RELATIVE HOMOLOGICAL ALGEBRA AND ABELIAN GROUPS

BY
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Introduction

Relative homological algebra has risen from two principal sources: Hoch-
schild’s study of exact sequences of B-modules which split as S-modules, where
S is a subring of R [10], and Harrison’s exploitation of the homological aspects
of pure exact extensions of Abelian groups [8]. In each case one deals with a
special class of exact sequences in an Abelian category and with the cor-
responding Ext functors. Possible axioms for these special classes of exact
sequences have been put forth by Heller [9], Buchsbaum [2] and Yoneda [17].
The axioms formulated by Buchsbaum will be taken as a basis for relative
homological algebra considerations in this paper with some of the terminology
borrowed from [16]. In particular, if & is a class of short exact sequences of an
Abelian category @, then & is a proper class if and only if the class of mono-
morphisms

AL B
for which the exact sequence

0—>AL B—Cokf—0

belongs to & form an h.f. class [2].

This paper offers two simple methods (dual to one another) for obtaining
proper classes and studies the relative homological algebras that arise. Par-
ticular attention is given to the category of Abelian groups. These methods
include as special cases many (though not all) of the generalizations of purity
in Abelian group theory. In particular the standard notion of purity can be
obtained by these methods.

Recall that a group® A4 is a pure subgroup of B if A nnB = nA for all positive
integers n. An equivalent statement is that A is a summand of every sub-
group C of B such that A € C and C/A4 is finite. This notion was generalized
to arbitrary infinite cardinals m by Gacsélyi [7] who defined m-pure subgroups
in terms of systems of equations, in such a way that Ne-pure coincides with
pure. It has been shown (Lo$ [15]) that a subgroup A of a group B is m-pure
in B if and only if A is a summand of every subgroup C of B such that A < C
and C/A is generated by a subset of cardinal less than m. The concept of a
neat subgroup (due to Honda [11]) can be defined in an analogous fashion.
Namely, A is a neat subgroup of B if and only if 4 is a summand of every sub-
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group C of B such that A < C and C/A is elementary (i.e. a torsion group in
which every element has square-free order). These examples among others
lead to the following generalization of purity. Let g be a class of objects of an
Abelian category @, and let A be a subobject of an object B. Call A dg-pure
in B if A is a summand of every subobject C of B such that A < C and C/A
belongs to 9. Assuming that ¢ is closed under quotient objects,’ the mono-
morphisms
ALB

with Im f g-pure in B form an h.f. class (Theorem 2.1). Consequently, many
theorems about pure subgroups are carried over to d-pure subobjects, includ-
ing homological properties of Pext, (C, 4), the collection of equivalence classes
of g-pure extensions of A by C analogous to those of the functor Pext (C, 4).
The general properties of g-purity are discussed in Section II.

The properties of pure subgroups which hold in the more setting of g-purity
are those which depend on the nature of the quotient with respect to an g-pure
subobject and not on properties of the g-pure subobject itself. For example
the theorem that a pure bounded subgroup is a direct summand has no ana-
logue for g-purity. To obtain theorems of this nature a dual definition can be
made. Let $ be a class of objects of @ and let 4 be a subobject of an object B.
Call A an $-copure subobject of B if S a subobject of A with 4/S in 8 implies
A/S is a summand of B/S. If 8§ is closed under subobjects, the mono-
morphisms

ALB
with Im f $-copure in B form an h.f. class. Ordinary purity for Abelian'groups
is self-dual in this sense, for pure and copure with respect to the class of finite
groups both yield the ordinary concept of a pure subgroup. It is not generally
true however, when 8 is a class of objects closed under both quotient objects
and subobjects, that $-pure and $-copure coincide. The properties of 8-co-
purity are dual to those of g-purity, so are not stated in detail.

In Sections III and IV, purity and copurity with respect to some special
classes are investigated. In particular, in Section IV the notion of m-purity
for infinite ecardinals m, is extended to modules. In characterizing m-pure
projectives a result that is perhaps of interest in itself is proven, namely that
a direct summand of a direct sum of modules each generated by a subset of
cardinal <m is again a direct sum of such modules. (In [13] Kaplansky proved
this for m = Ny).

l. Preliminaries

The following notations and conventions will be followed. Throughout
this paper @ denotes an Abelian category. In addition to the standard axioms
for an Abelian category the following two axioms are assumed.

8 This condition is actually more restrictive than necessary, as explained in the remark
following Theorem 2.7.
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(0) For each object A there is a set of maps, each monic with range A4,
which contains a representative of every subobject of A and dually, for
quotient objects of A.

(00) For each pair of objects B, A and each n > 1 there is a set of n-fold
exact sequences from A to B containing a representative of every equivalence
class of such sequences.

(The reader is referred to [16] for a complete exposition of the axioms for an
Abelian category, including (0) and (00) above, as well as an explanation of
the equivalence relation on n-fold extensions.)

A subobject of an object A4 is an equivalence class of monomorphisms

SLA.

We will abuse the language and refer to the domain of a given monomorphism
as a subobject of A, writing S © A. The symbol 8§ C A assumes implicitly a
fixed monomorphism

SL A4,

and this map (called the inclusion map) will be specified when there is any
cause for confusion. If J is a class of objects of @ closed under isomorphic
images, axiom (0) allows us to speak of the set {A.}.s of subobjects of an
object A which belong to 9, meaning of course that

{Aa '&" A}ael

is a set of monomorphisms containing a representative from each relevant
equivalence class. When it is assumed that @ has infinite direct sums, it will
suffice that each set of objects {A.}.x Which is a subset of the set of sub-
objects of some object A have a direct sum.

If A and C are subobjects of B, with inclusion maps

AL B and C-5B,
B/A denotes a cokernel of f, A n C a kernel of the map
B kiXCko, B/4 @ B/C,
and A 4+ C an image of the map
Ae®C-1te, B

If S is a subobject of B/A, one can write S = T/A where T is a kernel of the
composition
B — B/A — (B/A)/S.

When Ext (B, A) appears without a subscript or superseript, Exté (B, 4)
is always implied. Similarly Pext, (B, A) = Pext} (B, A) and Copextg (B, 4)
= Copexté (B, A). Also Hom (B, A) is used for Mape (B, 4).

