UNKNOTTING LOCALLY FLAT CELL PAIRS1

BY

L. C. GLASER AND T. M. PRICE

Zeeman [6] shows that any proper combinatorial cell pair (n, k), where $n - k \ge 3$, is piecewise linearly homeomorphic to a standard pair. This implies the combinatorial unknotting of spheres in spheres, and of spheres in euclidean space, provided that the codimension is ≥ 3 . If the codimension = 2, then the spheres can be knotted combinatorially. If the codimension = 1, the unknotting problem is the same as the combinatorial Schoenflies conjecture which is still unsolved.

In pure topology, with a hypothesis of topological local flatness, Brown [2] has proved the topological Schoenflies theorem in all dimensions. With a similar hypothesis, Stallings [5] has proved the topological unknotting of k-spheres in n-spheres for $n-k \geq 3$ and $n \geq 5$. Gluck [4] solved the case of a locally flat 1-sphere in S^4 . Cantrell [3] has shown that if a (n-1)-sphere in S^n $(n \geq 4)$ is locally flat except for perhaps one point then the sphere pair is also flat. Stallings' result [5] also follows for sphere pairs of codimension ≥ 3 where the lower dimensional sphere is locally flat except for perhaps one point. Gluck's result is valid if S^1 in S^4 is locally flat except perhaps at a countable number of points.

Here we consider the topological analogue of the combinatorial cell pair theory. The main results are that if a topological cell pair (A, B) of type (n, k) is locally flat except for perhaps one point, either in the interior of B or its boundary, then, if $n \geq 5$ and $k \neq n-2$, (A, B) is homeomorphic to the standard pair of type (n, k). For k = n-2 and $n \geq 6$, with additional appropriate hypothesis, the same conclusion follows.

The following notation and definitions are used throughout this paper. They are similar to those used in [1] and [5], except that the phrase locally flat is used instead of locally smooth, as in [5]. By an n-manifold with boundary we will mean a separable metric space each point of which has a closed neighborhood homeomorphic to I^n . The boundary of a manifold X is denoted by X. A manifold pair (X, Y) of type (n, k), n > k, is an n-manifold X, and a subset Y which is a k-manifold. Furthermore, it is assumed that either both of X and Y have boundary or both do not have boundary. If both do have boundary it is assumed that $Y \subset X$. The boundary manifold pair (X, Y) of (X, Y) is denoted by (X, Y).

The following examples of manifold pairs will be of primary interest. When X is E^n and Y is a closed subset of X homeomorphic to E^k , then the pair (X, Y) is called a string of type (n, k). When X is an n-cell and Y is homeomorphic to a k-cell, then (X, Y) is called a cell pair of type (n, k). A pair

Received March 24, 1965.

¹ This research was supported in part by the National Science Foundation.

(X, Y) is called a punctured cell pair if there exists a cell pair (\hat{X}, \hat{Y}) and a point $p \in \text{int } \hat{Y}$ such that (X, Y) is homeomorphic to $(\hat{X} - \{p\}, \hat{Y} - \{p\})$. Finally, the pair (X, Y) is called a half string of type (n, k) if X is E_+^n and Y is a closed subset of X homeomorphic to E_+^k . The standard string of type (n, k), the standard cell pair of type (n, k), and the standard half string of type (n, k) are respectively (E^n, E^k) , the unit cells of E^n and E^k , and (E_+^n, E_+^k) , where $E^k = E^k \times \{0\} \subset E^n$.

If (X, Y) is a manifold pair of type (n, k) then Y is locally flat in X if each point of Y has a neighborhood U in X such that $(U, U \cap Y)$ is homeomorphic to (E^n, E^k) or (E^n_+, E^k_+) according as the point is or is not in the interior of Y. The pair (X, Y) is locally collared in (X, Y) if Y is locally flat at each point of Y. The pair (X, Y) is collared in (X, Y) if there is a homeomorphism H from $(X, Y) \times [0, 1)$ onto a neighborhood U of (X, Y) in (X, Y) such that H(x, 0) = x for each $x \in X$. A neighborhood V of (X, Y) in U is called a subcollar of U if

$$V = H((X, Y) \times [0, t))$$

for some 0 < t < 1. We will say that the mainfold pair (X, Y) of type (n, k) is unraveled at $p \in Y$, if for each compact $C \subset X - \{p\}$ there is a compact D, with $C \subset D \subset X - \{p\}$ such that the pair $(X - Y, X - (Y \cup D))$ is 2-connected.

LEMMA 1. Let (M, N) be a manifold pair with nonempty boundary. If the boundary pair (M, N) is locally collared in (M, N), then it is collared in (M, N).

