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Introduction

Relative homological algebra has risen from two principal sources: Hoch-
schild’s study of exact sequences of R-modules which split as S-modules, where
S is a subring of R [10], and Harrison’s exploitation of the homological aspects
of pure exact extensions of Abelian groups [8]. In each case one deals with a
special class of exact sequences in an Abelian category and with the cor-
responding Ext functors. Possible axioms for these special classes of exact
sequences have been put forth by Heller [9], Buchsbaum [2] and Yoneda [17].
The axioms formulated by Buchsbaum will be taken as a basis for relative
homological algebra considerations in this paper with some of the terminology
borrowed from [16]. In particular, if is a class of short exact sequences of an
Abelian category , then 3 is a proper class if and only if the class of mono-
morphisms

A __B
for which the exact sequence

0- A - B - Cokf--- 0

belongs to form an h.f. class [2].
This paper offers two simple methods (dual to one another) for obtaining

proper classes and studies the relative homological algebras that arise. Par-
ticular attention is given to the category of Abelian groups. These methods
include as special cases many (though not all) of the generalizations of purity
in Abelian group theory. In particular the standard notion of purity can be
obtained by these methods.

Recall that a group A is a pure subgroup of B if A a nB nA for all positive
integers n. An equivalent statement is that A is a summand of every sub-
group C of B such that A c C and C/A is finite. This notion was generalized
to arbitrary infinite cardinals m by Gacs1yi [7] who defined m-pure subgroups
in terms of systems of equations, in such a way that 0-pure coincides with
pure. It has been shown (Log [15]) that a subgroup A of a group B is m-pure
in B if and only if A is a summand of every subgroup C of B such that A c C
and C/A is generated by a subset of cardinal less than m. The concept of a
neat subgroup (due to Honda [11]) can be defined in an analogous fashion.
Namely, A is a neat subgroup of B if and only if A is a summand of every sub-
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group C of B such that A c C and C/A is elementary (i.e. a torsion group in
which every element has square-free order). These examples among others
lead to the following generalization of purity. Let be a class of objects of an
Abelian category a, and let A be a subobiect of an obiect B. Call A -pure
in B if A is a summand of every subobiect C of B such that A c C and C/A
belongs to 9. Assuming that is closed under quotient objects, the mono-
morphisms

A __B

with Im f -pure in B form an h.f. class (Theorem 2.1). Consequently, many
theorems about pure subgroups are carried over to -pure subobjects, includ-
ing homological properties of Pext, (C, A ), the collection of equivalence classes
of -pure extensions of A by C analogous to those of the functor Pext (C, A).
The general properties of -purity are discussed in Section II.
The properties of pure subgroups which hold in the more setting of -purity

are those which depend on the nature of the quotient with respect to an 9-pure

subobiect and not on properties of the 9-pure subobiect itself. For example
the theorem that a pure bounded subgroup is a direct summand has no ana-
logue for -purity. To obtain theorems of this nature a dual definition can be
made. Let S be class of obiects of a and let A be a subobiect of an obiect B.
Call A an S-copure subobiect of B if S a subobiect of A with AIS in s implies
A/S is a summand of B/S. If S is closed under subobjects, the mono-
morphisms

A .B
with Imf S-copure in B form n h.f. class. Ordinary purity for Abeliangroups
is self-dul in this sense, for pure and copure with respect to the class of finite
groups both yield the ordinary concept of a pure subgroup. It is not generally
true however, when S is a class of obiects closed under both quotient objects
and subobiects, that S-pure and S-copure coincide. The properties of S-co-
purity are dual to those of g-purity, so are not stated in detail.

In Sections III nd IV, purity and copurity with respect to some special
classes are investigated. In particular, in Section IV the notion of n-purity
for infinite cardinals m, is extended to modules. In characterizing m-pure
proiectives a result that is perhaps of interest in itself is proven, namely that

direct summand of direct sum of modules each generated by a subset of
crdinl _< m is again a direct sum of such modules. (In [13] Kaplansky proved
this for m 0).

I. Preliminaries

The following notations and conventions will be followed. Throughout
this paper e denotes an Abelian category. In addition to the standard axioms
for an Abelian category the following two axioms are assumed.

This condition is actually more restrictive than necessary, as explained in the remark
following Theorem 2.7.
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(0) For each object A there is a set of maps, each monic with range A,
which contains a representative of every subobject of A and dually, for
quotient objects of A.

(00) For each pair of objects B, A and each n >_ 1 there is a set of n-fold
exact sequences from A to B containing a representative of every equivalence
class of such sequences.

(The reader is referred to [16] for a complete exposition of the axioms for an
Abelian category, including (0) and (00) above, as well as an explanation of
the equivalence relation on n-fold extensions.)
A subobject of an object A is an equivalence class of monomorphisms

ZA.
We will abuse the language and refer to the domain of a given monomorphism
as a subobject of A, writing S c A. The symbol S c A assumes implicitly a
fixed monomorphism

S /. A,

and this map (called the inclusion map) will be specified when there is any
cause for confusion. If is a class of objects of ( closed under isomorphic
images, axiom (0) allows us to speak of the set {A.}.,j of subobects of an
object A which belong to , meaning of course that

is a set of monomorphisms containing a representative from each relevant
equivalence class. When it is assumed that ( has infinite direct sums, it will
suffice that each set of objects /A,}, which is a subset of the set of sub-
objects of some object A have a direct sum.

If A and C are subobjects of B, with inclusion maps

A --B and C-%B,

B/A denotes a cokernel of f, A n C a kernel of the map

B ,,,C,’ " x cok g B/A B/C,

and A -t- C an image of the map

A @ C-.+) B.

If S is a subobject of B/A, one can write S T/A where T is a kernel of the
composition

S -- B/A ---> (B/A)/S.

