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Introduction. In the previous paper [5], the author defined the canonical
spectral representation for a cm-scalar operator whose spectrum is contained
in the real line. Such an operator will be called a Cm-real operator in this
paper. H.G. Tillmann [9] and S. Kantorovitz [2] also treated similar kinds of
operators on a Banach space and they gave characterizations for an operator
to be C-real. One type of characterization was given in terms of the rate of
growth of resolvents near the spectrum and another in terms of certain one-
parameter group constructed from the original operator. The same types of
characterization have also been discussed by F. Wolf [11] and S. Kantorovitz
[2] for operators on a Banach space whose spectra are contained in the unit
circle. Such operators may be called Cm-unitary. They generalize the notion
of unitary operators on a Hilbert space, just s C-real operators generalize
the notion of Hermitian operators (cf. [5], [9] and [2]).
Now, it would be natural to think that analogous discussions my hold if

we replace the real line or the unit circle by a more general Jordan curve. In
fact, for spectral operators on a Bnach spce, N. Dunford [1] gave some
characterization theorems in terms of resolvents in the case the spectrum is
contained in a Jordan curve.

rThus, in this paper, we consider a Cc-scala operator S on a locally convex
space such that its spectrum Sp(S) is contained in a C-Jordn curve and we
shall be concerned with the following two problems: () Definition and exist-
ence of the spectral representations for S which are entitled to be clled
canonical; (b) Extension of characterization theorems for such n operator,
especially for a C-unitary operator or a C-real operator on a locally convex
space.

In Part I, we tret the case the curve is bounded. If the curve A is repre-
sented by a Cm-function, we can induce a natural C-structure on zX. Then it
is possible to talk about an operator of class C(X) (cf. [2]). It will be shown
that the C(A)-representation for such an operator is uniquely determined;
this fact leads us to a definition of the canonical representation. We shall
give two existence theorems for canonical representations, one of which
is a corollary to a characterization theorem (1.4). The characterization
theorems, especially for C-unitary operators, will turn out to be similar to the
results in F. Wolf [11] (and also in [2] and [9]), but our results extend nd ira-
prove them. They my be summarized in the form of Theorem 3 in [6].
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In Part II, the case the curve is unbounded is treated. Definition of ca-
nonical representations can be discussed parallel to Part I. Essential differ-
ence of discussions in this part from those in Part I appear in the case Sp(S) is
unbounded. In this case, however, we are unable to obtain general characteri-
zation theorems corresponding to those in Part I. Only some results on Cm-
real operators will be given. We remark here that the same implication dia-
gram as Theorem 3, (i) in [6] will hold for C-real operators having compact
spectra, with certain modifications in the statements.

In the appendix, elementary proofs of approximation theorems, Lemrna 1.1
and Lernrna 2.1, will be given.

Preliminaries. Throughout this paper, let E be a Hausdorff locally convex
space over the complex field C such that L(E), the space of all continuous
linear operators on E into itself, is quasi-complete with respect to the bounded
convergence topology

Let m be a non-negative integer or m and let C be the algebra of all
complex-valued m-times continuously differentiable functions on R(_--C) and
C be the subalgebra of C consisting of functions in C with compact support.
We introduce the usual topologies in these spaces. (The topology of C is de-
fined by uniform convergence of partial derivatives of order up to m on com-
pact sets. For C, see e.g. [5, 1].)
A C-spectral (resp. C-spectral) representation is a continuous algebra

homomorphism U of C (resp. Cm) into L(E) with rb such that there exists
a net {,1 in C with the property that U(,)x -- x for each x e E. (If U is
C-spectral, then it follows that U(1) I.) Such a net {,} will be called an
identity net for U.

Since C is dense in C, any C-spectral representation is C-spectrM.
Conversely, if U is a C-spectral representation and if the support of U
(Supp U) is compact, then U is Cm-spectral. Furthermore, in this case, we
can define U() for a function q defined and m-times continuously differ-
entiable on a neighborhood z of Supp U as the operator U(0), where 0 C
is equal to 1 on a neighborhood of Supp U and Supp
For the continuity of U, we remark: it is enough to assume that U is con-

tinuous with respect to the simple convergence topology in L(E), since the
continuity with respect to follows from the facts that C (resp. C) is borno-
logical and that E is quasi-complete.

Let S be a closed linear transformation on E into itself and let Ds be its
domain. S is called a C-scalar transformation (a C-scalar operator if
S L(E) if there exists a C-spectral representation U such that U(q)x Ds
for each e C, x e E and

(,) lim U(q,)x Sx for all x e Ds,

While preparing the manuscript, the author communicated with Professor E. Bishop
who indicated the same proofs.
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where {,} is an identity net for U. (For e C, X denotes the function
x -- X(X), X e C. Similarly, the identity function () -= k will bedenoted
by X.) The condition (,) can be replaced by

(,)’

or by

U(q,)Sx U(X)x for all eC and xeDs,

U(,)S SU(,) on Ds and SU(,,)= U(X,).

Thus the definition of a C-scalar transformation does not depend on the
choice of an identity net {,}. It follows that Ds is dense in E and is equal to

x e E; lim, U(X,)x exists. }.

Also, we know that Supp U Sp(S). (Sp(S) denotes the spectrum of S in
Waelbroeck’s sense. See [3] or [5,1].)
S e L(E) is called a Cm-scalar operator if there exists a Cm-spectral represen-

tation U such that S U(X). A C-scalar operator is a C-scalar operator.
Conversely, if S is a C-scalar transformation and if Sp (S) is compact, then
S is a C-scalar operator.
Most of these notions and properties are found in [3] and [5].

Part I. The case of bounded curves

1.1. Cm-curve and Cm(,)-scalar operators. In Part I, we consider a Jordan
curve, i.e., a closed curve in the complex plane C which is homeomorphic to the
unit circle r {X e C;I X 1}. More precisely, we define"

DEFINITION 1.1. A compact set A in C is called a C’%urve (m" integer >_0
or m ), if there exists a one-to-one continuous mapping , of F into C such
that

(i) ,(F) A;
(ii) , can be extended to an open neighborhood a of F (the extended map

will also be denoted by ) in such a way that , is one-to-one on a and , and
--I are both m-times continuously differentiable on.a and ,() respectively as

functions in two real variables.
The mapping , is called a representation of A.

The unit circle r is a one-dimensional C-manifold with the natural differ-
ential structure. Let C(F) be the algebra of all complex-valued m-times con-
tinuously differentiable functions on r. Thus, a complex-valued function f on
r belongs to C(F) if and only if the periodic function]" ](0) f(ei) of a real
variable 0 with period 2r is m-times continuously differentiable with respect to
0. We introduce the usual topology (defined by uniform convergence of de-
rivatives of order up to m) in C (P).

If , is a representation of a C-curve 5, then this mapping induces a differ-
ential structure on zX, so that A is regarded as a one-dimensional Cm-manifold.
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The space Cm(zX) is isomorphic to Cm(I’) by the mapping g - g
servation justifies the following definition (cf. [2])"

This ob-

DEFINITION 1.2. Let , be a representation of a C-curve. S L(E) is
called a C’(’)-operator if there exists a continuous algebra homomorphism
W of C(F) into L(E) such that W(1) I and W(,) S. If , isthe identity
map’-r(ei) ei (so that ,(r) r), then a C(,)-operator is called a C’-uni
tary operator.

Here, we remark again (see Preliminaries) that the topology of L(E) may
be either rb or the simple convergence topology for the continuity of W.
We shall show that the homomorphism W in the above definition is uniquely

determined by S and v. First, we state the following approximation theorem,
a proof of which will be given in the appendix:

LEMMA 1.1 (Approximation Theorem). Let , be a representation of a C"-
curve and let X0 be a point lying inside the Jordan curve "(F). Then the set of
functions of the form Q (’r x0), where Q (z) P(z)/z with a polynomial P
and an integer n >-_ O, is dense in Cm( F ).