A pertinent foundational question has not been resolved, namely whether
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Pext; (B, A) is a set for n > 1. In lieu of an answer one may follow the
precedent set by others (e.g. [2], [3] and [17]) and set the question aside, or
restrict consideration by one means or another to situations in which
Pext; (B, A)is aset. In most of this paper it is assumed that the category @
has enough projectives. It turns out then that Pext, also has enough pro-
jectives (Theorem 2.4), so in this case Pext; (B, A) is a set. Similar remarks
apply to the other relative Ext functors which occur.

Il. J-pure extensions

Throughout this section g is a class of objects in @ which is closed under
quotient objects (i.e.
1L

an epimorphism and I ¢ 9 implies J € 9). The duals of all statements in this
section are valid with ‘“g-pure” replaced by ‘S-copure” where § is a class of
objects which is closed under subobjects.

DEFINITION. A subobject A of an object B is g-pure in B if 4 is a direct
summand of every subobject C of B such that A < C and C/4 ¢ 9. An exact
sequence

RPN ML ML I )

is g-pure if Ker f;; is g-pure in E; for each 7.

The first theorem shows that the class of g-pure short exact sequences satis-
fies the axioms of a proper class.

2.1 TuroreM. Let A € B < C be objects of @. The following hold.
(1) If the sequence 0 — A — B — B/A — 0 is d-pure then any equivalent
sequence is g-pure.
(i) If A s a direct summand of B then A is 9-pure in B.
(iii) If A is g-pure in C then A is 9-pure in B.
(iv) If B is 9-pure in C, then B/ A is 9-pure in C/A.
(v) If A is 9-pure in B and B is d-pure in C, then A is d-pure in C.
(vi) If A is 9-pure in C and B/A is 9-pure in C/A then B is d-pure in C.

Proof. Statements (i), (ii) and (iii) are immediate. To prove (iv), as-
sume B is g-pure in C, and suppose B/A < I < C/A with I/(B/A) in 4.
Then I = J/A withBcJ < C,andJ/B~ (J/A)/(B/A) =I/(B/A)ind
implies J/B is in 9. Thus B is a summand of J, sayJ = B @ R, and
I=(B/A)® (R® A)/A). Hence B/A is g-pure in C/A.

Assume A is g-pure in B and B is d-pure in C, and suppose 4 < S € C with
S/A € 9. The natural epimorphism S/4 — (S + A)/B implies (S + B)/B
isin 4, so Bisasummand of S + B,say S + B = B ® R. Let

SSB®R and BO®R-3B

be the inclusion and projection maps, respectively, and let E be an image of
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pt. The epimorphism S/4 — E/A induced by p? implies E/A is in 4, and
hence E = A @ T forsome ' C E. Now
SCE®R=A®T®R implies S=A4 @ (Sn (T & R)),

and A is a summand of S. Hence A is g-purein C.

Assume A is g-pure in C and B/A is d-pure in C/A, and suppose
B c Sc Cwith 8/Bind. Then (S/A)/(B/A) isin g and hence B/A is a
summand of S/A, say S/A = (B/A) & (R/A). Now R/A ~ S/B implies
R/A isin g and hence 4 is a summand of R,say R = A @ T. Then

S/A = (B/A) ® (A ®T)/A) implies S=B @ T.

Thus B is d9-pure in C.

The theorem above has important homological implications. For A4, B in
@ let Pext; (B, A) denote the set of equivalence classes of g-pure n-fold ex-
tensions of A by B. The reader is referred to [16] for a proof of the following
theorem for proper classes.

2.2 TurorEM. For each n > 1, Pext; (B, A) is a bifunctor on @ to Abelian
groups. If
0—-4—-B—->C—0

1is an d-pure exact sequence and D s any object of C, there are exact sequences
0 — Hom (D, A) — Hom (D, B) — Hom (D, C)
— Pext; (D, A) — Pext} (D, B) — -+ — Pext} (D, ()
— Pext, ™" (D, A) — Pext, " (D, B) — Pext;™ (D, C) — -+
and
0 — Hom (C, D) — Hom (B, D) — Hom (A4, D)
— Pext; (C, D) — Pext; (B, D) — --- — Pext] (4, D)
— Pext; ' (C, D) — Pext, ™ (B, D) — Pext, "' (4, D) — -+
with the maps giwen by composition.

In the remainder of this section it is assumed that the category @ has infinite
direct sums and enough projectives (i.e. for each A ¢ @ there exists an epi-
morphism F — A with F projective).

DrerFINITION. An object P is d-pure-projective if for every dg-pure exact
sequence
0—-A4A—->B—->(C—-0

the induced sequence
0 — Hom (P, A) — Hom (P, B) — Hom (P, () — 0
is exact, or equivalently, if Pext, (P, K) = 0 for all objects K. An g-pure-
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injective is defined dually. Let Cl 4 denote the class of d-pure-projectives.
The class Cl g is the projective closure of 4.

The following proposition describes a basic class of g-pure projectives.

2.3 ProposITION. If P = o8, with each S, either projective or a member
of 9, then P is g-pure-projective.
Proof. Let
0-A—-BLC—0
be an g-pure exact sequence. This sequence induces a commutative diagram

Hom (3 Su, B) — Hom (X 8., C)

! l
I1. Hom (8., B) — []. Hom (8., C)

with the vertical maps isomorphisms, and the lower horizontal map the product
of the maps

Hom (8., B) <% Hom (8., C)

where f, = Hom (S,, f). Thus it suffices to show that the maps f, are each
epimorphisms. If S, is projective this is clear. Suppose S.ed and let
g e Hom (8., C). Let B, be the inverse image in B of C. = ¢(S.), i.e.
B = Ker (B— C — (C/C,). Then the sequence

0—A4—>B,LC,—0

is g-pure exact and C, = Img is in 9, since 9 is closed under homomorphic
images. Thus there exists a map h : Co — B, such that fh = 1¢. Now
fhg = g = fo(hg). Thus f, is an epimorphism.

2.4 TuEorEM. If A is any object of @, there exists an eptmorphism P — A
with P 9-pure-projective and Ker f d-pure in P. The 9-pure projective P may be
chosen to be a direct sum F ® S, and F projective and S a direct sum of members
of 9.

