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1. A number of theorems ia Function Theory can be characterized as ex-
pressing the fact that a certain compact plane set has minimal capacity within
a given class of plane sets. By and large these can be traced back to the
inspiration of the diameter theorem (see [2, p. 3]) in the theory of univalent
functions. We single out in particular two results, one given some years ago
by PSlya [5], the other quite recently by Pfluger [4]. PSlya’s result is derived
from a theorem of his concerning transfinite diameter, but ia his explicit
geometric result the extremal set displays certain rotational symmetry. On
the other hand, Pfluger’s extremal sets display reflectional symmetry. In
each case the comparison sets are to comprise continua satisfying certain
conditions. In this paper, by employing standard techniques of the method
of the extremal metric, we will see that neither of these conditions is basic
to the problem, but that they can be utilized to verify the conditions which
we shall give. We will also point out relationships to a result of Rengel [6].

2. Let E be a set in the z-plane consisting of a finite number of Jordan
arcs (specifically not Jordan curves) such that its complement D on the
z-sphere is connected (thus a domain). Let g(z) be the Green’s function of
D with logarithmic pole at the point at infinity. It is well known that an
orthogonal trajectory of the level curves of g, apart from a finite number of
exceptions, will be an open arc with limiting end points at the point at in-
finity and a point of E. Every point of E will be a limiting end point for
two such orthogonal trajectories, with at most a finite number of exceptions.
Let be the set of orthogonal trajectories which occur in such pairs and let T
be the involutory transformation defined on by associating with an element
of the other one with the same end point on E. There is a natural metric
determined on by the variation of the conjugate of the Green’s function.
We will denote it by d. In particular f d 2. We are now ready to
state our principal result.

THEOREM. Let E be a set consisting of a finite number of Jordan arcs in the
z-plane such that its complement D on the z-sphere is connected.

a Let the involutory transformation T be measure preserving in the metric d#.
(b) Let S be a compact set in the z-plane such that if e , S meets either

or T1.
Then

c(S) >_ c(E)
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where c denotes the capacity of the set in question. Equality can occur only if S
differs from E at most by a set of capacity zero.

Let a compact plane set Q have positive capacitary density at each of its
points and let g(Q, z) be its Green’s function with logarithmic pole at the
point at infinity. The level curve k(Q, k) g(Q, z) / for 1 sufficiently
large is a Jordan curve behaving asymptotically like the circle z c(Q)ek.
Let A(Q, lc) be the domain bounded by Q and k(Q, k) and F(Q, ]) be the class
of locally rectifiable curves running in h(Q, ]) from Q to ),(Q, ]). Let
re(Q, l) be the module [3, p. 13] of this class of curves. It is well known that
re(Q, to) 2k-1, the extremal metric being/-1

In the situation of our theorem let Q be the subset of S consisting of those
points at which S has positive capacitary density. Evidently Q is compact
and c(Q) c(S). It is readily verified that Q will likewise satisfy condition
(b).
The transformation T induces a point transformation : on a subset D

of D obtained by deleting a finite number of open analytic arcs and points
(i.e., D is the point set union of ) by taking (P) for P e to be the point
on T1 with

g(E, (P) g(E, P).

Under condition (a), is an anticonformal mapping on D thus we can speak
of its distortion r(P).
Now consider k(E, It) for k sufficiently large. There will be a level curve

k(Q, k’) lying inside k(E, ]) and touching it with

lc’ /c -- log (c(E)/c(Q) + o(1).

Let p(z) be the extremal metric for re(Q, k’). Let

p’(z) p(z) for z inA(E,/)

Let
0 elsewhere in/ (E,/c).

(z) 1/2(’(z) + (z)’(z) for z in A(E, lc) n D

elsewhere’ in (E, k).

If l(/) denotes the (open) arc on e 9 for which 0 < g(E, z) < k we have

f (z) dz >_. 1.
()

Since the l(]) are precisely those curves in F(E, k) which have length 1 in the
extremal metric for the module problem defining m(E, k) we have

ffa(E,k) (z) dA >_ re(E, k)
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where dA denotes the element of area in the z-plane.

+
(E,) (,)

, E,

Moreover

(p’(z) )2(r(z) )2 dA.

This last term is just ffa(,k) (p’ (z))2 dA
_
m(Q, k’) (actually since E

has zero area, see 5). Thus

or

So finally

or

re(Q, ’) >_ m(E, )

log (c(E)/c(Q)) + o(1).

c(Q) >_ c(E)

c(S) >_ c(E).

The standard equality argument in the method of the extremal metric
[3, p. 20] shows that the inequality is strict unless Q coincides with E thus
unless S differs from E only by a set of capacity zero.

3. We now wish to verify that the results mentioned in 1 actually are
special cases of our theorem.

COIOLLAIY 1 (PSlya). Let a and b be two distinct complex numbers, m a
positive integer, such that

0_ arg(b/a) < -/m, al > O, [b[ > 0

e2i/mand let oo Let S be a compact plane set which contains m (not necessarily
disjoint) subcontinua, of which the jth subcontinuum contains the two points
acd"-1 and boj-l, j 1, m. Then the capacity c(S) satisfies

c(S) > (a- b’) [1/m.
Equality occurs for the set E consisting of m arcs which are the images of the
segment joining a and b under the mth root transformation and for a set S only
if it differs from E at most by a set of capacity zero.