Proof. The proof is exactly the same as in M. Brown's original proof in [1] that the boundary of a manifold with nonempty boundary is collared. It is only necessary to check that the collar of M^{\cdot} can be restricted to be a collar of N^{\cdot} in N. This follows from the construction of the collar plus the fact that the local collaring, by definition, restricts to be a local collar on N^{\cdot} in N.

- LEMMA 2. Let (X, Y) be either a locally flat half string or a locally flat punctured cell pair of type (n, k). Let U be a collar of (X, Y) in (X, Y) and let V be a subcollar of U. Suppose A is a compact subset of X; then there exists a homeomorphism $g:(X, Y) \to (X, Y)$ and a compact set $B \subset \operatorname{int}(X V)$ such that:
 - (i) $g|_{X=B} = identity \ (hence \ g|_{V} = identity), \ and$
 - (ii) $A \cap Y \subset g(U)$.

Proof. The proof is similar to the proof of Lemma 5.3 of [5]. We construct a finite sequence h_1, h_2, \dots, h_p of homeomorphisms of Y - V onto itself, each of which can be extended to a homeomorphism of X onto itself by using the local flatness. The h_i 's are each to be the identity except on a small compact subset of $Y - \overline{V}$.

Theorem 1. Let (X, Y) be either a locally flat half string or a locally flat

punctured cell pair of type (n, k) with $n \ge 5$. If $(X - Y, X^{\cdot} - Y^{\cdot})$ is (n - 3)-connected and

- (i) $k \leq n 3 \text{ or }$
- (ii) k = n 2 and (X, Y) is unraveled at infinity, then (X, Y) is homeomorphic to $(X, Y) \times [0, 1)$.

Proof. By Lemma 1 there exists a collar U of (X, Y) in (X, Y). We shall now construct a homeomorphism h taking $(U, U \cap Y)$ onto (X, Y). The construction is similar to that carried out in proving Theorem 9.2 of [5]. We shall now give some details.

Since U is a collar, there is a homeomorphism

$$H: (X, Y)^{\cdot} \times [0, 1) \to (U, U \cap Y).$$

Let

$$U_i = H\left((X, Y)^{\cdot} \times \left[0, \frac{i}{i+1}\right)\right)$$
 for $i = 1, 2, 3, 4, \cdots$.

Then U_i is a subcollar of U and $(X - U_i, Y - U_i)$ is homeomorphic to (X, Y). Let $\{E_i\}$, $i = 1, 2, 3, \cdots$ be a monotone sequence of compact subsets of X such that $X = \bigcup_{i=1}^{\infty} E_i$. We shall construct a sequence of homeomorphisms

$$f_i: (X, Y) \to (X, Y), \qquad i = 1, 2, 3, \cdots$$

such that $E_i \subset f_i(U_i)$ and $f_i|_{U_{i-1}} = f_{i-1}|_{U_{i-1}}$ $(i \ge 2)$.

Since (X, Y) is unraveled at infinity, either by hypothesis if k = n - 2 or by making the necessary modifications of Proposition 4.2 of [5], there exists a compact set $D_i \subset X$ such that $E_i \subset D_i$ and $(X - Y, X - (Y \cup D_i))$ is 2-connected. In fact we will choose D_i so that

$$(X - (Y \cup f_{i-1}(U_{i-1})), X - (D_i \cup Y \cup f_{i-1}(U_{i-1})))$$

is 2-connected. (Recall $(X - U_{i-1}, Y - U_{i-1})$ is homeomorphic to (X, Y) and hence $(X - f_{i-1}(U_{i-1}), Y - f_{i-1}(U_{i-1}))$ is also homeomorphic to (X, Y), $i \ge 2$.)

We will construct the f_i 's inductively. Suppose we have already obtained f_1, f_2, \dots, f_{i-1} . Lemma 2 gives us a homeomorphism $g: (X, Y) \to (X, Y)$ such that $D_i \cap Y \subset g \circ f_{i-1}(U_i)$ and $g|_{f_{i-1}(U_{i-1})} = \text{identity}$. We now proceed as in Section 7 of [5].