Proof. Let
Se2 A (ael)

be the set of subobjects of A which belong to g, and let
FLA

be an epimorphism with F projective. These objects and maps yield an epi-
morphism
F @ Zael‘ Sa ‘f—.{ﬁgl) A

with P = F @ 2 S« 9-pure-projective. Let
K% p
be a kernel of b = f + 2 g« , and suppose S is a subobject of P with S/K in g.
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Let
K* P
k' /0

S

be the diagram of monomorphisms. Now h(S) =~ S/K in ¢ implies h(S) is
equivalent, as a subobject of 4, to Sg for some 8 € I, and there is a map

S5 8
with the diagram
S8
lo Los
P24
commutative. Let
S F@® 3,8, =P

be the injection map. Then g — % h’ is a map from S to P, and
h(g — igh') = hg — high’ = hg — ggh' = 0.
Hence since K is a kernel of h, there is a map

SHK
such that k&t = g — 45 h'. Now

kth! = (g — g WK = gk’ — igh'k =k — 450 = k,

and since k is monic, this implies t¢’ = 1x and K is a summand of S. Hence
K is g-pure in P.

Let @ denote the class of projective objects of @, and let ®(9) (resp. 9z) de-
note the class of objects of @ which can be expressed as a direct summand of a
direct sum of members of 9 U ® resp. ). The classes 9z and ®(4) are clearly
closed under direct sums and summands.

2.5 THEOREM. An object P is d-pure-projective if and only if P belongs to
®(9).

Proof. Suppose P is d-pure-projective. By Theorem 2.4, there exists an
epimorphism
Festrp

with F e ®, S e 9z and Ker f g-pure in F @ S. Since P is d-pure-projective,
this implies P is isomorphic to a summand of F @ 8, and hence P belongs to
®(9). The converse follows from Proposition 2.3.

If @ has global dimension 1, the g-pure-projectives can be described in terms
of ® and 95 .

2.6 THEOREM. Suppose C has a global dimension 1. Then P is 9-pure-pro-
jective ff and only f P = F @ Swith Fe® and Se Js .
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Proof. From Theorem 2.5, one may assume that P @ @ = F’ @ 8 with
F'¢® and 8’ ¢ 9z. The composition

PLF @8 P,
where < is the inclusion map and p the projection, has kernel S = P n S’ and

image P’  F’. Since € has dimension 1, P’ is projective so that P = S @ F
with F &~ P’ in ®. Now

FFoS=PdQ=S0®F®Q imples S=8& (8n((F ®Q)),

so that Sisin g95. The converse follows from Proposition 2.3.

The converse of Theorem 2.5 is also true, i.e. the g-pure short exact se-
quences are the largest class of short exact sequences for which ®(9) is a pro-
jective class, or in the terminology of [9], the class of g-pure short exact se-
quences is projectively closed.

2.7 THEOREM. A short exact sequence
0—-4—-B—-C—0
is 9-pure if and only if the sequence
0 — Hom (P, A) — Hom (P, B) —» Hom (P, C) — 0
is exact for all P in ®(9).

Proof. This follows from Theorems 2.4 and 2.5 of this paper and Proposition
5.7 of [9].

The results of this section can be interpreted from a somewhat different
point of view, as a result of Theorems 2.5 and 2.7. Given a class g of objects
of €, let £(g) denote the class of short exact sequences

E:0-A—-B—-(C—0
for which the induced sequence
(%) 0 — Hom (J, A) — Hom (J, B) —» Hom (J, C) —» 0

is exact for allJ in g. It is generally known that &(g) is a proper class. Re-
call that the projective closure Cl g of ¢ is the class of objects J for which (x)
isexactforall Ein &(g). There is no reasonable characterization of the classes
g which are projectively closed. The preceding theorems provide a sufficient
condition, for categories @ which have enough projectives and infinite direct
sums. Namely, if ¢ contains a subclass 9 which is closed under quotient
objects and § = ®(9) then g is projectively closed (i.e. § = Cl ¢), and more-
over, g provides enough relative projectives for the proper class &(g). It is
clear that the results of this section are valid with g replaced by any class g with
JdcC gc @)

The group Pexty (B, A) may be described as a subgroup of Ext (B, 4) in
the following sense.
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2.8 THEOREM. Let A and B be objects of @ and let {Bg}aer be the set of sub-
objects of B which belong to 9. Let

Ext (B/B., A) I Ext (B, A)
be the homomorphism induced by the projection B — B/B, . Then
Pext, (B, A) = Ny Im f, .
Proof. For each a ¢ I the exact sequence
0—B,—~B—B/B,—0
induces an exact sequence
Ext (B/Bo, A) I Ext (B, A) % Ext (B., 4).
Suppose an exact sequence
(1) 0—-A—-G—>B—0

represents an element of Ext (B, A). Let S be a subobject of G with A < 8
and S/A ¢ 9. Then S/A ~ B, in a natural way for some ael. Under g,,
the element represented by (1) maps onto the element represented by

(2) 0—-A4—-8S—-B,—0

which splits if and only if (1) is in the image of f.. But (1) represents an
element of Pext, (B, A) if and only if for every 8 C G such that A < S and
S/A € g, the sequence

(3) 0-A4—->8—>8/4—-0
splits. But (3) is equivalent to (2). Thus (1) represents an element of

Pext, (B, A) if and only if (1) represents an element of M, Im f., and hence
Pext, (B, A) = N, Im f,.

2.9 COROLLARY. Let {B.}aer be the set of subobjects of B which belong to 9,
let By — B be an tmage of the map > et Ba — B, and let C be any subobject f B
such that By, < C. Then for any object A the tmage of the map

Ext (B/C, A) — Ext (B, 4)

induced by B — B/C, is a subgroup of Pexty (B, A). If By e d then Pext, (B, A)
1s the image of the map
Ext (B/B;, A) — Ext (B, 4)
induced by B — B/B; .
Proof. If B, € B with B, e d then the inclusion B, — C induces a map
B/B,— B/C. The corresponding diagram
Ext (B/Ba,A) I Ext (B, 4)
i/ d
/
Ext (B/C, A)
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is commutative for all a, implying that Im fo © Ny Imf = Pext, (B, A).
If B, is in g, then letting C = B, in the diagram above, f = f, for some a ¢ [
and Im f = N Im f, = Pext, (B, A).

The Ext functor corresponding to the dual concept of $-copurity will be de-
noted by Copextg (B, A). The statements of 2.8 and 2.9 dualize as follows.

2.8 THEOREM. Let {A.}ucs be the set of subobjects of an object A such that
A/Ayisin 8. Let
Ext (B, A.) % Ext (B, A)

be the map induced by the inclusion A, — A. Then
Copextg (B, A) = Naer Im go .