Let a be the segment joining a and bm. Then

g(E, z) (1/m)g(a, z’).
From this it is clear that

c(E) l(a b’)

and further that condition (a) of our theorem is satisfied. It is trivial that
our condition (b) follows from the existence in S of subcontinua joining the
end points of each of the arcs comprising E.
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COROLLARY 2 (Pfluger). Let E be a plane set consisting of a finite number of
slits lying on rays emanating from the origin and reflectionally symmetric in each
ray on which such slits occur. Let S be a compact plane set corresponding to
which there exists a pairing of the end points of the segments in E such that each
such pair can be joined by segments exterior to E on the ray adjacent to the end
point in question plus a continuum in S. Then

c(S) >_ c(E)

and equality occurs only if S differs from E at most by a set of capacity zero.

That our condition (a) is satisfied is trivial from the symmetry property
of E. To verify condition (b) we note first that each runs from the
point at infinity to E within one ot the angles bounded by adjacent rays
bearing slits of E. If then S did not meet or T1 these would form together
a Jordan curve on the z-sphere such that each of the sets complementary
to it would contain an odd number of end points of slits in E. This con-
tradicts the existence of a pairing of end points as in the statement of Cor-
ollary 2.
Not only does our theorem contain Pfluger’s result, but the immediate

conclusion drawn from it is sharper for numerous examples. Indeed con-
sider Pfluger’s example [4, p. 285] where E consists of segments joining the
pointsa,b,0 < a < b, / 1,2, ,21. Then ifSconsists
of the circular arcs

k 1, 3, 21 1, by the remarks of the preceding paragraph it is clear
that from our theorem follows

c(S) >__ c(E).

On the other hand Pfluger’s enunciation led him to include in S also the arcs

{ae (k 1)-/1

_ _
k-/1}

/ 1, 3, 21 1. Of course, he could have noted that by taking these
latter arcs on the circle of radius r a and letting r tend to zero, he could have
attained the same conclusion as above.

4. If the set E considered in 2 is connected so that its complementary
domain is simply-connected, the finite number of orthogonal trajectories
not in the set each has one limiting end point in E and its other limiting end
point at the point at infinity. By an exceptional orthogonal trajectory we
mean one of this number such that the limiting end point in E is the end point
of one of the Jordan arcs comprising E and not on any other such Jordan arc.

COROLLARY 3. Let E be a set consisting of a finite number of Jordan arcs

in the z-plane such that its complement D on the z-sphere is connected and simply-
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connected and such that condition a) is satisfied. Then if S is a continuum in
the z-plane meeting the closure of each exceptional orthogonal trajectory

c(S) >_ c(E).

Equality can occur only if S coincides with E.

Indeed if 9 the Jordan curve formed from and Tl will separate some two
exceptional orthogonal trajectories. Thus S must meet or T1 and condition
(b) is satisfied.
Corollary 3 contains as a special case a familiar result of Rengel [6]. As

above, the symmetry condition imposed by Rengel is effective only in verifying
condition (a) and identifying the exceptional orthogonal trajectories. It
should be pointed out that an even more direct proof of Rengel’s result by
the method of the extremal metric has long been known (at least to the author
and probably to others) but not published.
We recall also that the continuum of minimal capacity containing a fixed

finite set of points is a set E satisfying the conditions in Corollary 3 and that
the limiting end points of the exceptional orthogonal trajectories in E are
points of the fixed set. Thus such a continuum has minimal capacity also in
a larger family of competing sets.

5. It is desirable to give a further characterization of the sets E and
domains D which satisfy the conditions of our theorem. Let

g(E, z) + ih(E, z)

where h(E, z) denotes the (multiple-valued) conjugate of the Green’s func-
tion. We see at once that d-2 is a quadratic differential on the z-sphere
with a double pole at the point at infinity and a simple pole at the end point
of any arc in E which is not on any other such arc. Moreover, each arc
comprising E is made up of one or more trajectories together with their limiting
end points. The domain D is thus an admissible domain for this quadratic
differential [3, p. 49]. However, we do not obtain the most general quadratic
differential with these characteristics, since in the present situation we can-
not have orthogonal trajectories with a limiting end point on E at each end.
We can use the standard construction methods for quadratic differentials [2]
to obtain sets E which satisfy the conditions of our theorem, but which dis-
play no sort of reflectional or rotational symmetry.
We should remark that proofs along the line of that used for our theorem

have long been known in simple special cases and indeed go back at least to
GrStzsch [1]. Finally, there are numerous fairly obvious generalizations of
the preceding methods, for example, to domains of infinite connectivity.

BIBLIOGRAPHY

1. H. GRTZSCH, ber einige Extremalprobleme der konformen Abbildung I, II, Ber.
Verh. Schs. Akad. Wiss. Leipzig, Math.-Phys. Klasse, vol. 80(1928), pp.
367-376,497-502.



ON CERTAIN PROBLEMS OF MINIMAL CAPACITY 465

2. JAMES A. JENKINS AND D. C. SPENCER, Hyperelliptic trajectories, Ann. of Math. (2),
vol. 53 (1951), pp. 5-35.

3. JAMES A. JENKINS, Univalent functions and conformal mapping, Berlin-GSttingen-
Heidelberg, Springer-Verlag, 1958.

4. A. I)FLUGER, Verallgemeinerung eines Satzes yon PSlya iiber den transfiniten Durch-
messer ebener Punktmengen, Math. Zeitschrift, vol. 85(1964), pp. 285-290.

5. G. PSLY_, Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusam-
menhgngende Gebiete III, Sitzungsberichte der Preussischen Akademie der
Wissenschaften, Phys.-Math. Klasse, 1929, pp. 55-62.

6. E. RENGEL, ber einige Schlitztheoreme der konformen Abbildung, Schriften des
Mathematischen Seminars und des Instituts fiir angewandte Mathematik
der Universitt Berlin, vol. 1(1933), pp. 139-162.

WASHINGTON UNIVERSITY
ST. Louis, MISSOURI