THEOERM 1.1. Let " be a representation of a C’-curve. If W1 and W2 are
continuous homomorphisms of C (P) into L(E) such that WI( 1 W2 1 I
and WI(’) W(’), then W1 W

Proof. Let Xo be a point inside V(r). Then

"y Xo
c(r)

1 XO) W(,v 1 Xo)[W(’r)-XoI]W (’r 1 Xo)
W1 (v l

xo) [W(v)-Xo I] W (, 1,,,}0)
_1

Hence, it follows that WI(Q (,y Xo)) W2(Q (3’ x0)) for any Q given
in Lemma 1.1. Hence this lemma and the continuity of W1 and W2 imply that
W(f) W(f) for all f e (I’)
By this theorem, we see that W in Definition 1.2 is uniquely determined by

S and ,. We shall call W the C"(.)-representation for S.
Given a representation , of a C-curve, we consider the function

--1
arg --1

,y_l

defined and m-times continuously differentiable on a neighborhood of ,(P).
--1u coincides with , on ,(P).
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DEFINITION 1.3. Let U be a Ccm-spectral representation.
satisfies the condition (’ ), if

We say that U

SuppU ,(F) and U(eo,ou) U(e) for all eeCm.
The following theorem is a consequence of Theorem 1.1 in [3] and the above

definition:

THEOREM 1.2. Let S be a C’(’)-operator for a representation " of a C’-curve
and let W be the C’(, )-representation for S. Then

S is a C’-scalar operator such that Sp (S) __c (F)
(ii) Uo Uo W , for C: defines a C-spectral representation

for S satisfying the condition (’).

A remark on the condition (’). There are some alternate forms for the con-
dition (3,); if U is a C%spectral representation and if Supp U

___
,(F) for a

representation , of a Cm-curve, then the following conditions are mutually
equivalent"

(i) U() U( /o u) for all e C:;
(ii) U(-I) U(1/3,-i);
(iii) U() U( (1/3,-1)) for all e cm;
(iv) U([ ,- I) I.

Furthermore, if , is analytic (i.e., if , is a one--one holomorphic function on
a neighborhood of F), then each one of (i)-(iv) is equivalent to

(V) U(X) U(3’ (1/3,-1)).

In particular, if , is the identity map (so that Supp U _c I’), then the follow-
ing conditions are mutually equivalent:

(i)’
(ii)’
(iii)’
(iv)’

U(r) U() for all e C7, where Cr(X) ,,(X/I X I);
U(X) U(1,/X);
U() U(,) for all C, where (X) (1/X);
u(I x l) z.

To prove the equivalence, we use Proposition 2 in [5].
(i)-(iv) can be reduced to the equivalence of (i) ’-(iv) ’.

The equivalence of

1.2. Canonical representation. Suppose S L(E) is a C-scalar operator
such that Sp(S) is contained in a Cm-curve A and suppose U is a C-spectral
representation for S. If there exists a representation , of A such that
U(X) U(- u) (in particular, if U satisfies the condition (,)), then
W(f) U(f u) defines the C (-) -representation for S, so that S is a C (,)-
operator. Thus, the theorems in the previous section indicate that C-spectral
representation U satisfying the condition (’r), if it exists, is uniquely deter-
mined by S and zX. The following theorem asserts that this is the case:

THEOREM 1.3. Let U1 and U2 be two C’c%spectral representations with compact
supports and suppose UI(X) U2(X), so that Supp U Supp U2 Let
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(i 1, 2) be a representation of a C’-curve. If "I(F) n a e(F) n o- for
some neighborhood of and if each U(i 1, 2) satisfies the condition (’),
then UI

Proof. Let
W(f) U(f ul)

We(f) Ue(f -1o "y2 u)
for f e (r) By our assumption that 7(F) n z 7(r) z, we see that W
is well defined. It is easy to see that W and W are continuous homo-
morphisms of cm(F) into L(E) and W(1) W(1) I. Furthermore,

w() v( u,) v() v() v(ou,)
--1U( o u,) W().

Hence, by Theorem 1.1, we have W W. Therefore, for any 9 e C,

UI() Vl( 1 u,1) Wl( o 1) W2( o 1)

U(, o : o u,)

U(, o o u,) U().

DEFINITION. 1.4. Let S be u C-scalar operator such that Sp(S) is con-
tained in a C-curve A. A C-speetral representation U for S is called canoni-
cal with respect to A if there exists representation v of A for which U satisfies
the condition (v).

By the above theorem, we see that the canonical representation is uniquely
determined by S and A.
The following is consequence of Theorem 1.2 and the observation at the

beginning of this section"

COrOLLArY. Let S L(E) and suppose Sp(S) is contained in a C-curve A.
Then S is a C-scalar operator having the canonical representation with respect to
A if and only if it is a C()-operator for a representation of .
Example 1.1. Let be an algebr of complex-valued functions on a set and

suppose eontuins constants. Let V be u homomorphism of into L(E)
such that V(1) I. Suppose f e satisfies the following conditions-

(i) 9 ofe for all e C,
(ii) 9 V( of) is a continuous mapping of C into L(E),
(iii) The image of f is contained in C-curve A.

rThen, V(f) is a C,-seala operator whose spectrum is contained in A and
U U(9) V(9 o f) is the canonical representation for V(f) with respect to. In this ease, the canonical representation is uniquely determined by V(f)
only.
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Let S be a C-scalar operator such that Sp(S) A for some Cm-curve/.
Then there is no other Cm-curve containing Sp(S). Hence, in this case, the
canonical representation for S is uniquely determined by S. If Sp(S) does not
coincide with a C-curve, then the example below (Example 1.2) shows that
there can exist two different C-curves A1 and A. such that Sp(S)

_
A1 n As

and two different C-spectral representations U and Us for S which are
canonical with respect to 51 and zs respectively.

Remark 1.1. If there exists a neighborhood z of Sp(S) such that
zl n a Z n a, then U1 and U. in the above argument coincide by Theorem 1.3.

Example 1.2. Let Q e L(E) be nilpotent, i.e., Qs 0. Then Sp(Q) {0}.
Let

A. F-P 1 ------{h e C;Ih- 11= 1},

1() X - i and .(X) , + 1.
respectively. Let

U() (0)I H- (0)Q

and , are representations of 51 and As

and 10U() (0)I q- -(0)Q

for e Clc (X + iv). It is easy to see that U and U. are Co-spectral
representations for Q and they satisfy the conditions (,1) and () respec-
tively. Obviously, U1

THEOREM 1.4. If S is a C-scalar operator whose spectrum is contained in a
C-curve, then S has a unique C-spectral representation, which is canonical with
respect to any C-curve containing Sp (S).

rProof. It is enough to show that if U is any C-spect al representation for
S and if / is any representation of a C-curve containing Sp(S), then U
satisfies the condition (/). For any x e E and x’ e E’ (the dual of E),-- (U()x, x’} is a continuous linear form on C. Hence, there exists a
Radon measure ,, such that t,,() <U()x, x’) for all C. Obvi-
ously,

Supp ,, Supp U Sp(S) 5’(F).

Therefore, - o u on Supp ,, hence

Since this is true for any x e E and x’ E’, U satisfies the condition (,).

Canonical representations for C’-unitary operators. If S is a C-unitary
operator, then there exists a uniquely determined Cm(eO)-representation W for
S and U() W((e) defines the canonical representation for S with re-
spect to F. Conversely, if S is a C-sclar operator such thut Sp(S) F and
if there exists the canonical representation U for S with respect to F, then it is
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a Cm-unitary operator (by corollary after Definition 1.4). Thus, for a Cm-uni
tary operator S, its canonical representation with respect to F is called the
canonical representation for S. Cf. Remark 2.4, Part II.)

