Theorem 1, $\operatorname{Tor}_{2}^{A}(B, M \otimes_{R}^{R} N) = 0$, hence $B \otimes_{A} \operatorname{Tôr}_{1}^{R}(M, N) = 0$, hence $\operatorname{Tôr}_{1}^{R}(M, N) = 0$, hence $\operatorname{Tor}_{1}^{A}(B, \operatorname{Tôr}_{1}^{R}(M, N)) = 0$, hence $\operatorname{Tor}_{2}^{B}(M, N) = 0$. The case of general *i* and *j* immediately reduces to j = i + 1, and then to i = 1, by replacing *M* by a suitable module of syzygies. So (1) is proved.

If i = 0, (2) was proved by Serre [3, V, p. 16]. So as above we may assume that i = 1. The result about finite lengths follows exactly as above, using Theorem 1. From the exact sequence, we obtain

$$\chi_1^{\scriptscriptstyle B}(M,N) = \chi_1^{\scriptscriptstyle A}(B,M\otimes_{\scriptscriptstyle R}^{\scriptscriptstyle R}N) + \chi_0^{\scriptscriptstyle A}(B,\operatorname{Tôr}_1^{\scriptscriptstyle R}(M,N)) \geq 0.$$

By replacing M by a suitable module of syzygies, (3) follows from (4). However, if M is torsion-free, $T\hat{o}r_1^{\mathcal{R}}(M, N) = 0$ [3, V, p. 9], and

$$\operatorname{Tor}_{i}^{B}(M, N) \simeq \operatorname{Tor}_{i}^{A}(B, M \otimes_{\mathbb{R}}^{n} N),$$

and the result follows from Theorem 1.

THEOREM 3. Let C be a local ring which is the quotient of an unramified (or equicharacteristic) regular local ring B by a non-zero element x. Let M and N be C-modules of finite type such that $\operatorname{Tor}_n^{C}(M, N) = 0$ for large n. Then if $\operatorname{Tor}_i^{C}(M, N) = 0$, $\operatorname{Tor}_j^{C}(M, N) = 0$ for $j \geq i$.

Proof. We prove the theorem by induction on dim C. (The proof of the induction step will give the result when dim C = 0 as a special case.) So we assume that the theorem is true for rings C^1 with dim $C^1 < \dim C$.

First, we have the spectral sequence:

$$\operatorname{Tor}_{p}^{c}(M, \operatorname{Tor}_{q}^{B}(N, C)) \implies \operatorname{Tor}_{p+q}^{B}(M, N).$$

Since $C \simeq B/xB$, x is a non-zero divisor, and N is a C-module, we have $\operatorname{Tor}_{q}^{B}(N, C) = 0$ for $q \geq 2$, and $\operatorname{Tor}_{1}^{B}(N, C) \simeq N \otimes_{B} C \simeq N$. Thus the spectral sequence degenerates into an exact sequence:

$$\cdots \to \operatorname{Tor}_{j-1}^{c}(M,N) \to \operatorname{Tor}_{j}^{B}(M,N) \to \operatorname{Tor}_{j}^{c}(M,N)$$
$$\to \cdots M \otimes_{c} N \to \operatorname{Tor}_{1}^{B}(M,N) \to \operatorname{Tor}_{1}^{c}(M,N) \to 0.$$

It is sufficient to prove that $\operatorname{Tor}_1^c(M, N) = 0$ implies $\operatorname{Tor}_2^c(M, N) = 0$, so assume $\operatorname{Tor}_1^c(M, N) = 0$. Let P be a prime ideal of $C \neq m$ = the maximal ideal of C. Then $C_P \simeq B_Q/xB_Q$, where Q is the inverse image of P in B and $\dim C_P < \dim C$. Since a ring of quotients of an unramified regular local ring with respect to a prime ideal is an unramified regular local ring [2, p. 99], the theorem is true for C_P . Let $C_P = D$. Then

$$\operatorname{Tor}_{1}^{P}(M_{P}, N_{P}) \simeq \operatorname{Tor}_{1}^{C}(M, N)_{P} = 0.$$

Hence by the induction hypothesis, $\operatorname{Tor}_{j}^{D}(M_{P}, N_{P}) = 0$ for $i \geq 1$ or $\operatorname{Tor}_{j}^{C}(M, N)_{P} = 0$ for $j \geq 1$. Hence $\operatorname{Tor}_{j}^{C}(M, N)$ has finite length for $j \leq 1$.

By the exact sequence, $\operatorname{Tor}_{j}^{B}(M, N)$ has finite length for $j \geq 2$. Let

$$\varphi: \operatorname{Tor}_2^c (M, N) \to M \otimes_c N.$$

From the exact sequence, we get $\chi_2^B(M, N) + l(\operatorname{Im} \varphi) = 0$. (Since $\operatorname{Tor}_1^C(M, N) = 0$.) But $\chi_2^B(M, N) = \chi_2^D(\hat{M}, \hat{N}) \ge 0$ by Theorem 2, so we have $\chi_2^B(M, N) = 0$ and φ is the zero map, i.e. the map of $\operatorname{Tor}_2^B(M, N)$ to $\operatorname{Tor}_2^O(M, N)$ is surjective. But by Theorem 2, $\operatorname{Tor}_2^D(\hat{M}, \hat{N}) = 0$, hence $\operatorname{Tor}_2^B(M, N) = 0$, hence $\operatorname{Tor}_2^C(M, N) = 0$.