Let T be a piecewise linear triangulation of X - Y and \hat{T} a triangulation of

$$X \, - \, (\, Y \, \operatorname{\textbf{u}} \, \overline{f_{i\!-\!1}(U_{i\!-\!1})}\,)$$

compatible with T so that if $\Delta \in \hat{T}$, then

diam
$$\Delta \leq \frac{1}{2}\rho(\Delta, Y \cup \overline{f_{i-1}(U_{i-1})}).$$

Let K be the union of all closed simplexes Δ of \hat{T} such that dimension $(\Delta) \leqq 2$ and

$$\Delta \subset \operatorname{st}_{\hat{T}}(X - (Y \cup g \circ f_{i-1}(U_i))).$$

We can suppose that K is a subcomplex of T also, since K misses $\overline{f_{i-1}(U_{i-1})}$. Now since

$$D_i \cup Y \subset g \circ f_{i-1}(U_i),$$

it follows that the compact set $D_i - g \circ f_{i-1}(U_i)$ is contained in

$$X - (Y \cup \overline{f_{i-1}(U_{i-1})}).$$

Hence

$$K \cap D_i \subset \operatorname{st}_{\hat{T}}(D_i - g \circ f_{i-1}(U_i)),$$

which is the union of finitely many simplexes of \hat{T} . We now want to apply the Engulfing Theorem [Theorem 6.1 of 5], making the following substitutions:

For	Substitute	For	Substitute
$egin{array}{c} M^n \ U \end{array}$	$X - (Y \cup \overline{f_{i-1}(U_{i-1})}) X - (Y \cup D_i \cup \overline{f_{i-1}(U_{i-1})})$	C P	ø K
$egin{array}{c} E \ h \end{array}$	$F_1 \\ h_1$	p	2

We have that

$$(M^n - C, U - C) = (X - (Y \cup \overline{f_{i-1}(U_{i-1})}), X - (Y \cup D_i \cup \overline{f_{i-1}(U_{i-1})}))$$

is 2-connected by our remarks above and hence we can apply the Engulfing Theorem as indicated in the above table. We obtain a piecewise linear homeomorphism h_1 of

$$X-(Y$$
 u $\overline{f_{i-1}(U_{i-1})})$

onto itself and a compact set

$$F_1 \subset X - (Y \cup \overline{f_{i-1}(U_{i-1})})$$

such that:

- (i) $h_1|_{X-(Y\bigcup\overline{f_{i-1}(U_{i-1})}\bigcup F_i)} = \text{identity and}$ (ii) $K \subset h_1(X (Y \cup D_i \cup \overline{f_{i-1}(U_{i-1})})).$

Because of (i) we can extend h_1 to take (X, Y) onto (X, Y) by defining it to be the identity on $Y \cup \overline{f_{i-1}(U_{i-1})}$. We will continue to call the extended homeomorphism h_1 also.

Let K_1 be the union of K and all those closed simplexes Δ of T such that $\Delta \subset X - (F_1 \cup D_i)$. Now $K_1 \subset h_1(X - (Y \cup D_i))$. Let L be the complementary skeleton of K_1 in T. Then $L-g\circ f_{i-1}(U_i)$ is compact and

dimension
$$(L - g \circ f_{i-1}(U_i)) \leq n - 3$$
.

Now we apply the Engulfing Theorem to engulf L. The table corresponding to the above situation is:

For	Substitute	For	Substitute
$egin{array}{c} M^n \ U \end{array}$	$X-Y \ g\circ f_{j-1}(U_i)-Y$	$rac{C}{P}$	$\frac{\overline{f_{i-1}(U_{i-1})}-Y}{L}$
E h	$F_2 \\ h_2$	p	n-3

Except, possibly, for the hypothesis that (M - C, U - C) is p-connected, all the hypotheses of the Engulfing Theorem are clear from the above construction. Now

$$(M-C, U-C) = (X-Y \cup \overline{f_{i-1}(U_{i-1})}), g \circ f_{i-1}(U_i) - (Y \cup \overline{f_{i-1}(U_{i-1})})).$$

But this is homeomorphic to (int X-Y, $U-(Y \cup X^{\cdot})$) and is of the same homotopy type as $(X-Y, X^{\cdot}-Y^{\cdot})$ which is (n-3)-connected by hypothesis. The Engulfing Theorem then gives that

$$h_2 \mid_{X \to (Y \bigcup F_2)} = \text{identity},$$

$$F_2 \cap C = \emptyset \quad \text{and} \quad L \subset h_2(g \circ f_{i-1}(U_i) - Y).$$

Again we extend h_2 by the identity to take (X, Y) onto (X, Y).