Example 1.3. If E is a Hilbert space, then S e L(E) is a C-unitary oper-
ator if and only if it is similar to a unitary operator. In this sense, C-uni
tary operators on a locally convex space generalize the notion of unitary oper-
ators on a Hilbert space.

If E is a Banach space, we shall see (1.5) that any one-to-one isometry on
E is a C2-unitary operator.

Example 1.4. Let E S(Rn) be the Frchet space of the rapidly de-
creasing function on R (see e.g. [3], Example 2.5). Let

= (,...,)R.
If we define operators T, U() ( Cc) on E by

[Tf](x) ei<’x>f(x)
[U()f](x) (ei<’x>)f(x)

forfeS(Rn), wherex (xl, xn) and(a,x} alxl + + anx,
then T, U() e L(E) and we see that T is a C-unitary operator and U is
its canonical representation.

Let be the Fourier transform of $(Rn) onto itself. Since is a
topological isomorphism, T -1 is again a C-unitary operator
and () :U()-I defines the canonical representation for . We
see that [ f](x) f(x a), i.e., / is the translation of variable by a.

Taking the dual, we also see that the above arguments hold on the space
E $(Rn) of tempered distributions. Thus, we have seen that a translation
is a C-unitary operator on $(R) and on $(Rn) ’.
We shall see (1.5) that the Fourier transform is C2-unitary on S(R)

and on $(Rn) ’.

Properties of the canonical representations

THEOREM 1.5. Let S be a C’-scalar operator such that Sp(S) is contained
in a C’-curve A and suppose it has the canonical representation U with respect
to A.

(i) If T L(E) commutes with S, then T commutes with each U(),
C:.

(ii) If F is a closed subspace of E and if S and (ko I S)- leave F in-
variant for some o lying inside /, then each U() leaves F invariant.

Proof. (i) Let be a representation of A for which U satisfies the con-
dition (). Let W(f) U(fou) forfeC(F). Then WistheC()-
representation for S. It is enough to show that T commutes with each W(f).
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Let Xo be a point inside A. Then

It follows that W(Qo(/ X0))T TW(Qo(’ X0)) for any Q given
in Lemma 1.1. Hence, by this lemma, we have W(f)T TW(f).

(ii) With the same notations in (i), our assumptions imply that
W(Qo(, X0))(F)

_
F. For each feCre(F), there exists a sequence

{Q} such that Q (- x0) -- f in cm(I) by Lemma 1.1. If x e F, then

W(Qn (’ X0))xeF and W(Qn (, X0))x -- W(f)x.

Hence W(f)x F, i.e., W(f) leaves F invariant for each f Cm(r) hence so
does U() for each e C.
COROLLARY 1. Let S be as in the theorem. Then any other C’-spectral

representation U for S commutes with U (i.e., U()U() Ua (b) U()
for any , b C).

COROLLARY 2. Let S (i 1, 2) be a C’-scalar operator such that Sp(S)
is contained in a C-curve A (i 1, 2) and suppose S (i 1, 2) has the
canonical representation U with respect to A (i 1, 2). If S and S. com-
mute, then U1 and U: commute.

THEOREM 1.6. Let S be a C’-scalar operator whose spectrum is contained
in an analytic curve A (i.e., there exists a representation of A which is holomorphic
on a neighborhood of F) and suppose S has the canonical representation U/, with
respect to A. Let U be any other cm-spectral representation for S. If m is finite,
then there exists Q L(E) such that Q,+I 0 and

QkU() .. Ua(D)
k=O

2mfor all e C where D (a/O + i a/Or) (X + iv).
U m and if E is a Banach space, then there exists Q L(E) such that

QO+ 0 for some non-negative integer mo and

U() Ua(D)
k=O

for all C.
Proof. By Corollary 1 above, U commutes with Ua. Let

Q u()- u().
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By the remark at the end of 1.1, we see that

v(x) v( o (i/-)).
Since q (1/,"i’) is holomorphic on a neighborhood of Sp(S), we have

U(X) U( o (1/’-1’)).
Thus, Q U(X q o (i/-1)). The function , q o (1/--1) vanishes
on Supp U (F). Hence Qm+l 0 if m is finite. If we put

QkUI(,) . UA (D)
k=0

2mfor 9 e C then we see that U1 is a C2,’-spectral representation, Ul(k) U(X)
and UI(X) U(X). Hence, U(9) U(9) for all 9 e C2c by Proposition
2 in [5].
The last half of the theorem is proved in a similar way.

COROLLARY. Let S, Ua and U be as in the theorem. If m is finite, then
[U(9) U(9)]+I 0 for any e C.
These results improve Theorem 2 and its Corollary in [5] in our special

case where Sp(S) is contained in an analytic curve.

1.3. An existence theorem. Let S be a C-scalar operator such that
Sp(S) is contained in a Cm-curve n. If m >_ 1, we do not know whether
there always exists a canonical representation for S with respect to X. We
can prove the following theorem which, in particular, asserts the existence
for m

THEOREM 1.7. Le m >_ 1 and le$S be a C’-scalar operator such ha Sp(S)
is contained in a C’-curve A. (If m o, we read 2 oo .) Then there

2m rexists a canonical representation with respect to/ for S as a C -scala operator.

Proof. Let be a representation of ZX and let

g,o(X) [X ,(u,(X))]k (k 0, 1, 2, ...).

g is defined and 2m-times continuously differentible on a neighborhood
rof /. Let U be a C,-spect al representation for S. Since Supp U

U(g) is well defined.
We consider a differential operator of the form

D 0(, )(0/0 + i 0/0) (k + i)

C2-x() nd D(, u) 1 on . The existence of such a func-such that 0 e

tion 0 can be esily seen by the fact that the Jacobian of the transformation
--1 does not vnish on .
Case I. m is finite. If k >_ m + 1, then all the partial derivatives of g

of order <_m vnish on zX. Since 9 --+ <U(9)x, x’) is a distribution of order
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m whose support is contained in A for each x e E and x’e E’, it follows
U(g) 0 for k >_ m - 1 (see e.g., Th4orme XXVIII of [7], Chapter III).
Similarly, we see that

(#) U(g ) 0 for k m + 1, m -t- 2,...

for any e C. Now, we define Ua by

1 U[gD(o ou)]Z:
k0

2mfor e Cc Then the right hand side is well defined and Ua is a continuous
linear mapping of C2c into L(E). Furthermore, it is easy to see that
Supp Ua A, U(1) I, Ua(X) U(X) S and U(q o /o u) Ua().
From (#), it follows that U is multiplicative. Hence U is the canonical
C2cm-respresentation for S with respect to A.

Case II. m . If we apply the proof of Th6orime XXVIII of [7],
Chapter III to our L(E)-valued distribution U, we can conclude the following:
For any continuous semi-norm q on L(E), there exists a non-negative integer
mq such that if all the derivatives of e C of order _<mq vanish on A, then
q[U()] O. Hence we see that

q[U(g)] 0 fork=mqWl, mq-t-2,...,

for any e C:.
Now, we define T (p 1, 2, ...) by

1 U[g D (,p o ,), o u)
k=O

for e C. Then, for each p, T is a continuous linear mapping of C: into
L(E) such that Supp T A, T(1) I, T(,) S and T( o o u,)
T(). The property (#q) shows that {T()} is a Cauchy sequence in
L(E) for each e Cc. Since L(E) is quasi-complete, there exists Ua(q) e L(E)
such that

T() -- Ua() (p --*

for eacheC:. In fact, q(T(q) Ua(q)) 0for p >_ mq. It follows
then that Supp Ua A, Ua is continuous linear on C:, Ua (1) I, Ua (,) S
and Ua(q o u) Ua(q). Furthermore, (#q) implies

q[T() T,()T()] 0

for any p p pa >_ mq , e C. It follows then that Ua is multiplicative.
Hence, Ua is the canonical representation for S with respect to .
Remark 1.2. If E is a Banach space, then so is L(E).

m0 >_ 0 such that Ua T0.
Hence there exists

COROLLARY 1. Let S (i 1, 2, n) be a C:-scalar operator such that
Sp(S) A for a C*-curve A (i 1, ..., n). If S, ..., S, commute
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with each other, then P(S1, Sn) is a C-scalar operator for any polynomial
P in n variables.