2.9" CorROLLARY. Lel {A.}qes be the set of subobjects of an object A such
that A/As is in 8, and let A3 = Nyey Au(= Ker (A — JJaer 4/4L)).
Let C < AS. Then for any object B the image of the map

Ext (B, C) — Ext (B, A)

1s @ subgroup of Copextg (B, A). If A3 belongs to 8 then Copextg (B, A) is
the image of the map
Ext (B, A%) — Ext (B, A).

lll. Pure and copure relative to torsion theories

Throughout this section it is assumed that @ is a complete Abelian
category, i.e. has arbitrary infinite sums and products.

DEFINITION. A torsion theory for the category € is a pair of subclasses
3, § of @ such that 3n & = 0 (the zero object of €) and satisfying
(i) 3 1is closed under quotient objects.
(ii) ¥ is closed under subobjects.
(iii) For each object A there exists an exact sequence

0—-T—>A—>F—>0
with Ted and F € &.

The properties of Pexty and Copexts are investigated in this section.
The definition of a torsion theory and the results in the following paragraph
are due to S. Dickson [4].

Let 3, & be a torsion theory for @. The objects in 3 will be called torsion
and those of & will be called torsion free. For each object A the extension
(iii) is unique, and hence A has a maximum torsion subobject 4, and
A/A; is torsion free. In fact

A= N(S|Sc 4, A/Se5).

An object T belongs to 3 if and only if Hom (T, F) = 0 for all F ¢ §, and
conversely an object F belongs to § if and only if Hom (T, F) = 0 for all
T e¢3. The class 3 is closed under arbitrary sums and F is closed under
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arbitrary products. For proofs of these statements and further results
the reader is referred to [4].

3.1 THEOREM. For any objects A and B the sequence
0 — Hom (B/B;, A) — Hom (B, A) — Hom (B;, 4)
— Ext (B/B;, A) — Pexty (B, A) —» 0
is exact.

Proof. This is the statement of 2.9, since B, contains all torsion sub-
objects of B and B, belongs to 3.

3.2 ProrosITION. Let F ¢ § and let A be any object. Then
Pexty (F, A) = Ext (F, A) and Pexty (A, F) =~ Ext (A/A., F).

Proof. The first statement follows from the fact that F has no non-zero
torsion subobjects. The second statement is obtained from the exact
sequence

0 = Hom (4;, F) — BExt (A/A., F) — Pexty; (4, F) -0

of Theorem 3.1.
The 3-pure-injectives are determined by & as follows.

3.3 THEOREM. An object I is 3-pure-injective if and only if Ext (F,I) =0
for all F € &.

Proof. From 3.2, if I is 3-pure-injective and F e &, then Ext (F, I) =
Pexty; (F, I) = 0. Conversely if Ext (F, I) = 0 for all F e¥ and Ais
any object then the exact sequence

0 =Ext (A/A.,I) — Pexty (A,I) -0

of 3.1 implies Pexty (A, I) = 0 so that I is 3-pure-injective.

In the case of Abelian groups with the standard torsion theory the
5-pure-injectives are those groups which are the direct sum of a cotorsion*
group with a divisible group and are of considerable interest [8]. In this
case Pexty (B, A) is the divisible subgroup Dext (B, A) of Ext (B, 4),
investigated in [12].

It is not necessary in a torsion theory for the class 3 of torsion objects
to be closed under subobjects. In particular if A is a subobject of B then
it may not be true that A, = A N B, but only that 4, € A N B,. How-
ever if A is 3-pure in B this equality must hold as is revealed in theproof
of the following theorem.

4 A group G is cotorsion if and only if both Hom (@, @) = 0 and Ext (@, G) = 0, where
Q denotes the additive group of rational numbers.
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3.4 THEOREM. An exact sequence
(1) 0—>A—>B—->C—>0
18 3-pure if and only if the sequence of subobjects
(2) 0—-A;,—-B;—>C;—0
s splitting exact.
Proof. Suppose (1) is 3-pure exact, and let (B/A), = S/A. Then

S/A €3 implies A is a summand of S, say S = 4 @ T,and T = S/Ain
3 implies T < B;. Since 3 is closed under quotient objects,

B/(ANB,) ~ (B:+ 4)/A
is torsion. Hence
(Bi+ A)Y/A c (B/A):= (T ® A)/A c (B:+ A)/A
implies
(B/A)e = (B, + A)/A.

Also B, + A = A ® T with T C B, implies B; = (B;,NA4) @ T, and
then B;n A a quotient object of B, implies B;n A is torsion and hence
B;:nA = A:;. Exactness of (2) follows. Now since T' & C, under the
map B — C, the sequence (2) is splitting exact.

Assume (2) is splitting exact, say B, = A; @ T with T =~ C;. Since
the map B; — C; contains A n B; in its kernel, the exactness of (2) implies
AnB;c A;and hence AnB;, = A;,. ThenB;+ A = A ® T since

AnT = An(BinT) = (AnB)nT = A;nT = 0.

Also (B/A): = (B;+ A)/A. Suppose E is a subobject of B withA C E
and E/A ¢3. ThenE/Ac (B/A),= (Bi+ A)/Asothat EC B, + A=
A®@T,andE =A4A® (EnT). Thus (1) is 3-pure.

3.5 COorROLLARY. If A is 3-pure in B then
(i) A:= AnB,,and
(ii) (B/A)e= (B.+ A)/A.

Theorems 3.6 to 3.10 follow by duality and proofs are omitted.
3.6 TurorREM. For any objects A and B the sequence
0 — Hom (B, A;) — Hom (B, A) — Hom (B, A/A;)

— Ext (B, A;) — Copexts (B, 4) — 0
18 exact.

3.7 ProprosiTioN. Let T ¢3 and let B be any object. Then
Copexts (B, T) = Ext (B, T) and Copexts (T, B) = Ext (T, B,).
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3.8 TurorREM. An object P 1s F-copure-projective if and only if
Ext (P, T) = 0 for all T €3.

In the theory of Abelian groups, with 3 the standard torsion class, the
characterization of the F-copure-projectives is a classical problem.
The F-copure short exact sequences are characterized as follows.