We now have

$$L \subset h_2 \circ g \circ f_{i-1}(U_i) - Y, K_1 \subset h_1(X - (Y \cup D_i))$$

and K_1 and L are complementary complexes of T. Now applying Lemma 8.1 of [5] in the appropriate manner there exists a homeomorphism

$$h_3: X - Y \rightarrow X - Y$$

so that

$$h_3|_{f_{i-1}(U_{i-1})} = identity,$$

$$h_3(h_2 \circ g \circ f_{i-1}(U_i) - Y) \cup h_1(X - (Y \cup D_i)) = X - Y,$$

and so that h_3 can be extended by the identity to all of X. If we define f_i to be $h_1^{-1} \circ h_3 \circ h_2 \circ g \circ f_{i-1}$, it then follows that

$$E_i \subset D_i \subset f_i(U_i) \quad \text{and} \quad f_i \left|_{f_{i-1}(U_{i-1})} \right. = f_{i-1} \left|_{f_{i-1}(U_{i-1})} \right..$$

The latter statement follows since each of h_1 , h_2 , h_3 and g is the identity on $f_{i-1}(U_{i-1})$. Thus f_i satisfies the necessary requirements and inductively we get our desired sequence of homeomorphisms $\{f_i\}$, $i=1,2,\cdots$. If we define $f=\lim_{i\to\infty} f_i|_U$, then f is a homeomorphism of $(U,U\cap Y)$ onto (X,Y) and hence (X,Y) is homeomorphic to (X,Y) \times [0,1).

COROLLARY 1. Let (X, Y) be a cell pair of type (n, k) which is locally flat except possibly at one point $p \in Y$. If $n \geq 5$ and $k \leq n-3$, then (X, Y) is homeomorphic to the standard cell pair of type (n, k).

Proof. If $p \in Y$, then $(X - \{p\}, Y - \{p\})$ is a locally flat half string and if $p \in Y$, then $(X - \{p\}, Y - \{p\})$ is a punctured cell pair. If $n \geq 6$, (X, Y) is a locally flat string or sphere pair and by Theorem 9.2 or Corollary 9.3 of [5] it is homeomorphic to (E^{n-1}, E^{k-1}) or (S^{n-1}, S^{k-1}) respectively. For n = 5, if (X, Y) is a locally flat string or sphere pair of type (4, 1) then it follows from [4] and the remark in the introduction that (X, Y) is also homeomorphic to (E^4, E^1) or (S^4, S^1) . The case where (X, Y) is of type (4, 0) is trivial. Similar arguments as those used in Proposition 4.2 of [5] will give that $\pi_i(X - Y, X - Y) = 0$ for all i and hence Theorem 1 applies. We then get that $(X - \{p\}, Y - \{p\})$ is homeomorphic to

$$(E^{n-1}, E^{k-1}) \times [0, 1)$$
 or to $(S^{n-1}, S^{k-1}) \times [0, 1)$

and hence (X, Y) is homeomorphic to standard cell pair of type (n, k).

COROLLARY 2. Let (X, Y) be a cell pair to type (n, n-2) such that each of X - Y and X' - Y' have the homotopy type of S^1 . If $n \ge 6$ and either

- (i) the pair (X, Y) is locally flat, or
- (ii) the pair (X, Y) is locally flat except possibly at one point $p \in \text{int } Y$ and (X, Y) is unraveled at p, or
- (iii) the pair (X, Y) is locally flat except possibly at one point $p \in Y$ and each of (X, Y) and (X, Y) is unraweled at p, then (X, Y) is homeomorphic to the standard cell pair of type (n, n 2).

Proof. The proof proceeds exactly as in the proof of Corollary 1. The hypotheses guarantee that (X, Y) is homeomorphic to (E^{n-1}, E^{n-3}) or (S^{n-1}, S^{n-3}) .

PROPOSITION 3. Let (X, Y) be a cell pair of type (n, n - 1) which is locally flat except possibly at one point $p \in Y$. If $p \in X$ and $p \in Y$ and $p \in Y$ and $p \in Y$ is homeomorphic to the standard pair of type (n, n - 1).

Proof. The proof is just a simple application of the results of [1], [2], [3].

REFERENCES

- M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math., vol. 75 (1962), pp. 331-341.
- —, A proof of the generalized Schoenflies theorem, Bull. Amer. Math., vol. 66 (1960), pp. 74-76.
- J. C. Cantrell, Non-flat embeddings of Sⁿ⁻¹ in Sⁿ, Michigan Math. J., vol. 10 (1963), pp. 359-362.
- 4. H. Gluck, Unknotting S1 in S4, Bull. Amer. Math. Soc., vol. 69 (1963), pp. 91-94.
- J. STALLINGS, On topologically unknotted spheres, Ann. of Math., vol. 77 (1963), pp. 490-503.
- E. C. ZEEMAN, Unknotting combinatorial balls, Ann. of Math., vol. 78 (1963), pp. 501– 526.

RICE UNIVERSITY
HOUSTON, TEXAS
UNIVERSITY OF IOWA
IOWA CITY, IOWA