Proof. The previous theorem implies the existence of the canonical repre-
sentation for each S with respect to A. By Corollary 2 to Theorem 1.5,
these representations commute with each other. Hence, by (ii) of Corollary
to Proposition 3.1 in [4], we see that P(SI, S,) is C-scalar.
COROLLARY 2. If $1, "", S are Ca-unitary operators commuting with

each other, then SI S, is a Ca-unitary operator.

1.4. Characterization in
any C-scalar operator with
d dis (X, Sp(S)) and R(X)

terms of resolvents. Let SeL(E) be
compact spectrum. For , Sp(S), let
(Xl- )-.

LEMMA 1.2. For any continuous semi-norm q on L(E), there exists a non-
negative integer mq (= m, if m is finite) such that

q[R(k)] _< Mq(d-"q- + d-) (Mq > O)
for all Sp(S).

Proof. For d > 0, we can choose md e C in such a way that m 1 on a
neighborhood of Sp(S), (z) 0 if d > rain (d/2, 1), 0 g 1 and
[]. g K(d- + 1) (1 0, 1, 2, K > 0is independent of d),
where

al+:
9 [,. sup a,a. (X) 0 k + l, X e Z {z; d, g 1}

(See, e.g., the proof of Th6or&me XXVIII of [7], Chupter III.) Let

,(z) *(z)

Then 9x I], Ki(d[- + d71),
r0, 1, 2,.... Let U be a Cc-spect al representation for S.

R (),) U(x), the lemma follows from the continuity of U.
Since

THEOREM 1.8 (Cf. Tillmann [9, Satz 1]). Let m >_ 2 and let S L(E) have
a spectrum contained in a Cm-curve. If, for each continuous semi-norm q on
L(E), there exists an integer mq with 0 <_ mq

__
m 2 such that

(1) q[R(X)] _< Mqd-"- (Mq > O)

for all with 0 < d, <_ do (do > 0), then S is a C’-scalar operator having a
canonical representation with respect to any C’-curve containing Sp(S).

Proof. Let , be a representation of a Cm-curve A containing Sp(S).
First, we remark that (1) implies

(1’) q[R(’(z) )] <_ i’q 1 -Iz -’- (i’q > O)

for all z with 0 < 1 z]l <_ e0, e0 being taken sufficiently small.
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By Theorem 1.2, it is enough to show that S is a Cm()-operator. Let
,(0) {(1 H- )eio} for [1 - e0. Let

-1 -1()
2ri

{[(0) (1)] (0) [-(0) (1)] -(0)} d0

Cfor 0 < e0. Then() 1 Forfe (r) nd e (0 < e eo)
we define

()W(f) f(e) {R[(0)] ’(0) R [-(0)] 2(0)1 dO.

The integral exists nd W(f) e L(E), since M1 the functions in the integral
re continuous in 0 nd L(E) is quasi-complete. We shall show that
lim o W(f) exists for ech f e (F)

CFor rel with 0 nd forfe (r) let

[0 * d
(0)=-d(

(n) d ()[(0)]-}, n 2, m.[0 ](0)
d0
{[0-’

(n) is continuous from [--0, 0] into c-n(F) nd f on)f is linear
continuous from C(F) into C (F) for ech .

Let be the bounded component of C A. We my ssume that
_(0) e for 0 < e0 nd that () 1. (We cn similarly discuss the
other cses.) Since a is simply connected, R(A) hve n-fold indefinite
integrals R(-n)(k) in for M1 n 1, 2, -... Then, integrating by prts,
we hve
2 2r

f(e)R[-(O)] -(0) dO [O-]](O)R (0)] dO ( 1,2, ,m)

On ghe unbounded eomponeng of , we define R(-(X) for X (0),
0 < e eo,0 0 < 2 as follows"

R)(X) R(X);

1, 2, .... Nex,wedefineSn(f, e) eL(E), 1, 2, ...,mby

(f, e) s_(f, e) + [o(-’fl(o)[;(o)]- -+’[(o)];(o) o.S

2, m. Then, inegraging by pars, we have
2 2

(O)R(-n)[(O)] dO,
o
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n 1, 2, m. We remark here that lim.0 S(f, e) exists for each n, f
and f -- lim,0 S(f, e) is continuous on cm(I’) for n _< m.
From (1’), by a method of Tillmann [8] (also see [11]), we can conclude

that R(-m-)[-,(0)] has a q-limit as e --* 0 and the convergence is uniform in 0.
CSince mq -t- 2 _< m and f e (r) it follows that W(f) has a q-limit as --+ 0.

Hence W(f) lim.0 W(f) exists and W(f)eL(E). Furthermore, the
above arguments show that the mapping f --* W(f) is continuous from Cm(F)
into L(E). Obviously the mapping is linear.

If h is a function holomorphic on a neighborhood of 5, then the opera-
tional calculus is written as

h(S) =-i {h[’(O)]R[,(O)],(O) h[.-(O)]R[’-(O)]’’--(O) dO

for sufficiently small e > 0. Hence

h(S)-W(ho.) lim
1 f-0+

{h[7(0)] h[’o(O)]}R[’(O)]’(O) dO

}-/’_ {h[--(o)l h[,.(o)]lR[,-,(O)],’(o) dO

We can see that this limit is equal to zero, by repeating the arguments given
above (also see [8] and [11]). Hence, W(ho") h(S); in particular,
W(1) I and W() S. Furthermore, it follows that W is multiplicative
on the set {h o ; h is holomorphic on a neighborhood of 5}, which is dense
in C(F) (Lemma 1.1). Since we have seen that W is continuous on C(F),
it follows that W is multiplicative on C(I’). Hence, W is a C()-representa
tion for S.

COtOLLY. If S is a C’-scalar operator (m >_ 1) such that Sp(S) is
contained i a b -curve, hen here exists he canonical representati with
respec o any C+-curve containing Sp(S) for S as a v -scalar operator.

This corollary improves Theorem 1.7 in the case m is finite >_ 3. (It gives
as good results in the cases m 2 and m .) Thus, our best known result
on the existence of the canonical representations is as follows"

rIf S is a C-scala operator such that Sp(S) is contained in a C’-curve A,
then there exists a canonical representation with respect to A for .S as a

nC -scalar operator, wherem’ 0ifm 0, m’ 2ifm 1, m+ 2
if2 < m < andre’= ifm .
Remark 1.3. In the above theorem, it is enough to assume that (1) is

satisfied for each q belonging to a family of semi-norms on L(E) which defines
the topology . Hence, if E is a Banach space, we can say:

If there exists a non-negative integer m0 such that Sp(S) is contained in a
Cm+-curve and

R() <= Md-"- (M > O)

for all k with 0 < dx _< do (d0 > 0), then S is a C+%scalar operator.
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1.5. Another characterization of C’-unitary operators.