3.9 TaEOoREM. An exact sequence
(1) 0-A—-B—->(C—-0
is F-copure if and only if the sequence
(2) 0—-A/A,—- B/B;—>C/C;— 0
1s splitting exact.

3.10 CoroLLARY. If A is F-copure in B then

(i) AnB;,= 4., and

(ii) (B/A): = (B: + A)/A.

In the remainder of this section it is assumed that € has enough projec-
tives and enough injectives. Then there are also enough 3-pure-projectives
and enough F-copure-injectives. Every 3-pure-projective is a summand
of a direct sum T ® P with T €3z = 3 and P projective. Every F-copure-
injective is a summand of a direct sum F @ I with FeSF, = § and [

injective. Since each object has a maximum torsion subobject, resolutions
can be obtained in a simpler fashion than in the general case.

3.11 TurorEM. Let A be any object and let
PLA
be an epimorphism with P projective. Then P @ A, is I-pure-projective
and the sequence .
0-K—-P®A, 25450
1s J-pure exact, where ‘
A5 A
is the inclusion map and K = Ker (f + 7). Let B be any object and let
B5LIT

be a monomorphism with I injective. Then I @ (B/B:) is F-copure-injective
and the sequence .
0-B2,T® (B/B,)—>C—0

is F-copure exact, where ’
B L B/B;

is the quotient map and C = Cok (g X j).

Proof. The proof is similar to the proof of Theorem 2.4 and will be
omitted.
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The next theorem shows that for 3-purity the relative homological
dimension of an object A does not exceed the homological dimension of
A/A .. Hence the relative (to 3-purity) global dimension does not exceed
the global dimension of @.

3.12 TuvoreM. Let A be an object of @. If A/A: has a projective resolu-
tion of length m, then A has a 3-pure projective resolution of length n.

Proof. If A/A, has a projective resolution of length O then A/A,
is projective. Thus A ~ A, ® (A/A,) is 3-pure-projective and has a
J-pure-projective resolution of length 0. Assume n > 0 and that the
theorem holds for objects having a projective resolution of length < n.
Suppose

0— Py 120 oo 5 Py 1% A/A,— 0

is exact with P; projective, ¢ = 0, ---, n — 1. Since P, is projective
and

A2 A/A,
is an epimorphism (the natural map), there exists a map

P, 5 A
such that pg = fo. Let .
A, S5 A
be the inclusion map. The sequence
0-K5LHP @A 25450
may be checked to be 3-pure exact, where

K5 Py® A,
is a kernel for g 4+ 7. Let .
J L Py
be a kernel for fo. Then pgj = foj = 0 so there exists a map
J 5 A,

such that ig' = gj. Now (g + 9)(j X {—g¢')) = gj — g’ = 0 so there
exists a map
J5K
such that kb = j X (—g¢'). Let
P Po® A 25 P

be the injection and projection maps. Now p(g + ) = pg + pi =
pg + 0 = pgp1, so that 0 = p(g + <)k = pgp:ik = fopik. Hence there
exists a map

K

such that 7' = pi k. Then ji'h = prkh = pi(j X (—¢')) = jand j
monic implies 'k = 1,. Now gp1k + ik = (¢ + )k = 0 so that
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ig'h = gjh = gmk = —ip:k implies —g’h’ = p, k. Then khh' =
(G X (=g =jh X (—¢')W = prk X pk = k and k monic implies
hh' = 1g . Thus k is an isomorphism and K has a projective resolution of
length » — 1. By the induction hypothesis K has a J-pure-projective
resolution of length » — 1. Connecting the two sequences yields a 3-pure-
projective resolution of A of length n.

A dual procedure yields the following.

3.13 THEOREM. Let A be an object of €. If A: has an injective resolu-
tion of length n then A has an F-copure-injective resolution of length n.

The statement of Theorem 3.12 is actually valid in a more general
setting. Namely, if d is a class of objects closed under quotient objects
and it happens that every object A has a maximum subobject 4, ¢ J then
the theorem will hold for g-pure-projective resolutions. This is the case
whenever § = gz. Similarly, Theorem 3.13 is valid for $-copure-injective
resolutions when § is a class of objects closed under subobjects such that
8§ = 8,.

The class of exact sequences which are both 3-pure and F-copure is of
some interest. Since the intersection of two proper classes is a proper
class, one obtains for n > 1, a bifunctor Bipextys(B, A) to Abelian groups
(with Bipext; (B, A) = Pext;(B, A) n Copexts(B, A)), together with
the appropriate long exact sequences. A subobject A of an object B will
be called (3, F)-bipure in B if it is both 3-pure and F-copure in B. From
Theorems 3.4 and 3.9 one obtains the following.

3.14 ProrosITION. A short exact sequence
0—-4—-B—->C—-0
is (3, F)-bipure if and only if the sequences
0—-A4;,—-B;,—-C;—0
0—A/A,— B/B;,—C/C;—>0
are both splitting exact.

For any object 4, A, is (3, F)-bipure in A, leading to the following exact
sequences.

3.15 TueoreEM. Let A, B be objects of . The following sequences are
exact.

0 — Hom (B, A:) » Hom (B, A) — Hom (B, A/A.)
— Pexty (B, A;) — Bipextsyg (B, A) — 0

0 —» Hom (B/B;, A) — Hom (B, A) —» Hom (B, A)
—> Copexts (B/B;, A) — Bipextsg (B, A) — 0.
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Proof. These sequences are obtained from the standard long exact
sequence for Bipextss together with the facts that

Bipextg,g (B, At) = Pext;; (B, Ae),

Bipexty g (B/B;, A) = Copexts (B/B;, A)
and
Bipexty g (B, A/A;) = 0 = Bipextss (B , A).

The projectives and injectives for Bipext;g may be described in the
following sense.

3.16 ProrosiTioN. An object P is (3, F)-bipure-projective if and only
if Pexty (P, T) = 0 for all T ¢3. An object I is (3, F)-bipure-injective if
and only if Copexts (F,I) = 0 for all F ¢ 5.

Proof. These statements follow easily from the exact sequences of
Theorem 3.15.

The following theorems show that if Pext; has enough injectives then
so does Bipextss and if Copexts has enough projectives then so does
Bipextss . In the case of Abelian groups with the standard torsion theory,
Pexty has enough injectives, namely the class of groups of the form C @ D
with C' cotorsion and D divisible. Applying Theorem 3.17, it can be
shown that Bipext;s has enough injectives and they are precisely the
class of groups of the form C @ F ® D with C cotorsion, F torsion free and
D divisible. Also in this case, Bipextss = 0 for n > 1 by 3.17.