When Ext (B, A) appears without a subscript or superscript, Ext (B, A)
is always implied. Similarly Pext (B, A Pext (B, A and Copext$ (B, A

Copext (B, A). Also Horn (B, A) is used for Mape (B, A).
A pertinent foundational question has not been resolved, namely whether
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Pext (B, A) is a set for n > 1. In lieu of an answer one may follow the
precedent set by others (e.g. [2], [3] and [17]) and set the question aside, or
restrict consideration by one means or another to situations in which
Pext (B, A) is a set. In most of this paper it is assumed that the category
has enough proiectives. It turns out then that Pext also has enough pro-
]ectives (Theorem 2.4), so in this case Pext (B, A) is a set. Similar remarks
apply to the other relative Ext functors which occur.

II. d-pure extensions

Throughout this section g is a class of obiects in which is closed under
quotient obiects (i.e.

I __J

an epimorphism and I e g implies J e g). The duals of all statements ia this
section are valid with "g-pure" replaced by "S-copure" where S is a class of
obiects which is closed under subobiects.

DEFINITION. Jk subobiect A of an obiect B is g-pure in B if A is a direct
summand of every subob]ect C of B such that A c C and C/A g. An exact
sequence

..-- Ek+l E _s_l E_I-...

is g-pure if Ker fi-1 is g-pure in Ei for each i.

The first theorem shows that the class of g-pure short exact sequences satis-
fies the axioms of a proper class.

2.1 THEOREM. Let A c B C be objects of . The following hold.
(i) If the sequence 0 ---> A ----> B B/A 0 is g-pure then any equivalent

sequence is g-pure.
(ii) If A is a direct summand of B then A is g-pure in B.
(iii) If A is g-pure in C then A is g-pure in B.
(iv) If B is g-pure in C, then B/A is g-pure in C/A.
(v) If A is g-pure in B and B is g-pure in C, then A is g-pure in C.
(vi) If A is g-pure in C and B/A is g-pure in C/A then B is g-pure in C.

Proof. Statements (i), (ii) and (iii) are immediate. To prove (iv), as-
sume B is g-pure in C, and suppose B/A I C/A with I/(B/A) in g.

Then I J/A with B J C, and JIB (J/A)/(B/A) I/(B/A) in g

implies JIB is in g. Thus B is a summand of J, sayJ B R, and
I (B/A) @ (R @ A)/A). Hence B/A is g-pure in C/A.
Assume A is g-pure in B and B is g-pure in C, and suppose A S C with

S/A g. The natural epimorphism S/A -- S -- A /B implies S - B /B
is in g, so B is a summand of S -t- B, say S - B B @ R. Let

S -B @ R and B @ R--B
be the inclusion and projection maps, respectively, and let E be an image of
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pi. The epimorphism S/A -- E/A induced by pi implies E/A is in a, and
hence E A @ T for some T E. Now

SE (R)R A @ T @ R implies S A @ (Sn (T @R)),

and A is a summand of S. Hence A is a-pure in C.
Assume A is a-pure in C and B/A is a-pure in C/A, and suppose

B S C with S/B in a. Then (S/A)/(B/A) is in a and hence B/A is a
summand of S/A, say S/A (B/A) @ (R/A). Now R/A S/B implies
R/A is in a and hence A is a summand of R, say R A @ T. Then

S/A (B/A) @ ((A @ T)/A) implies S B @ T.

Thus B is a-pure in C.
The theorem above has important homological implications. For A, B in
let Pext (B, A) denote the set of equivalence classes of a-pure n-fold ex-

tensions of A by B. The reader is referred to [16] for a proof of the following
theorem for proper classes.

2.2 THEOREM. For each n >_ 1, Pext (B, A) is a bifunctor on to Abelian
groups. If

O--- A --- B -- C--- O

is an a-pure exact sequence and D is any object of , there are exact sequences

0 -- Hom (D, A) -- Hom (D, B) --+ Horn (D, C)-- Pext (D, A) -- Pext (D, B) --+ -- Pext: (D, C)
--+ Pext+1 (D, A) -- Pext+1 (D, B) -- Pext+1 (D, C) --+

and

0-- Horn (C, D) --+ Horn (B, D) --+ Horn (A, D)- Pext (C, D) -- Pext (B, D) -- --+ Pext (A, D)-- Pext+1 (C, D) Pext+ (B, D) -- Pext+ (A, D) --with the maps given by composition.

In the remainder of this section it is assumed that the category e has infinite
direct sums and enough projectives (i.e. for each A e e there exists an epi-
morphism F - A with F projective).

DEFINITION. An object P is a-pure-projective if for every a-pure exact
sequence

O-+ A -- B --- C-- O

the induced sequence

0--+ Hom (P, A) -- Hom (P, B) -- Horn (P, C) --+ 0

is exact, or equivalently, if Pext (P, K) 0 for all objects K. An a-pure-
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injective is defined dually. Let C1 a denote the class of 9-pure-projectives.
The class C1 is the projective closure of .
The following proposition describes u basic class of -pure projectives.

2.3 PROPOSITION. If P , S, with each S, either projective or a member
of , then P is 9-pure-projective.

Proof. Let
O-, A -- B A C-- O

be an 9-pure exact sequence. This sequence induces commutative diagram

Horn (E. S,, B) -- Horn (E, Sa, C)

Ia Horn (Sa, B) -- 1]a Hom (Sa, C)
with the vertical maps isomorphisms, and the lower horizontal map the product
of the maps

Horn (Sa, B) Horn (Sa, C)

where fa Horn (Sa, f). Thus it suffices to show that the maps fa are each
epimorphisms. If Sa is projective this is clear. Suppose Sa e a and let
g eHom (Sa, C). Let Ba be the inverse image in B of Ca g(Sa), i.e.
B Ker (B -- C ---, C/Ca). Then the sequence

O A B, --C,O

is a-pure exact and Ca Im g is in a, since a is closed under homomorphic
images. Thus there exists a map h Ca -- Ba such that fh lc. Now
fhg g fa(hg). Thus fa is an epimorphism.

2.4 THEOREM. If A is any object of C, there exists an epimorphism P -- Awith P a-pure-projective and Ker f a-pure in P. The a-pure projective P may be
chosen to be a direct sum F @ S, and F projective and S a direct sum of members
of.