THEOREM 1.9 (Cf. Kantorovitz [2, Lemma 2.9]).
(i) If S is a C-scalar operator such that Sp (S) F (in particular, if S

is a C’-unitary operator), then for each continuous semi-norm q on L(E) there
exists a non-negative integer mq( m, if m is finite) such that

(2) q(Sk)

_
Mq[ k [mq (Mq > O)

for all ]c 1, =t=2, ....
(ii) Conversely, if S L(E), S-1 exists and L(E) and if (2) is satisfied

for mq with 0

_
mq

_
m- 2 for each q, then S is a C’-unitary operator.

Proof. (i) For 0 < d < 1, let 9 e C: be the function defined in the proof
of Lemma 1.2 and let k(),) },91/Ik1(},) for k =i=l, :i=2, .... Since

Supp {},: 1 1/2II < I},1 < 1 + 1/2Ik[},
we havellkll. < Klk[ forallk 1,2, ;l 0,1,2, .... Since
S U() for any C-spectral representation U for S, (2) follows from
the continuity of U.

(ii) We may apply Kantorovitz’ method [2, Lemm 2.9] to obtain the
C(e)-representation for S. Here, we shll show that (2) implies

q(R(k) ii 1 --for F, ] < 2. Then we conclude the existence of a C(e)-representa
tion by Theorem 1.8. (In this way, we prove the implication III (m)
IV (m) in Theorem 3, (i), of [6]. Cf. [11, 4.12].)

If X < 1, then let R() -=0S-(+) and if [] > 1, then
let R(k) =ok-(+)S. The condition (2) implies that these series
converge in L(E), so that R(k) e L(E) for each e F. Furthermore, we see
that R(h) is holomorphic on F. Direct computations show that
(I- S)R(h) R(h)(hI- S) I for each ktF. Hence Sp(S) F
and R(h) R(k). Again by (2), we have

for lh < land

q(R()) <_ q(I)/I ] + Mq= I I-(+)kTM _< M’q([ )’l 1 )--mq--1
for 1 < < 2,

Remarlc 1.4. By this theorem, we see that a one-to-one isometry on a
Banach space is C2-unitary and the Fourier transform on $(Rn) or on $(Rn)’
is C2-unitary (see Examples 1.3 and 1.4). Also, we can directly show that
any translation on $(Rn) or on $(Rn)! is a C-unitary operator (cf. Example
1.4).

Remarl 1.5. We showed that the condition (2) implies the condition (1).
As a converse, we can prove the following" If S L(E) has a spectrum con-
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tained in r and if (1) is satisfied for each q, then

q(Sk) <_ M;I ]c "+1 (M > O)

for all ]c =t=1, 2, .... See, e.g., [11], 4.11.

COROLLARY 1. Let S (i 1, 2) be a C’i-scalar operator such that Sp(S)
F (i 1, 2). (In particular, let S (i 1, 2) be a C’’i-unitary operator.) If
$1 and $2 commute, then S.$2 is a C"l+’2+2-unitary operator. (Cf. Corollary
2.10 in [2].)

Proof. if either ml or m2 , then this corollary reduces to Corollary
2 to Theorem 1.7. Suppose both ml and m2 are finite. Then

B {SI/I ] [ml; ] :t:l, -+-2,
and

B2 {S/I k l2; k =t=l, -+-2, ...}

are bounded sets in L(E) by the above theorem. Since

B I(SS)k/licll+m 1 1, -2, ...} Bt.B,

B is a bounded set, so that q[(S S)] _< K k ml+ for all ]c 1, -2, ....
Hence, $1 S. is a Cl++-unitary operator by (ii) of the above theorem.

COROLLARY 2. Let S be a C’-scalar operator such that Sp(S) is contained
in a C’-curve A, " be a representation of A and U be a C-representation for S.
For any continuous semi-norm q on L(E), there exists a non-negative integer
mq( m, if m is finite) such that

q[U(--l)] _< iql ] Uq (Mq > O)

for all] 1, -2, ....
Proof. U(’-) is a C-scalar operator and Sp (U(-)) F.

COROLLARY 3. Let S eL(E) and suppose Sp(S) is compact. If there
exists a one-to-one holomorphic function h on a neighborhood of Sp(S) such
that h(S)-e L(E) and if for each continuous semi-norm q on L(E) there ex-
ists an integer mq with 0 nq

_
m 2 such that

q{[h(S)]} _< Mql ]c TM (Mq > O)

for all k 1, +/-2, then S is a Cc-scalar operator having a canonical
representation with respect to a C-curve.

Proof. By Theorem 1.9, (ii), h(S) is a C-unitary operator. Let V be
the canonical representation for h(S). If we define U() V(o h-i)
for C, then U is a Cc’-spectral representation for U(k) V(h- )
h-(h(S)) S. Since we can find a representation - of a C-curve such
that h- on a neighborhood of Sp(h(S)) and since U satisfies the con-
dition (-) for such ,, we have the corollary.
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Part II. The case of unbounded curves

2.1. Unbounded Cm-curve and Cm(-)-transformation. In Part II, we con-
sider a Jordan curve in C u oo} passing through the point oo, or its
restriction to C. Such a curve is homeomorphic to the extended real line

DEFINITION 2.1. A closed set/ in (7 is called a C-curve (m integer >_ 0
or m oo ), if there exists a one-to-one continuous mapping , of/ into such
that

(i) (/) A, ,(o) oo; (Hence, ,(R) zX {oo}.)
(ii) - can be extended to an open neighborhood of R in C (the extended

map will also be denoted by ,) in such a way that , is one-to-one on a and ,
--Iand , are both m-times continuously differentiable on a and (a) respec-

tively as functions in two real variables.
The mapping , is called a representation of/.

Let C’(R) be the space of all complex-valued m-times continuously dif-
ferentiable functions with compact support in R. We introduce the usual
topology in C(R) similar to that in C’.

If , is a representation of a C-curve zX, then this mapping induces a dif-
ferential structure on zX {L }, so that ZX oo is regarded as a one-dimen-
sional C-manifold. The space Cc(ZX {oo}) is defined to be isomorphic
to C(R) by the mapping g g .. Thus, corresponding to Definition 1.2,
we define"

DEFINITION 2.2. Let , be a representation of a C-curve. A closed trans-
formation S with domain Ds is called a C (. -transformation C (. -operator,
if S L(E)), if there exist a continuous algebra homomorphism W of C’(R)
into L(E) and a net {f,} in Cc(R) such that W(f,,)x x for each x e E,
W(f)xeDs for any feC(R) and

(**) lim W(’f)x Sx for all x e D
The net {f} is called an identity net for W. If , is the identity map ,(t)
(so that , (R) R), then a C (t) -transformation (resp. a C (t) -operator) is
called a C"-real transformation (resp. a C-real operator). (Cf. [5], [2],
and [9]).

Remark 2.1. The condition (**) can be replaced by

W(f)Sx W(’f)x for allf e C(R) and x Ds,
or by

(**)" W(f)S SW(f) onDs and SW(f)= W(’f).

Hence, the definition of a C(,)-transformation does not depend on the
choice of {f} (cf. Preliminaries). Furthermore,

Ds {z e E; lim W(’f) exists}.
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Also, we cn mke the sme remark s in Preliminaries on the topology of
L(E) nd the continuity of W.
An pproximtion theorem corresponding to Lemm 1.1 my be formu-

lated s follows (see ppendix)

LEMMA 2.1 (Approximation Theorem). Let , be a representation of a
C-curve. Given a compact set on R and an m-times continuously differentiable
function f R, there exists a sequence [P} of polynomials (in one complex
variable) such that

(P o)g fg (n

in C(R) for all g (R) with Supp g

THEOREM 2.1. Let be a representation of a C-curve. If W and W are
continuous homomorphis of C(R) into L(E) with identity nets {f)} and
{f)} respectively such that

1 lim () W(f )xW(f, )x lim
then W W. (Here, (1) means that if the limit of one side exists, then so
does the limit of the other side and they are equal.)