COROLLARY 1. Let C be an arbitrary regular local ring, M and N C-modules of finite type. Then if $\operatorname{Tor}_{i}^{c}(M, N) = 0$, $\operatorname{Tor}_{j}^{c}(M, N) = 0$ for $j \geq i$.

Proof. We may clearly assume C complete. Since a regular local ring has finite homological dimension, and any complete regular local ring is the quotient of an unramified regular local ring by a non-zero element, C, M, N satisfy the hypotheses of Theorem 3.

We now obtain the following corollaries, all of which were proven in the case of unramified regular local rings by Auslander in [1], and which only depend on knowing that $\operatorname{Tor}_{i}^{A}(M, N) = 0 \Rightarrow \operatorname{Tor}_{j}^{A}(M, N) = 0$ for $j \geq i$.

COROLLARY 2. Let A be a regular local ring, and let M and N be non-zero A-modules such that $M \otimes_A N$ is torsion-free. Then

(a) M and N are torsion free,

(b) $\operatorname{Tor}_{i}^{A}(M, N) = 0$ for all i > 0,

(c) $hd(M) + hd(N) = hd(M \otimes_A N) < \dim A$.

Proof. See [1, pp. 636–637], especially the remark at the bottom of page 637.

COROLLARY 3. Let A be a regular local ring of dimension n > 0. An A-module M is free iff the n-fold tensor product of M is torsion-free.

COROLLARY 4. Let A be a regular local ring, M an A-module; then we can have that

(a) if $M \otimes M$ is torsion-free, then M is reflexive;

(b) if $M \otimes M \otimes M^*$ is torsion-free and $M^* \neq 0$, then M is free.

COROLLARY 5. Let A be a regular local ring of dimension n > 0, and M an A-module satisfying the following conditions:

(a) $hdM = hdM^*$.

(b) $M \otimes M^*$ is torsion-free.

(c) M_p is A_p -free for each nonmaximal prime ideal p of A.

Then hd(M) = 0 or (n - 1)/2.

Therefore if n is even, M must be free. If n is odd, then there are modules M satisfying (a), (b), and (c) and such that hd(M) = (n-1)/2.

These corollaries are all consequences of Corollary 1. For proofs see [1, pp. 638–643].

COROLLARY 6. Let A be a regular local ring, M an A-module of depth 0, and N an A-module. Then

$$\operatorname{Tor}_{i}^{A}(M, N) = 0 \implies hd(N) < i.$$

Proof. It clearly suffices to prove that $\operatorname{Tor}_1^A(M, N) = 0 \implies N$ is free. Let d be the homological dimension of N, and assume d > 0. Then

 $\operatorname{Tor}_{d}^{A}(K, N) \neq 0$ and $\operatorname{Tor}_{d+1}^{A}(K, N) = 0$,

where K is the residue field of A. Since M has depth zero, there is an exact sequence

 $0 \to K \to M \to Q \to 0.$

Since hd(N) = d, we have

$$0 = \operatorname{Tor}_{d+1}^{A}(Q, N) \to \operatorname{Tor}_{d}^{A}(K, N) \to \operatorname{Tor}_{d}^{A}(M, N).$$

Since d > 0, $\operatorname{Tor}_{d}^{A}(M, N) = 0$ by Corollary 1, so $\operatorname{Tor}_{d}^{A}(K, N) = 0$, which is a contradiction. (This proof was told to me by M. Auslander.)

Open questions

The most important open question in this area is of course the "Serre Conjecture":

1. Let A be a ramified regular local ring, M and N A-modules such that $M \otimes_A N$ has finite length. Then $\chi_0^A(M, N) \ge 0$, with equality holding if and only if dim $M + \dim N = \dim A$.

We then have the questions related to the higher Euler characteristics:

2. If A is a regular local ring, M and N are A-modules such that

 $\operatorname{Tor}_{j}^{A}(M, N)$ has finite length, then $\chi_{j}^{A}(M, N) \geq 0$, with equality iff $\operatorname{Tor}_{j}^{A}(M, N) = 0$.

Theorem 2 answers this in the affirmative if A is unramified and either $j \ge 2$ or one of M and N is torsion-free, and it is well-known to be true if A is equicharacteristic. For ramified rings we know nothing.

3. For what local rings and what modules is Theorem 3 true?

If $A = K[[x, y]]/(xy, x^2)$, M = A/xA, N = A/yA, then $\operatorname{Tor}_1^A(M, N) = 0$ but $\operatorname{Tor}_j^A(M, N) \neq 0$ for $j \geq 2$, so the answer is not "all rings and all modules." But we know of no counter-example where $\operatorname{Tor}_j^A(M, N)$ is zero for large j. There are obviously many possible conjectures.

4. For a given local ring A, which modules M have the property that $\operatorname{Tor}_{1}^{A}(M, N) = 0$ implies that N is free?

Corollary 6 shows that for A regular, this is true if and only if depth M = 0. If A is not regular, then M must in addition (at least) not have finite homological dimension.

BIBLIOGRAPHY

- 1. M. AUSLANDER, Modules over unramified regular local rings, Illinois J. Math., vol. 5 (1961), pp. 631-647.
- 2. M. NAGATA, Local rings, New York, Interscience, 1962.
- 3. J-P. SERRE, Algèbre locale-multiplicités, mimeographed notes by P. Gabriel, Collège de France, 1958.

PRINCETON UNIVERSITY PRINCETON, NEW JERSEY