3.17 TueoreEM. For any object A, if A: has a 3-pure-injective resolution
of length n, then A has a (3, F)-bipure-injective resolution of length n. If
Pexty has enough injectives for 3 then the following hold.

(i) Bipexty,g has enough injectives.

(i1) An object s (3, F)-bipure-injective if and only if it is a direct sum-

mand of a sum I @ F with I 3-pure-injective and F e F.

Proof. Suppose
A, LT

is a monomorphism with A, 3-pure in I and I 3-pure injective. Since 4. is
3-pure in A there exists a map
AST
such that gz = f (where
A5 A
is the inclusion map). Let

A5 A/A, and TS 1I/A;

be cokernels for ¢ and f respectively. Since A, < Ker gg = Ker (—qg),
there exists a map
AJ/A, B T/A,
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with gp + gq¢ = 0. Then the map

I® A/A, 25 T/A,
is an epimorphism. Let
I®A4/A,5C

be a cokernel for ¢ X p. Now (¢ + gG)(g X p) = qg + §p = 0, so there
exists a map

C5I/A,
such that sh = ¢ + §. Let

IS T®A/A, and A/A, T @ A/A,

be the injection maps. Then 0 = h(g X p)i = h(gi X pit) = h(f X 0)
= hi; f so there exists a map
I/A, 5 C

such that t¢ = hiy. Now stg = shiy = (¢ + §)&1 = ¢, with ¢ epic, implies
st = 1¢. Also 0 = h(g X p) = h(i1g + %2ap) = hirg + hiyp, so that
igp = —iqg = —hirg = hiy p, implying t§ = hi,. Then ish = t(q¢ + §) =
tg + 1§ = hiy 4+ hiy = himplies ts = 15,4, . In particular s is an isomor-
phism and there is an exact sequence

0> A5 T®A/A, 5, 1/4,— 0.
The diagram

0> A, XD5 (T ® A/A,) T4 (I/A),— 0
ll lm ll
0—>4,— - I, — (I/A):i— 0

commutes, in fact is an equivalence. Thus A, 3-pure in I implies the top
row is splitting exact. The diagram

AJA, s (T @ AJA)/(T @ A/AY) 5 (I/A)/(I/A),
I ! !
0— A/A, 2 /I, @ A/A, 2, 1/, — 0
with & and k" the maps induced by g X p and ¢ + § respectively and the
vertical arrows the natural maps, is commutative. It is also an equivalence,
since the vertical maps are isomorphisms. The bottom row splits, for the

composition .
I/, 11, @ AJA, 2% 1)1,

is the identity. Thus the top row is splitting exact (with & a monomorphism
and k' an epimorphism), and therefore

A5 T® A/A,
is (3, F)-bipure.
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If Pexty has enough injectives for 3, then (i) and (ii) follow immediately
from the paragraph above.

Assume A; has a 3-pure-injective resolution of length n. If n = 0, 4,
is J-pure-injective so is a summand of A. Then A ~ A; @ A/A;is (3, F)-
bipure-injective and has a resolution of length 0. Suppose n > 0 and the
statement holds for <n. Let

0— A% Th— o L= 1,0
be a 3-pure-injective resolution of A;. Then f, can be extended to a map

AL,
and
A2 i@ A/A,

is a (3, §)-bipure monomorphism with Cok (g X p) = Cok f; = Im f1 by
the previous paragraph. But Im f; has a 3-pure-injective resolution of
length n — 1 so by the assumption has a (3, F)-bipure-injective resolution of
length n — 1. Composing the two sequences yields a (3, F)-bipure-injective
resolution of 4 of length n.

A dual procedure yields the following.

3.18 THEOREM. For any object A, if A/A. has an F-copure-projective resolu-
tion of length n, then A has a (3, F)-bipure-projective resolution of length n.
If Copextg has enough projectives for & then the following hold.

(i) Bipexty,g has enough projectives.

(ii) An object is (3, F)-bipure-projective if and only if it is a direct summand

of a sum P ® T with P F-copure-projective and T € 3.

IV. Generalized purity in a category of modules

Throughout this section A denotes a ring with identity, and the word module
implies unitary A-module. Let m denote an infinite cardinal. Let 9. be
the class of A-modules A such that g(A) < m and 8 the class of A-modules 4
such that | A | < m (where g(4) denotes the minimal cardinal of a set of
generators of A and | 4 | the cardinal of 4). Since 9 is closed under homo-
morphic images, and 8., is closed under both submodules and homomorphic
images, the theorems of Section II apply to the notions of g .-pure, §n-pure
and Sy-copure. In particular one obtains decreasing chains of subfunctors
Pexty, (B, A), Pextg, (B, A) and Copexts, (B, 4) of Ext}y (B, A). Other
classes may be obtained from a torsion theory 3, & by taking 3. to be the
class of torsion modules T with g(T) < m, 3r, the class of torsion modules with
| T| < m and §n the class of torsion free modules F with | F | < m.

The following theorem is a generalization of a theorem of Kaplansky [13]
who proved the theorem for the countable case. This theorem is valid in
a general algebraic setting as the proof involves only universal properties of
direct summands. It will be applied here to obtain a description of the
projectives for some of the types of purity mentioned above.
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4.1 Lemma. Let m be an infinite cardinal, and let M = 0 M with each
M; a A-module generated by a subset of cardinal < m. Suppose M = P ® @
and let x e M. Then there is a submodule M, of M such that

(i) zeM,,
(i) Mo = D ier, M; where | I,| < m, and

(iii) M, = (PnM,) @ (@nM,).