W(f, )W(g)x exists and is equalProof. First, we observe that lim,
to W(g)x for any g C(R) and x e E. We shall show that

(2) W(g )w(g) W(g)W(g ), o, 1, ,
for any g, g e C(R). If 0, then (2) is trivial. Suppose (2) is true
for a . Then, for any x e E,

W(- +g )W(g)x W(g+) lira. W(f))W(g)x
lira, W(g w(f, )w(g)x

W(g)W(g)x
g )x.W(g)W( +

Hence, by induction, we have (2). It follows then that

(3) W[g(p )]w(g) w(g)w(p )]

for any polynomial P. Let f e C be given. By Lemma 2.1, there exists se-
quence {P} of polynomials such that

g(P o) gf and g(P o) gf (n

in C. Hence, (3) implies

W(gi)W(f)W2(g) W(g)W(f)W2(g).

Now, taking g , g f) and tking limits, we see tha W(f) W(f).

By this theorem and Remark 2.1, we see that W in Definition 2.2 is uniquely
determined by S and . We shall call W the C()-representation for S.
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DEFINITION 2.3. Let , be a representation of a C-curve and let U be a
Cc-spectral representation. We say that U satisfies the condition (,), if

SuppU,(R) and U(ooRe,-1) U()

for all C.
THEORE 2.2. Let S be a C’()-transformation for a representation " of a

C-curve A and let W be the Cm(7)-representation for S. Then
(i) S is a C-scalar transformation such that Sp (S) A;
(ii) Uo Uo W q o " for C defines a C-spectral representation

for S satisfying the condition (.).

rProof. It is easy to see that U0 is a Cc-spect al representation with an
identity net {f, ,-1}, where {f,} is an identity net for W and that U0 satisfies
the condition (’). If x e Ds, then

U0[k(A f-i Ix W(/fa)x Sx,

Hence S is a C-scalar transformation and U0 is for S.

A remarlc on the condition (,). Corresponding to the similar remark in
Part I, we can state some equivalent forms for the condition (,) in the case ,
is a representation of a C-curve; if U is a C-spectral representation and if
Supp U ,(R), then the following conditions are mutually equivalent:

(i) U() U( o o Re-l) for all C;
(ii) U(,-I) U(-q) for all C;
(iii) U() U( o 7 o -=-) for all e C;
(iv) U[(Im ,-1)] 0 for all e C.

Furthermore, if , is analytic, then each one of (i)-(iv) is equivalent to

(v) U(k) U[(, o )] for all e C.

In particular, if , is the identity map (so that Supp U

_
R), then the fol-

lowing are mutually equivalent:

(i)’ U() U() for all e C, where (k) (Re k);
(ii)’ U(k) (q) for all q e C;
(iii) U(*) U() for all C, where q*(),) q(7);
(iv)’ U[(Im )] 0 for all C.

2.2. Canonical representation. Corresponding to Theorem 1.3, we huve
the following theorem, which leads to the definition of uniquely determined
canonical representation"

THEOREM 2.3. Let U and U. be two C-spectral representations with identity
nets {(a1) and ) respectively and suppose

lim. U(Xq(.))x lima
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so that Supp U1 Supp U.(---Z). Let -(i 1, 2) be a representation of a
C-curve. If I(R) n z 2(R) n z for sone neighborhood of and if each
U(i 1, 2) satisfies the condition (), then U1 U

Proof. Let
W(f) UI(f o Re)
W2(f) U2(f o ;1 o 2 o Re 1)

for f C(R). Then, W and W are well defined and they are continuous
homomorphisms of C(R) into L(E). Let

a ovi nd = ol.

Then {d) nd {d)} re identiy nets for nd respectively. Further-
more,

(I) (I)

V:[(k9:)) o : o Re ::] V:(k9:)).
(2)Similarly, we see that ) U( ). Hence

() (9)lim W(f )x limp W(f )x.

Therefore, we hve W W by Theorem 2.1. Hence, for ny C,
U() U( o o Re z) W( ) W( )

U( o o 1 o o Re)
U( o o Re) U().

rDEFINITION 2.4. Let S be C-scl transformation such that Sp(S) is
contained in C-curve A. A C:-spectrl representation U for S is clled
canonical with respect to A, if there exists representation of A for which U
stisfies the condition ().

By the bove theorem, we see that the cnonicl representation is uniquely
determined by S nd A.

COROLLARY. Let S be a closed transformation such that Sp(S) is ctained
in a C-curve A. Then S is a C-scalar transformation having a canonical
representation with respect to A if and only if it is a C()-transformation for a
representation of A.

Proof. Theorem 2.2 is the "if" part. If S is C:-scalr transformation
hving the cnonicl representation U with respect to A, then U stisfies the
condition () for some representation of A. If we define W(f)
U(f Re -), then we cn see, by n rgument similar to the proof of the
previous theorem, that S is C () -transformation with the C () -represen-
tation W.

Remark 2.2. We cn formulate n example corresponding to Example 1.1
with n extr condition on the existence of n identity net.
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rIf S is a Co-scala transformation such that Sp(S) h for some C-curve
A, then there is no other C-curve containing Sp(S). Hence, in this case, the
canonical representation for S is uniquely determined by S.

If Sp(S) does not coincide with a whole C-curve, then we can make re-
marks similar to Remark 1.1.

Remart 2.3. In the arguments in Part I, if Sp(S) does not coincide with a
whole Cm-curve, then it is enough to assume that the representation /of the
curve can be extended to be one-to-one and C only on a neighborhood of
,-I(Sp(S)). If Sp(S) is contained in a C-curve and if it is compact, so
that ,-I(Sp(S)) [-r, r] for some r > 0, then

(1 + Im /-1) exp (i Re -/2)
gives a one-to-one C-mapping of a neighborhood of Sp(S) onto a neighbor-
hood of (Sp(S) F and , o ui /o Re (-, where , -1. Hence, we
can regard Sp(S) to be contained in a C-curve in the sense remarked above.
Thus, if Sp(S) is compact, then we can reduce our arguments to those in
Part I. This means that essential difference of Part II from Part I, in general
discussions, appears only when Sp(S) is not compact. In this respect, we
shall state in this part, only those theorems which deal with general trans-
formations having non-compact spectrum or with C-real operators.

THEOREm 2.4. If S is a Cc-scalar transformation whose spectrum is con-
C-spectraltained in a C-curve, then S has a unique representation, which is

canonical with respect to any C-curve containing Sp(S).

The proof of this theorem is similar to that of Theorem 1.4.

Canonical representations for C’-real operators (cf. [5]). If S is a closed
transformation whose spectrum is contained in/, then S is C-scalar with a
canonical representation with respect to/ if and only if it is a Cm-real trans-
formation. Thus, for a C-real transformation S, its canonical representation
with respect to/ is called the canonical representation for S. (This definition
is equivalent to the definition in [5,7], where a C%real transformation was
called a real C-scalar operator.)

Remark 2.4. If Sp(S) /1, -1}(=r R), thenS can be C-unitary and
C-real at the same time. In this case, the canonical representation for S as
a Cm-unitary operator may be different from that for S as a C-real operator.
Example" S I W Q with a nilpotent operator Q.
Examples of C-real transformations were given in [5].
Properties of the canonical representations.

THEOREM 2.5. Let S be a C-scalar transformation such that Sp(S) is con-
tained in a C-curve A and suppose it has the canonical representation Ua with
respect to A.

(i) If T L(E) commutes with S on Ds, then T commutes with each
U(), C.
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(ii) If F is a closed subspace of Es {Ua(q)x;qe c, xeE} and if S
leaves F invariant, then each Ua (q) leaves F invariant.