Proof. Let
Sa -5% A a e I

be the set of subobjects of A which belong to a, and let

F __A

be an epimorphism with F projective. These objects and maps yield an epi-
morphism

with P F (R) az Sa g-pure-projective. Let

K __p

be a kernel of h f + ga, and suppose S is a subobject of P with S/K in ,,.
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Let
K __>p

S

be the diagram of monomorphisms. Now h(S) S/K in implies h(S) is
equivalent, as a subobieeg of A, to So for some I, and there is a map

SSo
with the diagram

commutative. Let
P --A

be the injection mp. Then g i h’ is mp from S to P, nd

h(g i h’) hg high’ hg g h’ O.

Hence since K is a kernel of h, there is a map

S -h K
such that kt g i h’. Now

kt’ (g ih’)’ gk’ ih’k’ k- iO k,

and since k is monic, this implies tk’ 1 and K is a summand of S. Hence
K is -pure in P.

Let denote the class of projective objects of , and let () (resp. ) de-
note the class of objects of which can be expressed as a direct summand of a
direct sum of members of resp. ). The classes z and () are clearly
closed under direct sums and summands.

2.5 TEOnEM, An object P is -pure-projective if and only if P belongs to

Proof. Suppose P is g-pure-projective. By Theorem 2.4, there exists an
epimorphism

FSP
with F e , S e and Kerf g-pure in F S. Since P is g-pure-projective,
this implies P is isomorphic to a summand of F S, and hence P belongs to
(g). The converse follows from Proposition 2.3.

If has global dimension 1, the g-pure-projectives can be described in terms
of and gz.

2.6 THEOREM. Suppose has a global dimension 1. Then P is g-pure-pro-
jective if and ly if P F S with F and S e
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Proof. From Theorem 2.5, one may assume that P Q F’ (B S’ with
F’ e ( and S’ . The composition

p A, F’ @ S’ 2 F’,

where i is the inclusion map and p the projection, has kernel S P n S’ and
image P’ F’. Since ( has dimension 1, P’ is projective so that P S F
with F P’ in (. Now

F’ @S’ P Q SF@Q implies S’ S@ (S’n(F@ Q)),

so that S is in gz. The converse follows from Proposition 2.3.
The converse of Theorem 2.5 is also true, i.e. the g-pure short exact se-

quences are the largest class of short exact sequences for which () is a pro-
jective class, or in the terminology of [9], the class of g-pure short exact se-
quences is projectively closed.

2.7 THEOREM. A short exact sequence

O--- A ---, B --, C---, O

is g-pure if and only if the sequence

0 -- Hom (P, A) -- Hom (P, B) -- Hom (P, C) --, 0

is exac for all P in (e(g).

Proof. This follows from Theorems 2.4 and 2.5 of this paper and Proposition
5.7 of [9].
The results of this section can be interpreted from somewhat different

point of view, as a result of Theorems 2.5 and 2.7. Given a class of objects
of (, let 8(q) denote the class of short exact sequences

E O -- A --- B --, C -- O

for which the induced sequence

(,) 0 --, Hom (J, A) -- Hom (J, B) -- Hom (J, C) --, 0

is exact for all J in q. It is generally known that 8() is a proper class. Re-
call that the projective closure C1 q of is the class of objects J for which (,)
is exact for all E in 8 (o9). There is no reasonable characterization of the classes
q which are projectively closed. The preceding theorems provide a sufficient
condition, for categories ( which have enough proiectives and infinite direct
sums. Namely, if contains u subclass which is closed under quotient
objects and 09 (() then is projectively closed (i.e. C1 ), and more-
over, q provides enough relative projectives for the proper class 8(q). It is
clear that the results of this section are valid with replaced by any class 09 with

().
The group Pext (B, A) may be described as a subgroup of Ext (B, A) in

the following sense.
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2.8 THEOREM. Let A and B be objects of e and let {B,}, be the set of sub-
objects of B which belong to 9. Let

Ext (B/B., A) L% Ext (B, A)

be the homomorphism induced by the projection B -- B/B,. Then

Pext (B, A [’l.,, Im

Proof. For each a e I the exact sequence

0 -- B. -- B B/B0
induces an exact sequence

Ext (B/B, A) Ext (B, A) Ext (B, A).
Suppose an exact sequence

(1) OA+G+BO

represents an element of Ext (B, A). Let S be a subobject of G with A c S
and S/A . Then S/A B in a natural way for some a e I. Under g,
the element represented by (1) maps onto the element represented by

(2) OASB.O

which splits if nd only if (1) is in the image of f.. But (1) represents an
element of Pext (B, A) if nd only if for every S G such that A S and
S/A , the sequence

(3) OA SS/A0

splits. But (3) is equivalent to (2). Thus (1) represents an element of
Pext (B, A) if und only if (1) represents an element of . Im f., and hence
Pext (B, A) . Imf..

2.9 COOLLnY. Let {B.}. be the set of subobjects of B which belong to ,
let B B be an image of the map .B. B, and let C be any subobject f B
such that B C. Then for any object A the image of the map

Ext (B/C, A) Ext (B, A)

induced by B B/C, is a subgroup of Pext (B, A ). IfB then Pext (B, A)
is the image of the map

Ext (B/B, A Ext (S, A

induced by B B/B

Proof. If B. B with B. then the inclusion B, C induces a map
BIB. B/C. The corresponding diagram

Ext (BIB. ,A) Ext (B,A)

Ext (B/C, A)
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is commutative for all a, implying that Imfs N Imf Pext (B, A).
If B is in 1, then letting C B in the diagram above, f fs for some a e I
and Imf ns Imf Pex% (B, A).
The Ext functor corresponding to the dual concept of $-copurity will be de-

noted by Copext (B, A). The statements of 2.8 and 2.9 dualize as follows.

2.8’ THEOIM. Let {A.} be the set of subobjects of an object A such that
AlAs is in $. Let

Ext (B, A) + Ext (B, A

be the map induced by the inclusion As --* A. Then

Copexts (B, A) N,j Im g.