Proof. Let 7 be an ordinal of cardinal m, and let
@={(, ) |0<a<7,0<k<owu{(0)}

For notational convenience, when & = 1 the symbol (oy, -+, ax—1) will be
used to denote (0). The set @ is well ordered as follows. For (ay, ---, o)
and (61’ N ﬂ)) €@,

(O)S(alr"'rak) and (aly“')ak)S(Bly"'7ﬁf)

if and only if either k£ < jork = jand a; = B;for ¢ < ¢t < k implies a; < 8.
With each U e @ will be associated a set R(A) = {xu,s}ocp<r of elements of
M such that

(1) (RA)) = D sy My with J(X) < I and [J(A) | < No, and
(2) the element z is factored into its P and Q components in (R((0)))
and for k > 1, ®(ay,...a5_p,e; 18 factored into its P and @ components in

<R((a1) ) ak)))‘

The sets R(2A) will be defined inductively. Write x = p + ¢ with p e P and
g€Q. There is a finite set Jo I with both p and qe D s, M;. Assume
A = (ay, -, ) > (0) and the sets R(’) have been chosen for A’ < 9.
Then R((a1, - -+, ax—1)) and in particular (... a_,),e, have been determined.
Write 2y, a5 = P + ¢ with p’ e P and ¢’ ¢ Q. There is a finite set
J(A) < I with both p’ and ¢ in D sy M. Let R(A) = {Tup}ocscr be a
set of generators for D rwy M., then R() satisfies (1) and (2).

Let I, = Uy J(%). Then M, = Y i, M satisfies the conditions (i), (ii)
and (iii).

4.2 THEOREM. Let M be a direct sum of (any number of ) A-modules M ; with
each M ; generated by a subset of cardinal <m (where m is an infinile cardinal).
Then any summand of M is also a direct sum of A-modules, each generated by a
subset of cardinal <m.

Proof. Let M = D .aM; with g(M;) < m (iel), and suppose

M = P ® Q. An increasing chain of submodules S, (« ¢J) of M such that
M = U, S. will be constructed having the following properties:

(i) if ais a limit ordinal, Su = Upca Sp .
(i) Su = X ier, M;for some I, C I.
(i) g(Sa41/Sa) < m.
(iv) Sa= P, ® Q,with P, = PnS,and Q, = Qn S,.
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The chain is constructed inductively. Let So = 0. Assume « > 0 and for
B < «a there is a chain of submodules Sg of M having properties (i)-(iv). If
ais a limit ordinal let S, = U<, Sp and S, clearly satisfies (i)~(iv). Suppose
a =B+ 1. Choose « ¢ M such that = ¢ Sg and let S, = (S, M) where M is
the submodule of Lemma 4.1. Then S, clearly satisfies (i)—(iv).

If 8. = M then S, # Soy1. Thusif |a| > | M|, it must be true that
Se = M,soonehas M = U|¢|§m| S.. Now P, = PnS.is a direct summand
of S, by (iv) so P, is a direct summand of M and hence a summand of P,y .
Writing Payy = Py @ Nofor || < | M |, one obtains P = U, P, = D> o N,
where the sum is direct. Then

Set1/8a X (Pay1/Pe) @ (Qut1/Qu)

and ¢(Say1/S.) < m imply g(Pays/Po) < m. Then since N, & P,y1/P, it
is true that g(N,) < mfor |a| < | M.

With a slight change in the proof of the previous theorem one obtains the
following.

4.3 TuEOoREM. Let M be a direct sum of A-modules M ; (i e I), with | M; | < m
for each © ¢ I and a fized infinite cardinal m. Then any summand of M is again
a direct sum of A-modules each of cardinal <m.

Proof. In the proof of Lemma 4.1, substitute a listing {xys}ocs<, of the
elements of D icsay M for the listing of a set of generators, and substitute

(i) | Ser/Sa] < m

for (iil) in the proof of the theorem.

It follows from Theorems 2.5 and 4.2 that the g ,-pure projectives are simply
direct sums of members of 9, , when the cardinal m has a predecessor. If A
has global dimension 1, it follows from Theorems 2.6 and 4.3 that the 8 w.-pure-
projectives are of the form ( Yz P;) @ P where | P; | < m and P is A-projec-
tive, again whenever the cardinal m has a predecessor. If | A| < m then of
course 9, and 8, are the same and the first remark applies also to 8 n-pure-
projectives. Similar statements are true for 3, and 3, when A has global di-
mension 1.

The types of purity mentioned above are all direct generalizations of
ordinary purity for Abelian groups, for the concepts of 9gy,-pure, $y,-pure
Syo-pure, Jy,-pure as well as Sy,-copure and Fy,-copure all coincide with
ordinary purity for Abelian groups (with 3 the standard class of torsion
groups).

From now on m-pure will be used to denote 9 n-pure. The notion of m-pure
subgroups of Abelian groups for arbitrary cardinals m was first proposed by
Gacsélyl [7], who defined them in terms of systems of equations. This
generalization of purity was investigated further by Lo§ [15] and Fuchs [6]
and [5] (pp. 87-91), who showed that Gacsélyi’s definition of m-pure was
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equivalent to the definition that appears here, in the case of Abelian groups.
The next theorem shows that this result may be extended to unitary modules.

DreriniTION. A (compatible) system of equations over a A-module A is a
triple [M, F, f] where M is a submodule of a free A-module and f is a A-homo-
morphism from M into A.

This corresponds to the usual concept of a system of equations as follows.
Let A(m) = D ges Axg be the free A-module of rank m = |J|. A sub-
module M of A(m) consists of a set of linear forms fo. = Naas, + ---
4+ Nak T8, (Ao € A, @ € I), and the homomorphism f yields a system of equations
fo = 0o (aeI) over A. The set {xs}ss is called the unknowns of the system.
A solution of this system in A is a set of elements ag (8 €J) of A such that

Ne1 @, + *+ + Nar Og, = Qo (ael).

The following definition is shown by Kertesz [14] to be equivalent to the usual
definition for systems of equations over a ring with a (right) unit element, and
carries over immediately to systems over a unitary module.

DEerINITION. A system of equations [M, F, f] over a A-module 4 is solvable
in A if and only if the homomorphism f may be extended to a A-homomorphism
f from F to A. The number of unknowns of a system of equations [M, F, f]
over A is the rank of the free module F.

4.4 TuEOREM. Let A be a submodule of B. Then A is m-pure in B if and
only if every system of equations over A with less than m unknowns which is
solvable in B 1s also solvable in A.

Proof. Assume A is m-pure in B and let [M, F, f] be a system of equations
over A with less than m unknowns which is solvable in B. Since [M, F, f] is
solvable in B the map

MLAcCB

can be extended to a homomorphism

F B
Let C = (h(F), A). Then g(C/A) < g(h(F)) < g(F) < mso 4 is a sum-
mand of C. Let

54
be a projection onto A. Then

F2 A
is a solution in A of the system [M, F, f].