Proof. (i) Let , be a representation of A for which Ua satisfies the con-
dition (). Then there exists the C (,)-representation W for S. It is enough
to show that T commutes with each W(f), f e C(R). For any gl, g C(R)
and x E, we have

W(gl ")TW(g)x W(gl)STW(g.)x W(gl)TSW(g)x W(g)TW(g ,)x.

Similarly, we have

W(g’)TW(g)x W(g)TW(g’)x, ]c O, 1, 2, ....
Hence,

W[g(P ,)]TW(g) W(gl)TWq(P o )]

for any polynomial P. Given f eC’2(R), we approximate it by P o, on
Supp gl t Supp g. (Lemma 2.1) and we obtain

W(g)W(f)TW(g.) W(g)TW(f)W(g).

Letting g, g be members of an identity net for W and taking limits, we
finally have W(f) T TW(f).

(ii) With the same notations as in (i), we shall show that each W(f) leaves
F invariant. If xeF Es, then there exists foeC(R) such that
x W(fo)x. Then

W(fo ,)x Sx F

By induction, we see that W(fo ,)x e F for all x e F. Itby assumption.
follows that

Wo(P ,)]x e F

for ny polynomial P. Hence, givenf e C(R), we conclude that

W(f)x W(fof)x e F
by Lemm 2.1.

COnOLLnY 1. Let S be as in the theorem. Then any other C-spectral
representation for S commutes with Ua

ConoLn 2. Let S L(E)(i 1, 2) be a C-scalar operator such that
Sp(S) is contained in a C-curve A(i 1, 2) and suppose S(i 1, 2) has
the canonical representation U with respect to A(i 1, 2). If S and S com-
mute, then UI and Us commute.

2.3. An existence theorem. Let S be a C-scalar transformation such
2mthat Sp(S) is contained in a C -curve A. If Sp(S) is compact, then we can

reduce the arguments to Part I (see Remark 2.3), so that we have Theorem
1.7 for an existence of the canonical representution. In this connection, we



GENERALIZED SCALAR OPERATORS 453

correct an error in [5], i.e., Proposition 6 in [5] should read"

Proposition 6. If S is a C-scalar operator whose spectrum is compact and
contained in the real line, then there exists a unique C2cm-spectral representation
U such that S Sv S*.
The three lines after the definition in p. 148 of [5] should also be changed in

accordance with the above correction.

If Sp(S) is not compact, we do not know if the corresponding theorem holds
in general. When we try to apply the method of Theorem 1.7 to this case, a
difficulty appears in showing the existence of an identity net for U. How-
ever, we can prove"

THEOREM 2.6. Let m >_ 1 and let S be a C’-scalar operator such that Sp(S)
2mis contained in a C-curve A. Then there exists the canonical representation

2mwith respect to A for S as a Cc -scalar operator. Furthermore this representation
is C"-spectral.
The proof is similar to that of Theorem 1.7. Here we use the function

Re ,-1 instead of u. We take a C-spectral representation U for S and con-
struct Ua.
COROLLARY 1. Let S(i 1,..., n) be a C-scalar operator such that

Sp(S)

_
A for a C:-curve A(i 1, n). If St, S, commute with

Ceach other, then P S S) is a -scalar operator for any polynomial P in n
variables.

Proof. By the above theorem and Corollary to Theorem 2.5, we see that
S, S hve C-spectrl representations U, U respectively which
commute with each other. Then, we see that P(S, S) is C-scalar by
(i) of Corollary to Proposition 3.1 in [4].

COROLLARY 2. If St, S are C-scalar operators such that Sp(S) /
for all i 1, n and if they commute with each other, then P(S S,)
is a C-real operator for any polynomial P in n variables with real coefficients.

2.4. Rate of growth of resolvents.

LEMMA 2.2. Let S be a C-scalar transformation. For ) e Sp(S), let
dx dis (, Sp(S) and R() ()I S)-.
For any continuous semi-norm p on E and x Es there exists a non-negative

integer m m(p, x) (=m, if m is finite) such that

(4) p(R()x)

_
M,.(d-"1-1 - d1) (M. > O)

for all ) Sp (S).
If S is C’-scalar, then for any continuous semi-norm q on L(E), there exists

a non-negative integer mq m, if m is finite) such that

(5) q(R(k))

_
Mq(d-"- - d-) (Mq > O)

for all ) Sp (S).
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Proof. (i) First, let S be a C-scalar transformation and let U be a
C-spectral representation for S. Given x e Es, there exists e C such that
U()x- x. Then,

is compact set. For any d > 0, we choose (cf. the proof of Lemm 1.2)
qCinsuchawaythat 1 on a neighborhood of , 0 1,
(z) 0 if dis (z, ,) > min (all2, 1) and ]],. K,(d- % 1) for all

0, 1, 2, where {z; dis (z, ) 1}. Let

,(z) (z)(z)
--Z

for Sp(S). Then, Cx. [, g;(d- + d1) and R()z V(x.)x.
Hence, by the continuity of the mapping U()x, we have (4).

(ii) If S is C-scalar, then there is a C-spectral representation U for S.
For any continuous semi-norm q on L(E), there exists
integer mq m, if m is finite) such that

q[U()] M (M > 0)

Cfor all e Then, we easily obtain (5) by expressing R(k) U(x) with
suitubly chosen x e C.
It is an open problem to formulate a general theorem corresponding to

Theorem 1.8 in the case Sp(S) is not compact. Here, we discuss only the
case Sp(S) .
LE 2.3. Let S be a closed transformation. If Sp(S) and if, for

each continuous semi-norm q on L(E), there exists a non-negative integer
mq m- 2(m 2) such that

(6) q[R( + iv)] M(I v +In
for all , v ( 0), then

(i) (S i)(S + i)- I + 2iR(-i) is a C-unitary operator;
(ii) There exists a continuous homomorphism W of C(R) into L(E) such

that W(f)x e Ds for all f e C(R), x e E, W(f)Sx SW(f)z for all f e C(R)
and x e Ds and SW(f)

Proof. (i) First, we remurk that S e L(E). For z e F, let

l (s+i)R(il+:)_ I 2i(z)
1 --z 1-- =z-- 1 (z-- 1)R i1_

It is easy to see that (z) (zI )- for all zer. It follows that
Sp(N) r.

Since

im(il1
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(6) implies
q(R(z) <_ M’q 1 zll-’-

for 11 z with zl < 2, zl 1. Hence, by Theorem 1.8, is C-unitry
operator.

(ii) Let W be the C(e)-representtion for $. For f e C(R), let

](e) f (i 1 + e
].

Then ] e (F) and 1 Supp ]. Let W(f) $(]) for f e C(R) Then, we
easily see that W is continuous homomorphism of C(R) into L(E). If x e E
and f e C(R ), then

e 1
x=2iR(-i)$ e xD.

Since 3 commutes with $(]), it follows that SW(f)x W(f)Sx for x e Ds.
Now,

e =i(+S)$ i e

Since

W(f) 2JR(-i)l

as we have seen above, we have

w(tf) 1/2(i + )( + )w(f)

1/2{I + (S i)(S + i)-}(S + i)W(f) SW(f).
THEOREM 2.7. Any C’%calar operator S such that Sp(S)

_
/ is a C"+-

real operator.

Proof. In view of Theorem 2.6, it is enough to prove the case m >_ 2. By
the previous two lemmas, we see that 3 (S i)(S + i)- is a C+-unitry
operator. Let 17 and W be as in the proof of the previous lemma. (Here,
W ure continuous homomorphisms of C+(P) and +C (R), respectively, into
L(E).)
By Theorem 2.6, there exists continuous homomorphism W of C’(R)

into L(E) such that W(1) I and W(t) S (i.e., W(f) Ua(f(Rez))
for f e C(R) ). We shull show that W(f) W(f) for f e C(R). Since
2m _> m W 2, it follows that W is a C+(t)-representation for S and the
theorem will be proved.