2.9’ COROLLAIY. Let {A}sj be the set of subobjects of an object A such
that A/A. is in , and let As NjAs(= Ker (A -- IIA/A,)).
Let C As. Then for any object B the image of the map

Ext (B, C) -, Ext (B, A)

is a subgroup of Copexts (B, A ). IS As belongs to then Copext$ (B, A) is
the image of the map

Ext (B, AS)
__

Ext (B, A ).

III. Pure and copure relative to torsion theories

Throughout this section it is assumed that is a complete Abelian
ctegory, i.e. has arbitrary infinite sums and products.

DEFINITION. A torsion theory for the category a is a pair of subclasses, of such that 5 ff 0 (the zero object of a) and satisfying
(i) 5 is Closed under quotient objects.
(ii) ff is closed under subobjects.
(iii) For each object A there exists an exact sequence

O---> T--- A ----> F--> O
with T e 5 and F e ft.

The properties of Pext and Copextv are investigated in this section.
The definition of a torsion theory and the results in the following paragraph
are due to S. Dickson [4].

Let 5, ff be a torsion theory for . The objects in 5 will be called torsion
und those of ff will be called torsion free. For each object A the extension
(iii) is unique, and hence A has a maximum torsion subobject At and
A/At is torsion free. In fact

An object T belongs to if and only if Horn (T, F) 0 for all F e if, and
conversely an obiect F belongs to ff if and only if Horn (T, F) 0 for all
T e 5. The class 5 is closed under arbitrary sums and ff is closed under
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arbitrary products. For proofs of these statements and further results
the reader is referred to [4].

3.1 THEOREM. For any objects A and B the sequence

0 -- Hom (B/Bt, A) ----> Hom (B, A) --. Hom (Bt, A)

-- Ext (B/B t, A) -- Pext (B, A) 0

is exact.

Proof. This is the statement of 2.9, since B contains all torsion sub-
obiects of B and B belongs to 3.

3.2 PROPOSITION. Let F e and let A be any object. Then

Pext (F, A) Ext (F, A) and Pext (A, F) Ext (A/At, F).

Proof. The first statement follows from the fact that F has no non-zero
torsion subobiects. The second statement is obtained from the exact
sequence

0 Horn (At, F) -- Ext (A/At, F) -- Pext (A, F) -- 0

of Theorem 3.1.
The 3-pure-iniectives are determined by as follows.

3.3 THEOREM. An object I is 3-pure-injective if and only if Ext (F, I) 0
for all F e .

Proof. From 3.2, if I is 3-pure-iniective and F e , then Ext (F, I)
Pext (F, I) 0. Conversely if Ext (F, I) 0 for all Fe$ and Ais
any obiect then the exact sequence

0 Ext (A/At, I) ----> Pext (A, I) -- 0

of 3.1 implies Pext (A, I) 0 so that I is 3-pure-iniective.
In the case of Abelian groups with the standard torsion theory the

3-pure-iniectives are those groups which are the direct sum of a cotorsion
group with a divisible group and are of considerable interest [8]. In this
case Pext (B, A) is the divisible subgroup Dext (B, A) of Ext (B, A),
investigated in [12].

It is not necessary in a torsion theory for the class 3 of torsion objects
to be closed under subobiects. In particular if A is a subob]ect of B then
it may not be true that A A [’l B but only that At A Bt. How-
ever if A is 3-pure in B this equality must hold as is revealed in theproof
of the following theorem.

A group G is cotorsion if and only if both Horn (Q, G) 0 and Ext (Q, G) 0, where
Q denotes the additive group of rational numbers.
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3.4 THEOREM. An exact sequence

(1) O --- A --- B ----- C --- O

is 3-pure if and only if the sequence of subobjects

(2) 0 ---. At -- B ----> C -- 0

is splitting exact.

Proof. Suppose (1) is 3-pure exact, and let (B/A)t S/A. Then
S/A e 3 implies A is a summand of S, say S A @ T, and T SlAin
3 implies T c Bt. Since 3 is closed under quotient objects,

B t/(A Bt) ’ (Bt + A)/A
is torsion. Hence

(Bt + A)/A c (B/A)t (T @ A)/A c (Bt + A)/A
implies

(B/A )t (Bt + A )/A.

AlsoBt + A A @ Twith T BtimpliesBt (BtA) @ T, and
then B n A a quotient object of B implies B n A is torsion and hence
BtnA At. Exactness of (2) follows. Now since T Ct under the
map B -- C, the sequence (2) is splitting exact.
Assume (2) is splitting exact, sayBt At @ Twith T Ct. Since

the map Bt -- Ct contains A n Bt in its kernel, the exactness of (2) implies
AnBt AtandhenceAnBt At. ThenBt+ A A @ Tsince

AnT An(BtnT) (AnBt) nT AtnT O.

Also (B/A )t (Bt A )/A. SupposeEisasubobjectofBwithA E
andE/Ae3. ThenE/A (B/A)t (Bt+ A)/AsothatE cBt+ A=
A @ T, andE A @ (EnT). Thus (1)is3-pure.

3.5 COROLLARY. If A is 3-pure in B then
(i) At A n Bt and
(ii) (B/A)t (Bt + A)/A.

Theorems 3.6 to 3.10 follow by duality nd proofs are omitted.

3.6 THEOREM. For any objects A and B the sequence

0 -- Hom (B, At) Horn (B, A) -- Hom (B, A/At)

---. Ext (B, At) Copext (B, A) 0
is exact.

3.7 PROPOSITION. Let T e3 and let B be any object. Then

Copext(B,T) Ext(B,T) and Copext(T,B) Ext(T, Bt).
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3.8 THEOREM. An object P is -copure-projective if and only if
Ext (P, T) 0 for all T 5.

In the theory of Abelian groups, with 5 the standard torsion class, the
characterization of the ff-copure-projectives is a classical problem.
The ff-copure short exact sequences are characterized as follows.