Conversely, assume the second statement holds and let A < C C B with
g(C/A) < m. Let

Fc/A
be an epimorphism with F a free A-module and ¢g(F) = ¢g(C/A). Suppose
S C F and
S5 A



RELATIVE HOMOLOGICAL ALGEBRA AND ABELIAN GROUPS 207

is a homomorphism which can be extended to a homomorphism F — C-
Since [S, F, k] is solvable in C it is solvable in B and hence in 4, i.e. there
exists an extension F — A of k. This implies A is a summand of C, and hence
4 is m-pure in B.

Assume A is a commutative ring. Let 4 be a A-module and I an ideal of A.
Define I*A for finite and transfinite ordinals o inductively as follows: I°4 = 4,
I*™A = I(I*A) and for limit ordinals &, I“4 = Mg, I°A. In [5] Fuchs has
shown that if G is an Abelian p-group and S is an m-pure subgroup of G then
Snp G = p*Sfor|a| < m. A similar statement may be made for unitary
modules over a commutative ring A for principal ideals I of A, as well as a
corresponding statement for the quotient G/S. The following lemma is
needed.

4.5 LemMA. Assume A ts commutative. Let A be a A-module and let
I = A\ be a principal ideal of A. Then a e I*A is equivalent tothe solvability in
A of a system of equations over {a) with not more than | & | unknowns.

Proof. If a = 1,a ¢ I%A is equivalent to the solvability in A of the equation
A\t = a. Assume the statement of the lemma holds for ordinals 8 < a. If «
is a limit ordinal there is no problem. If « = g 4 1 for some B then
ael*A = I(I’A) is equivalent to the condition @ = b with b e I’4. By the
induction assumption b e I’4 is equivalent to the solvability in 4 of a system
of equations f, = X\, b (r ¢J) with not more than | 8 | unknowns. ThenaeI®A
is equivalent to the solvability in A of the set of equations 2y = aq,
fr — M xo = 0 (7 €J) which has < | a | unknowns.

4.6 THEOREM. Let A be a commutative ring (with identity), I a principal
ideal of A and A a submodule of a A-module B. If A is m-pure in B then for
|a] < m,

(i) AnI°B=1I4
(i) I*(B/A) = (I'B + A)/A.

Proof. Assume A is m-pure in B. Statement (i) and the inclusion
(I'B + A)/A C I*(B/A)

follow immediately from Lemma 4.5 and Theorem 4.4. Letb + A e I*(B/A).
This is equivalent to the solvability in B/A4 of a system of equations [M, F, f]
over (b + A) involving < | & | unknowns. Let F = A(] & |) and let

Fi,B/A

be a solution to [M,F,f]. Let S/A be the image of f. Then g(S/A) <
g(F) = |a| < m and A m-pure in B imply A is a summand of S, say
S=A4@&C. Let

S/A L ¢

be the natural isomorphism. Then the system [M, F, hf] of equations with the
solution [F, hf] imply (b + A) e I*C. Then
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b+ A="hb+A4)+A4eIC+ A)/Ac (I'B+ A)/A,

completing the proof.

The conditions above are not sufficient, even for Abelian groups, to imply
A is m-pure in B. For example, let T = ([]7=1 C(»")):. The group T has
no elements of infinite height and is not a direct sum of cyclic groups. Let
B be the direct sum of the finite cyclic groups (¢) (e T'). There is a natural
homomorphism f of B onto 7" and the kernel A of f is a pure (No-pure) sub-
group of B (see [8]). Then since every countable subgroup of 7 is a direct
sum of cyclic groups, 4 is N;-pure in B. Also A is not a summand of B since
B/A =~ T is not a direct sum of cyclic groups, so 4 is not Ne-pure in B. How-
ever conditions (i) and (ii) of the previous theorem hold for all ideals of the
ring of integers and all ordinals «. Note that this is also an example of a sub-
group which is Jy,-pure but not Jy,-pure.

It is interesting to note that in general Pext, (B, A) is not a natural sub-
group of the group Ext} (B, 4). For Abelian groups, Pext, (B, 4) =
Pext (B, A), where 9(2N,) is written for gy, , is the subgroup of elements of
infinite height of Ext (B, A) and hence depends only on the group Ext (B, 4)
and not on the particular choice of B and A. But for Pext,(y,) this does not
hold. The example above shows there exists a torsion group 7' and a group A
with Pextyy,) (T, A) # 0. Let @ denote the additive group of rational num-
bers and Z the group of integers. Then T =~ Tor (Q/Z, T) and

Ext (T, A) ~ Ext (Tor (Q/Z, T'), A) ~ Ext (Q/Z, Ext (T 4)).

However since Q/Z is countable Pextyy,) (Q/Z, Ext (T, A)) = 0.
The following proposition is used to give an example of a non-trivial N;-co-
pure subgroup.

4.7 ProposiTioN. If Cis a countable cotorsion Abelian group then C is
bounded.

Proof. If L is a torsion free cotorsion group then
L ~ Hom (Q/Z,Q/Z ® L)
is uncountable [8], so C has no torsion free summand, i.e. C is adjusted. Thus
C ~ Ext (Q/Z, C,) [8].

Let B be a basic subgroup of C;. There is an epimorphism C; — B— 0 and
the exact sequence

C ~ Ext (Q/Z, C;) — Ext (Q/Z,B) —» 0
implies
|C| = | Ext (Q/Z, B)|.
Write B = D B, with B, a cyclic prime power group. Suppose B is un-

bounded. Then (]] B.)/(2 B.) has a non-zerodivisible subgroup. This
gives an exact sequence
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0 — Hom (Q/Z, (I] B.)/(2_ B.)) — Ext (Q/Z, B)

so that 8, < | Ext (Q/Z, B)| < |C|. Thus B must be bounded, so that C,
and hence C =~ Ext (Q/Z, C;) are bounded.

Let P be the group of p-adic integers, and let A be a pure subgroup of P
such that | P/A| = N,. Let S be a subgroup of 4 and suppose [4/S| < Ny.
Then also | P/S | < Ny . Now P is cotorsion and hence P/S is cortorsion plus
divisible. By the proposition, P/S must be the direct sum of a bounded
group and a divisible group. Then since A ispure in P, A/S is pure in P/S.
It follows that A/S is a summand of P/S and hence A is N;-pure in P. But
A is not a summand of P since the p-adics are indecomposable [1], and
|A| = N, so A is not Ny-copure in P.
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