Let u(t) (t i)/(t + i) (t e R). u is u one-to-one C-mupping of R
Conto I’ {1} For g (F), g o u (R) and g -- g o u is continuous

from C’(r) into C’*(R). Hence, ]’x(g) W(g o u) defines a continuous
homomorphism W of C(F) into L(E). Furthermore,

1(1) I and W(e) W ..+. S.



456 FUMI-YUKI MAEDA

C2mHence, by Theorem 1.1, ]Z(g) ll(g) for all g e (F).
W(f u-1), it follows that W(]) W1(f) for all f e C2c (R).

Since W(f)

Remark 2.5. If the condition (6) of Lemma 2.3 is satisfied, then we see, by
a method of Tillmann [8], that

(7) W(f) lira
1 f_*-.o+ .f(t) {R(t ie) R(t % ie)} dt

is defined for f C(R) and W is a continuous linear mapping of C7(R) into
L(E). If Sp(S) is compact (_cR), then we can prove that W is a C’(t)
representation for S (Tillmann [9]; also see Remark 2.3). Now, we ask the
following question for S such that Sp(S) __c R and Sp(S) is not compact:
Under what conditions on R(),), does W, defined by (7), become the C’(t)
representation for S? If this question is solved under suitable conditions on
R(), we may be able to prove Theorem 2.7 directly without using Lemma 2.3
or Theorem 2.6.

2.5. Another characterization of C-real operators. If Sp(S) is com-
pact, then eit (- < < is defined by the operational calculus. Follow-
ing Kantorovitz [2], we give here a characterization of a C%real operator whose
spectrum is compact in terms of eits, which extends Corollary 2.11 of [2].

THEOREM 2.8. (i) If S is a C’-scalar operator such that Sp (S) is compact
and contained in R (in particular, if S is a C’-real operator with compact
spectrum), then for each continuous semi-norm q on L(E), there exists a non-
negative integer mq m, if m is finite) such that

(8) q(ets)

_
Mq [,nq

for all real number with >= 1.
(ii) Conversely, if S L(E), Sp (S) is compact and if (8) is satisfied by mq

with 0 <_ mq <_ m 2(m >_ 2), then S is a C’-real operator.

Proof. (i) Let (d > 0) be the functions defined in the proof of Lemma
1.2 and let bt(k) l/]tl(})eitx for _> 1. Then

for all 0, 1, 2, >_ 1. If U is a C-spectral representation for S,
then ets U(t). Hence, we obtain (8) by the continuity of U.

(ii) By Theorem 1.9, (ii), the condition (8) implies that Sp(ets) F
for each t. It follows from the spectral mapping theorem that Sp(S)

_
R.

Let
>_ sup {I ) 1; X e Sp(S)} (r > 0)

and let to r/2z. Then, --+ e*x is a one-to-one analytic mapping of a
neighborhood of Sp(S) onto a neighborhood of the semi-circle on which
Sp(es) lies. Hence, by Corollary 3 to Theorem 1.9, we see that S is a
C-real operator.
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Remart 2.6. The second part of the previous theorem can also be proved
as follows" The condition (8) implies that

(9) q(R(X))

_
MIImXl-’’-1 for 0 < IImXl < 1.

Then, it follows that S is Cm+%real (see Remark 2.5). The inequalities (9)
can be seen from the facts that

R(X) ifo e-tXetsdt for ImX < 0;

R(k) -i fo ete-s dt forImk > 0

and that

e-tnt’dt-
+1

for any > 0, m-- 0,1,2, ....
We can also show that (9) implies

q(ets) <_ M’’ I+
for all with -> 1, provided that Sp(S) is compact and contained in R.

COROLLARY (Cf. Corollary 2.12 of [2]). Let $1 and $2 be commuting C"1- and
C’-real operators respectively and suppose Sp S and Sp(S) are both com-
pact. Then S1 + S is a C++-real operator and S S is a C++-real
operator.

Appendix. Proofs of approximation theorems
We shM1 give proofs of Lemmas 1.1 and 2.1. If m 0, then these lemmas

are Theorem 7 and Theorem 8 of Walsh [10]. Our proofs for m 1 are based
on these theorems. We shall prove only the ease m is finite, since, if these
lemmas are true for any finite m, then it follows that they are true for m .
We remark that in order to have Lemma 1.1 (resp. Lemma 2.1), it isenough

to assume that the representation is defined only on r (resp. on R) in such a
C Cway that is one-to-one on r (resp. on R) e (r) (resp. (R)) and

’(0) 0 everywhere on r (resp. ’(t) 0 everywhere on R).

I. Proof of Lemma 1.1. Without loss of generality, we may assume that
Cthe origin lies inside (r) so that we can take X0 0. For any f e (r) we

Use the notation f(0) forf(0) f(e). Let

M sup0 1/(0)l and M’ sup0 I’(0) I.
We know that 0 < M, M < . Let

={P(z)/z; P polynomial and l" integer 0}.

For Q e , let r(Q) the residue of Q’at z 0.
We prove by induction on m. As remarked above, the ease m 0 is known

to be true. Now, we assume that Lemma 1.1 is true for m(0). If
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Cm+ cm+f e (r), then g f’/7’ e Cre(F). (7 is now a representation of a
curve.) Hence, given s > 0 there exists Q1 e (R such that

d(A1) g(*)(O) q(7(O)) < e

for 11 nd O, 1, 2, m. In prticulr,

(A2) f’(O)/’(0) Q((o))i < .
Let O(z) be a primitive of Q(z) r(Q)/z such that Q(7(0)) f(0). Then
Q e(R. Let R(O) f’(O)/7’(O) Q(7(O)). Then,

f’(O) 7’(O)Q(7(O)) + 7’(O)R(O)

r(Q) -t- 7’(O)R(O).’(O)Q’(.(o)) + .’(o).(o)
Integrating both sides from 0 to o (0_< 0 _< 2r), we have

7t(O) t.o
f(O) --f(0) Q(7(0)) Q(7(0)) + r(Q) Jo dO + Jo 7(O)R(O) dO.

,(o)

If 0 2r, this equation becomes

0 2ri r(Qt) + Jo 7’(O)R(O) dO.

By (A2), R (0) < e for all 0. Hence,

(A3) r(Q) < eM’.

Then,

fo 7’(0) foif(o) Q((o)) < Ir(Q) (o) dO + 7’(O)R(O) dO

<_ 2rMM’e + 2rM’e eMo (Mo > 0).

d
f’ 7’ [f’(O) Q(7(o)) (o) (o) Qt(7(o))

7’(O)[g(O) Qx(7(0))] +

r(Qt)]7(o)

’(o)
7(0)

r(Qt).

Hence, forl _< <_ m+ 1,

f< d
dO___ (Q o )

(/--1)7(-,[ (Qxo 7)] + r(Q) ()=0 k
g() d d-

dO
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By (A1) and (A3), we see that there exists M > 0 such that

df()(O) - Q((O)

_
M

for all 0, 1, 2, ..., m + 1. Hence, we have thelemm for m+ 1

II. Proof of Lemma 1.2. It is enough to prove the following: Given

f C, a compact interval [-,, ] on R and e > 0, there exists a polynomial
P such that

df() (t) - P(,(t) < e

for all [-, ] and 0, 1, 2, m.
The proof goes in the sme wuy s in I, replacing Q and Q by polynomials,

Theorem 7 of [10] by Theorem 8. Since we do not have to worry bout the
residue in this case, the proof becomes simpler.
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