3.9 THEOREM. An exact sequence

(1) OABCO

is -copure if and only if the sequence

(2) 0 -- A/At B/Bt ---> C/Ct ---> 0

is splitting exact.

3.10 COROLLARY. If A is -copure in B then
(i) A a Bt At, and
(ii) (B/A )t (Bt + A )/A.

In the remainder of this section it is assumed that C has enough projec-
rives and enough injectives. Then there are also enough 3-pure-projectives
and enough -copure-injectives. Every 3-pure-proiective is a summand
of a direct sum T @ P with T e 3 3 and P proiective. Every -copure-
injective is a summand of a direct sum F @ I with Fe, and I
injective. Since each object has a maximum torsion subobject, resolutions
can be obtained in a simpler fashion than in the general case.

3.11 THEOREM. Let A be any object and let

P--A
be an epimorphism with P projective. Then P @ At is 3-pure-projective
and the sequence

0"- K -- P @ At ’+ A -- 0
is 3-pure exact, where

At -->A
is the inclusion map and K Ker (f -- i). Let B be any object and let

B -% I

be a monomorphism with I injective. Then I (B/Bt) is -copure-injective
and the sequence

0 ---> B I @ (B/Bt) ---, C 0

is -copure exact, where
B B/Bt

is the quotient map and C Cok (g X j).

Proof. The proof is similar to the proof of Theorem 2.4 and will be
omitted.
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The next theorem shows that for 3-purity the relative homological
dimension of an object A does not exceed the homological dimension of
A/At. Hence the relative (to 3-purity) global dimension does not exceed
the global dimension of .

3.12 THEOREM. Let A be an object of . If A/At has a projective resolu-
tion of length n, then A has a 5-pure projective resolution of length n.

Proof. If A/At has a projective resolution of length 0 then A/At
is projective. Thus A A (A/A t) is 5-pure-projective and has a
5-pure-projective resolution of length 0. Assume n > 0 and that the
theorem holds for objects having a projective resolution of length < n.
Suppose

0 -- P-I f- Po L% A/A ---> O

is exact with P: projective, i 0, ..., n- 1.
and

A -- A/At

Since P0 is projective

is an epimorphism (the natural map), there exists a map

such that pg to. Let
Po --% A

A fiJ- A
be the inclusion map. The sequence

0---+ K Po @ At A --- 0

may be checked to be 5-pure exact, where

K .-Po( At
is a kernel for g -- i. Let

J --Po
be a kernel for f0. Then pgj f0 j 0 so there exists a map

J 2-; At
Now (g q- i)(j X (-g’) gj ig’such that ig’ gj. 0 so there

exists a map
J -+K

such that/h j X (-g’). Let

Po h+ Po @ At- Po
be the injection and projection maps. Now p(g q- i) pg q- pi
pg q- 0 pgpl so that 0 p(g q- i)t pgplt fopt. Hence there
exists a map

h’K --+ J

such thatjh’ pl/. Thenjh’h pth p.(j X (-g’) j andj
monic implies h’h 1. Now gp.lc q- ip2t (g q- i)k 0 so that
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igh gjh’ gpk -ip]c implies-g’h’ p.]c. Then khh’
(j X (-g’))h’ jh’ (-g’)h’ p k >( p k k and k monic implies
hh’ 1. Thus h is an isomorphism and K has a projective resolution of
length n 1. By the induction hypothesis K has a 5-pure-projective
resolution of length n 1. Connecting the two sequences yields a 5-pure-
projective resolution of A of length n.
A dual procedure yields the following.

3.13 THEOREM. Let A be an object of . If At has an injective resolu-
tion of length n then A has an -copure-injective resolution of length n.

The statement of Theorem 3.12 is actually valid in a more general
setting. Namely, if is a class of objects closed under quotient objects
and it happens that every object A has a maximum subobject A e then
the theorem will hold for -pure-projective resolutions. This is the case
whenever . Similarly, Theorem 3.13 is valid for $-copure-injective
resolutions when $ is a class of objects closed under subobjects such that

The class of exact sequences which re both 3-pure nd ff-copure is of
some interest. Since the intersection of two proper classes is a proper
class, one obtains for n 1, bifunctor Bipextv(B, A) to Abelian groups
(with Bpexta,(B, A) Pext(B, A) n Copextv(B, A)), together with
the appropriate long exact sequences. A subobject A of an object B will
be called (, )-bipure in B if it is both 5-pure and -copure in B. From
Theorems 3.4 and 3.9 one obtains the following.

3.14 PgOPOSTON. A short exact sequence

OABCO

is (, )-bipure if and only if the sequences

0 A B C 0

0 A/A B/B C/C 0

are both splitting exact.

For any object A, A is (, )-bipure in A, leading to the following exact
sequences.

3.15 THEOREM. Let A, B be objects of . The following sequences are
exact.

0 Hom (B, A) Hom (B, A) Hom (B, A/A)

Pexta (B, A) Bipextsa,v (B, A) 0

0 Horn (B/B, A) Hom (B, A) Hom (B, A)

Copextv (BIBs, A) Bipexta.v (B, A) 0.
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Proof. These sequences are obtained from the standard
sequence for Bipext,v together with the facts that

long exact

Bipext,v (B, As) Pext (B, A),

and
Bipext,v (BIBs, A) Copextv (BIBs, A)

Bipext,v (B, A/As) 0 Bipext,v (B A).

The projectives and injectives for Bipext,v may be described in the
following sense.

3.16 PROPOSITION. An object P is (5, ff)-bipure-projective if and only
if Pext (P, T) 0 for all T 5. An object I is (3, ff )-bipure-injective if
and only if Copextz (F, I) 0 for all F .

Proof. These statements follow easily from the exact sequences of
Theorem 3.15.
The following theorems show that if Pext has enough injectives then

so does Bipext,v and if Copextv has enough projectives then so does
Bipext,v. In the case of Abelian groups with the standard torsion theory,
Pext has enough iniectives, namely the class of groups of the form C ( D
with C cotorsion and D divisible. Applying Theorem 3.17, it can be
shown that Bipext,v has enough iniectives and they are precisely the
class of groups of the form C @ F@ D with C cotorsion, F torsion free and
D divisible. Also in this case, Bipext,v 0 for n > 1 by 3.17.

3.17 THEOREM. For any object A, if As has a ;i-pure-injective resolution
of length n, then A has a (;i, )-bipure-injective resolution of length n. If
Pext has enough injectives for 5 then the following hold.

(i) Bipext,v has enough injectives.
(ii) An object is (;i, )-bipure-injective if and only if it is a direct sum-

mand of a sum I F with I ;i-pure-injective and F ft.

Proof. Suppose

is a monomorphism with As ;i-pure in I and I ;i-pure injective.
;i-pure in A there exists a map

A -% I
such that gi f (where

A -->A
is the inclusion map). Let

Since A is

A - A/A and I - I/A

be cokernels for i and f respectively. Since As c Ker qg Ker (-qg),
there exists a map

A/A -h I/A
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with p -F qg O.

is an epimorphism.

Then the map
q+ I/AtI @ A/At

Let
I @ A/At C

beacokernelforg X p. Now (q -F )(g X p) qg-F p 0, so there
exists a map

C - I/At
such that sh q -F . Let

I A/A and A/At :-% I @ A/At
be the injection maps. ThenO h(g X p)i h(gi X pi) h(f X O)

hi. f so there exists a map
I/At A. C

such thattq hi1. Nowstq shil (q +)i q, withqepic, implies
st lc. Also0 h(g X p) h(ig + i2p) hig-F hi, p, so that
tp -tqg -hi g hi p, implying t hi Thentsh t(q -F (2)
tq -F t hi1 -F hi. h implies ts lx/ In particular s is an isomor-
phism and there is an exact sequence

q+ I/A --> 00-- A .gv) I @ A/At
The diagram

q+0 -- At (I @ A/At)t (I/At)t -., 0

0 -’--> At It (I/At)t --’> 0

commutes, in fact is an equivalence. Thus At 5-pure in I implies the top
row is splitting exact. The diagram

k k’A/At (I @ A/At)/(I@ A/At)t, ,,) (I/At)/(I/At)t

0 ---> A/At--X1) I/It @ A/At +) I/It --’, 0

with/ and/c’ the maps induced by g X p and q + respectively and the
vertical arrows the natural maps, is commutative. It is also an equivalence,
since the vertical maps are isomorphisms. The bottom row splits, for the
composition

I/It I/It @ A/At I/It

is the identity. Thus the top row is splitting exact (with/ a monomorphism
and /’ an epimorphism), and therefore

A .Xv I A/At
is (3, if) -bipure.
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If Pext has enough injectives for 5, then (i) and (ii) follow immediately
from the paragraph above.
Assume At has a 3-pure-injective resolution of length n. If n O, At

is 3-pure-injective so is a summnd of A. Then A , A @ A/A is (3, )-
bipure-iniective and has a resolution of length 0. Suppose n > 0 and the
statement holds for <n. Let

0 ---> At -% Io -- __1.; I,,-. ---> 0

be a 5-pure-injective resolution of At. Then f0 can be extended to a map

A -%I0,
and

A Io (R) A/A

is a (5, ff)-bipure monomorphism with Cok (g X p) Cok f0 Im f by
the previous paragraph. But Im f has a 5-pure-iniective resolution of
length n 1 so by the assumption has a (5, ff)-bipure-injective resolution of
length n 1. Composing the two sequences yields a (5, ff)-bipure-injective
resolution of A of length n.
A dual procedure yields the following.

3.18 THEOREM. For any object A, if A/At has an ff-copure-projective resolu-
tion of length n, then A has a (5, )-bipure-projective resolution of length n.

If Copext has enough projectives for then the following hold.
(i) Bipext,v has enough projectives.
(ii) An object is (5, )-bipure-projective if and only if it is a direct summand

of a sum P @ T with P ff-copure-projective and T 5.

IV. Generalized purity in a category of modules
Throughout this section A denotes a ring with identity, and the word module

implies unitary A-module. Let m denote an infinite cardinal. Let be
the class of A-modules A such that g(A < m and $ the class of A-modules A
such that AI < m (where g(A) denotes the minimal cardinal of a set of
generators of A and A the cardinal of A). Since is closed under homo-
morphic images, and S is closed under both submodules and homomorphic
images, the theorems of Section II apply to the notions of m-pure, $ m-pure
and S m-copure. In particular one obtains decreasing chains of subfunctors
Pextm (B, A), Pextm (B, A) and Copextm (B, A) of Ext (B, A). Other
classes may be obtained from a torsion theory 5, ff by taking 5m to be the
class of torsion modules T with g(T) < n, 5m the class of torsion modules with
T < m and ffm the class of torsion free modules F with FI < m.
The following theorem is a generalization of a theorem of Kaplansky [13]

who proved the theorem for the countable case. This theorem is valid in
a general algebraic setting as the proof involves only universal properties of
direct summands. It will be applied here to obtain a description of the
projectives for some of the types of purity mentioned above.
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4.1 LEMMA. Let m be an infinite cardinal, and let M aM with each
M a A-module generated by a subset of cardinal <_ m. Suppose M P Q
and let x e M. Then there is a submodule Mx of M such that

(i) xeMx,
(ii) Mx ,M where Ixl - m, and
(iii) Mx (PnM) @ (qnM).

Proof. Let r be an ordinal of cardinal m, and let

a ..., 10 < < ,0 < < u {(0)}.
For notational convenience, when/ 1 the symbol (al, ak_l) will be
used to denote (0). The set ( is well ordered as follows. For (al, "", ak)
and (81, fl) e a,

(0)

_
(al,"’,a) and (al,"’,a)

_
(l,"’,fl’)

if and only if either k < j or k j and a fli for i < _< k implies a,

_
fl,.

With each ?I e ( will be associated a set R(I) {x,.} 0<<, of elements of
M such that

(1) (R(I)) -",j() Me with J(I) c I and [J(9.I) < 0, and
(2) the element x is factored into its P and Q components in (R((0)))

and for k >_ 1, x(,.....,_)., is factored into its P and Q components in...,
The sets R(/) will be defined inductively. Write x p -t- q with p e P and
q e Q. There is a finite set J0 c I with both p and q e0 Me. Assume
/ (c, ..., a) > (0) und the sets R(!l’) have been chosen for
Then R((c, ..., c-1)) and in particular x(,.....,_)., have been determined.
Write x(,.....,_x)., p’ -F q’ with p’ e P and q’ e Q. There is a finite set
J(?I) c I with both p’ and q’ in ()Me. Let R(?I) {x.a}0<a< be a
set of generators for i() M, then R(9.I) satisfies (1) and (2).

Let Ix (JsJ(?I). Then Mx a Me satisfies the conditions (i), (ii)
and (iii).

4.2 THEOREM. Let M be a direct sum of (any number of) A-modules M with
each M generated by a subset of cardinal

_
m (where m is an infinite cardinal).

Then any summand of M is also a direct sum of A-modules, each generated by a
subset of cardinal

_
m.

Proof. Let M iMi with g(M)

_
m (ieI), and suppose

M P @ Q. An increasing chain of submodules S, (c e J) of M such that
M [J, S, will be constructed having the following properties"

(i)
(ii)
(iii)
(iv)

if is a limit ordinal, S, (J<, S.
S, a. Mi for some I, c I.

<_ m.
S, P, @ Q, withP, PnS, andQ, QnS,.
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The chain is constructed inductively. Let So 0. Assume a > 0 and for
< a there is a chain of submodules Sa of M having properties (i)-(iv). If

a is a limit ordinal let S. U<. Sa and S. clearly satisfies (i)-(iv). Suppose
a - 1. Choose x e M such that x S and let S. (S, M) where M is
the submodule of Lemma 4.1. Then S. clearly satisfies (i)-(iv).
IfS. MthenS. S.+1. Thus if al > MI, it must be true that

S. M, so one has M [Jl-I_ll S.. Now P. P n S. is a direct summand
of S. by (iv) so P. is a direct summand of M and hence a summand of P.+I.
Writing P.+I P N for a <- M [, one obtains P [J P ’. N.,
where the sum is direct. Then

S.+I/S. . (P.+/P.) (Q.+/Q.)

and g(S.+/S.) _< m imply g(P.+/P.) _< m. Then since N.. P.+/P. it
is true that g(N.) _< m for Is -< i I.
With a-slight change in the proof of the previous theorem one obtains the

following.

4.3 THEOREM. LetM be a direct sum of A-modulesM (i I), with M <- m
for each i I and a fixed infinite cardinal m. Then any summand of M is again
a direct sum of A-modules each of cardinal <_ m.

Proof. In the proof of Lemma 4.1, substitute a listing {xs,}0<< of the
elements of ()M for the listing of a set of generators, and substitute

(iii’) S.//So _< m

for (iii) in the proof of the theorem.
It follows from Theorems 2.5 and 4.2 that the =-pure proiectives are simply

direct sums of members of =, when the cardinal m has u predecessor. If A
hs global dimension 1, it follows from Theorems 2.6 and 4.3 that the $ -pure-
projectives are of the form ,P) @ P where P < m and P is A-projec-
tive, again whenever the cardinal m has a predecessor. If A[ < m then of
course and $ are the same and the first remark applies also to $ -pure-
projectives.. Similar statements are true for 5 and 5’ when A has global di-
mension 1.
The types of purity mentioned above are all direct generalizations of

ordinary purity for Abelian groups, for the concepts of u0-pure, Sa0-pure
50-pure, 50-pure as well as $0-copure and 5u0-copure all coincide with
ordinary purity for Abelian groups (with 3 the standard class of torsion
groups).
From now on m-pure will be used to denote -pure. The notion of m-pure

subgroups of Abelian groups for arbitrary cardinals m was first proposed by
Gacs1yi [7], who defined them in terms of systems of equations. This
generalization of purity was investigated further by Lo [15] and Fuchs [6]
and [5] (pp. 87-91), who showed that GacsAlyi’s definition of m-pure was
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equivalent to the definition that appears here, in the ease of Abelian groups.
The next theorem shows that this result may be extended to unitary modules.

DEFINITION. A (compatible) system of equations over a A-module A is a
triple [M, F, f] where M is a submodule of a free A-module and f is a A-homo-
morphism from M into A.

This corresponds to the usual concept of a system of equations as follows.
Let h(m) jAx be the free A-module of rank In [J I. A sub-
module M of A(m) consists of a set of linear forms f, X,lx +...
+ Xk xak (Xi e A, a e I), and the homomorphismf yields a system of equations
f a (a e I) over A. The set {xa}aj is called the unknowns of the system.
A solution of this system in A is a set of elements aa ( e J) of A such that

Xlal + + kak a, (aeI).

The following definition is shown by Kertesz [14] to be equivalent to the usual
definition for systems of equations over a ring with a (right) unit element, and
carries over immediately to systems over a unitary module.

DEFINITION. A system of equations [M, F, f] over a A-module A is solvable
in A if and only if the homomorphismf may be extended to a A-homomorphism
] from F to A. The number of unknowns of a system of equations [M, F, f]
over A is the rank of the free module F.

4.4 THEOREM. Let A be a submodule of B. Then A is m-pure in B if and
only if every system of equations over A with less than m unknowns which is
solvable in B is also solvable in A.

Proof. Assume A is m-pure in B and let [M, F, f] be a system of equations
over A with less than In unknowns which is solvable in B. Since [M, F, f] is
solvable in B the map

M -AcB
can be extended to a homomorphism

B.
LetC (h(F), A). Theng(C/A) <_ g(h(F) <_ g(F) < msoAisasum-
mand of C. Let

CA
be a projection onto A. Then

F-e-A
is a solution in A of the system [M, F, f].

Conversely, assume the second statement holds and let A c C c B with
g(C/A) < m. Let

F & C/A
be an epimorphism with F a free A-module and g(F) g(C/A). Suppose
S Fand

S _.>A
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is a homomorphism which can be extended to a homomorphism F --, C-
Since [S, F, /c] is solvable in C it is solvable in B and hence in A, i.e. there
exists an extension F --* A of k. This implies A is a summand of C, and hence
A is m-pure in B.
Assume A is a commutative ring. Let A be a A-module and I an ideal of A.

Define I"A for finite and transfinite ordinals a inductively as follows" IA A,
I+IA I(IA) and for limit ordinals a, IA N< leA. In [5] Fuchs has
shown that if G is an Abelian p-group and S is an m-pure subgroup of G then
S n pG pS for [a[ < m. A similar statement may be made for unita7
modules over a commutative ring A for principal ideals I of A, as well as a
corresponding statement for the quotient G/S. The following lemma is
needed.

4.5 LEMMA. Assume A is commutative. Let A be a A-module and let
I AX be a principal ideal of A. Then a e IA is equivalent to the solvability in
A of a system of equations over (a) with not more than a unknowns.

Proof. If a 1, a I"A is equivalent to the solvability in A of the equation
),x a. Assume the statement of the lemma holds for ordinals a. If a
is a limit ordinal there is no problem. If a = t + 1 for some then
a I"A I(IA) is equivalent to the condition a },b with b IA. By the
induction assumption b IA is equivalent to the solvability in A of a system
of equations f k b (r e J) with not more than unknowns. Then a I"A
is equivalent to the solvability in A of the set of equations hx0 a,
f }, x0 0 (r e J) which has

_
a unknowns.

4.6 THEOREM. Let A be a commutative ring (with identity), I a principa
ideal of A and A a submodule of a A-module B. If A is m-pure in B then for

(i) A r IB IA
(ii) I(B/A) (IB + A)/A.

Proof. Assume A is m-pure in B. Statement (i) and the inclusion

(IB -k A)/A c I(B/A)

Ifollow immediately from Lemma 4.5 and Theorem 4.4. Let b -k A e (B/A)
This is equivalent go the solvability in B/A of a system of equations [M, F, f[
over (b + A) involving _< a [unknowns. Let F h(] a [) and let

F ---7/B/A
be a solution to [M, F, f[. Let S/A be the image of ]. Then g(S/A) <_
g(F) a[ < m and A m-pure in B imply A is a summand of S, say
S= A @C. Let

S/A C

be the natural isomorphism. Then the system [M, F, hf] of equations with the
solution [F, hi[ imply h(b + A) e IC. Then
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b + A h(b + A) + Ae(I"C + A)/A c (I"B + A)/A,

completing the proof.
The conditions above are not sufficient, even for Abelian groups, to imply

A is m-pure in B. For example, let T (1..1 C(Pn))t. The group T has
no elements of infinite height and is not a direct sum of cyclic groups. Let
B be the direct sum of the finite cyclic groups (t) (t e T). There is a natural
homomorphism f of B onto T and the kernel A off is a pure (R0-pure) sub-
group of B (see [8]). Then since every countable subgroup of T is a direct
sum of cyclic groups, A is l-pure in B. Also A is not a summand of B since
B/A T is not a direct sum of cyclic groups, so A is not -pure in B. How-
ever conditions (i) and (ii) of the previous theorem hold for all ideals of the
ring of integers and all ordinals a. Note that this is also an example of a sub-
group which is 5ul-pure but not 5-pure.

It is interesting to note that in general Pext (B, A) is not a natural sub-
group of the group Ext (B, A). For Abelian groups, Pext(u0) (B, A)
Pext (B, A), where (0) is written for u0, is the subgroup of elements of
infinite height of Ext (B, A) and hence depends only on the group Ext (B,A)
and not on the particular choice of B and A. But for Pext(ul) this does not
hold. The example above shows there exists a torsion group T and a groupA
with Pext(u) (T, A) 0. Let Q denote the additive group of rationalnum-
bers and Z the group of integers. Then T Tor (Q/Z, T) and

Ext (T, A) Ext (Tor (Q/Z, T), A) Ext (Q/Z, Ext (T A)).

However since Q/Z is countable Pext(u) (Q/Z, Ext (T, A)) O.
The following proposition is used to give an example of a non-trivial -co-

pure subgroup.

4.7 PROPOSITION.
bounded.

If C is a countable cotorsion Abelian group then C is

Proof. If L is a torsion free cotorsion group then

L Hom (Q/Z, Q/Z (R) L)

is uncountable [8], so C has no torsion free summand, i.e. C is adjusted. Thus

C Ext (Q/Z, C) [8].
Let B be a basic subgroup of Ct. There is an epimorphism C --* B--* 0 and
the exact sequence

C Ext (Q/Z, C) Ext (Q/Z, B) 0
implies

CI >_ Ext (Q/Z, B) I.
Write B B, with B, a cyclic prime power group. Suppose B is un-
bounded. Then (IX B,)/( B,) has a non-zerodivisible subgroup. This
gives an exact sequence
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0 --* Hom (Q/Z, (IX B)/( B)) --. Ext (Q/Z, B)

so that 1 _< Ext (Q/Z, B)] <_ C I. Thus B must be bounded, so that C,
and hence C Ext (Q/Z, C,) are bounded.

Let P be the group of p-adic integers, and let A be a pure subgroup of P
such that P/A o. Let S be a subgroup of A and suppose A/SI <_ o.
Then also P/S <- o. Now P is cotorsion and hence P/S is cortorsion plus
divisible. By the proposition, P/S must be the direct sum of a bounded
group and a divisible group. Then since A is pure in P, A/S is pure in P/S.
It follows that A/S is a summand of P/S and hence A is l-pure in P. But
A is not a summand of P since the p-adics are indecomposable [1], and
[A 1, so A is not 2-copure in P.
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