ON A CLASS OF BINOMIAL EXTENSIONS ${ }^{1}$

BY
P. M. Cohn

1. Introduction

Let K be a field (not necessarily commutative) with a subfield k. Then the left and right dimensions of the extension K / k need not be equal, as was shown by an example, in [2], of an extension of right dimension two and left dimension greater than two. It is likely that in this example the left dimension is in fact infinite; this seems difficult to verify directly, but with a little more trouble one can construct an extension which is easily seen to have right dimension two and infinite left dimension. ${ }^{2}$

The object of this note is to give such a construction and to show more generally that for any finite $n>1$ there exists an extension of right dimension n and infinite left dimension. Moreover, the centre of the extension can be almost any preassigned commutative field (see Theorem 5.1 for a precise statement).

2. Pseudo-linear extensions

Let K be a field and k a subfield; then K may be viewed as right k-space or as left k-space. We denote the corresponding dimensions by $[K: k]_{R}$ and $[K: k]_{L}$ respectively. We shall say that K / k is finite of degree n if $[K: k]_{R}=n$ is finite. An extension K / k is called p seudo-linear, if K is generated, as a ring, by a single element a over k such that

$$
\begin{equation*}
\alpha a=a \alpha_{1}+\alpha_{2} \tag{1}
\end{equation*}
$$

$(\alpha \in k)$.
If we exclude the trivial case $a \epsilon k$, when $K=k$, then the mappings

$$
S: \alpha \rightarrow \alpha_{1}, \quad D: \alpha \rightarrow \alpha_{2}
$$

are uniquely determined and it is easily seen that S is an endomorphism of k, while D is an S-derivation. Moreover, since the kernel of S is an ideal of K not containing 1 , it must be zero, i.e., S is necessarily a monomorphism. Note that a quadratic extension (i.e., of degree two) is always pseudo-linear [cf. (2)].

It follows from (1) that K is spanned by the powers of a, as right k-space. If all these powers are linearly independent, then we just have the skew polynomial ring $k[a ; S, D]$. Clearly, this is not a field, so the powers of a cannot all be right k-independent over k, i.e., a satisfies an equation with right co-

[^0]efficients in k. As in the commutative case one sees that the monic polynomial of least degree with a as zero is uniquely determined and if the degree is n, then $[K: k]_{R}=n$. The following formula for the left dimension of a pseudo-linear extension generalizes Theorem 3 of [2].

Theorem 2.1. Let K / k be a pseudo-linear extension of degree n, with endomorphism S; then

$$
\begin{equation*}
[K: k]_{L}=1+\left[k: k^{S}\right]_{L}+\left[k: k^{S}\right]_{L}^{2}+\cdots+\left[k: k^{S}\right]_{L}^{n-1} \tag{2}
\end{equation*}
$$

In particular

$$
\begin{equation*}
[K: k]_{L} \geq[K: k]_{R} \tag{3}
\end{equation*}
$$

with equality if and only if S is an automorphism.
Proof. By hypothesis K contains an element a such that $1, a, \cdots, a^{n-1}$ is a right k-basis for K, and

$$
\alpha a=a \alpha S+\alpha D
$$

Define $K_{0}=k, K_{i}=a K_{i-1}+k(i=1,2, \cdots, n-1)$; then

$$
k=K_{0} \subseteq K_{1} \subseteq \cdots \subseteq K_{n-1}=K
$$

and each K_{i} is clearly a right k-space. It is also a left k-space, because for $i>0$,

$$
\alpha K_{i}=\alpha a K_{i-1}+a k=a \alpha S K_{i-1}+\alpha D K_{i-1}+a k \subseteq K_{i}
$$

if we assume that K_{i-1} is a left k-space. Thus the result follows by induction.
Let $\left(u_{\lambda}\right)$ be a left k^{s}-basis for k; we assert that the set of elements

$$
\begin{equation*}
a^{i} u_{\lambda_{i-1}}^{S i-1} u_{\lambda_{i-2}}^{S_{i-2}} \cdots u_{\lambda_{1}}^{S} u_{\lambda_{0}} \tag{4}
\end{equation*}
$$

where ($\lambda_{i-1}, \cdots, \lambda_{0}$) ranges over all i-tuples (for fixed i) is a left k-basis for $K_{i}\left(\bmod K_{i-1}\right)$. For, given $\alpha \in k$, we have

$$
\alpha=\sum \alpha_{\lambda_{0}}^{S} u_{\lambda_{0}}=\sum \alpha_{\lambda_{1} \lambda_{0}}^{S 2} u_{\lambda_{1}}^{S} u_{\lambda_{0}}=\cdots=\sum \alpha_{\lambda_{i-1} \cdots \lambda_{0}}^{s i} u_{\lambda_{i-1}}^{S i-1} \cdots u_{\lambda_{0}}
$$

hence
$a^{i}{ }_{\alpha}=\sum a^{i} \alpha_{\lambda_{i-1}}^{S_{i}^{i}} \cdots \lambda_{0} u_{\lambda_{i-1}}^{S i-1} \cdots u_{\lambda_{0}} \equiv \sum \alpha_{\lambda_{i-1} \cdots \lambda_{0}} a^{i} u_{\lambda_{i-1}}^{S i-1} \cdots u_{\lambda_{0}} \quad\left(\bmod K_{i-1}\right)$
which shows that the elements $(4) \operatorname{span} K_{i}\left(\bmod K_{i-1}\right)$.
Conversely, if

$$
\sum \alpha_{\lambda_{i-1} \cdots \lambda_{0}} a^{i} u_{\lambda_{i-1}}^{g_{i-1}} \cdots u_{\lambda_{0}} \equiv 0 \quad\left(\bmod K_{i-1}\right)
$$

then

$$
\sum a^{i} \alpha_{\lambda_{i-1} \cdots \lambda_{0}}^{S i} u_{\lambda_{i-1}}^{S i-1} \cdots u_{\lambda_{0}} \equiv 0 \quad\left(\bmod K_{i-1}\right)
$$

hence

$$
\sum \alpha_{\lambda_{i-1} \cdots \lambda_{0}}^{S i} u_{\lambda_{i-1}}^{S i-1} \cdots u_{\lambda_{0}}=0
$$

Since the u 's are left k^{s}-independent, we have

$$
\sum \alpha_{\lambda_{i-1} \cdots \lambda_{0}}^{s i} u_{\lambda_{i_{-1}}^{S i-1}}^{s i} u_{\lambda_{1}}^{s}=0 \quad \text { for all } \lambda_{0}
$$

and since S is a monomorphism, we can cancel an application of S. Repeating this process, we find after i steps that $\alpha_{\lambda_{i-1} \cdots \lambda_{0}}=0$ for all suffixes, hence the elements (4) are left k-independent. This proves that the dimension of K_{i} / K_{i-1}, as left k-space is $\left[k: k^{S}\right]_{L}^{i}$, the number of elements (4), and now (2) follows by addition. The rest follows because $\left[k: k^{S}\right]_{L} \geq 1$, with equality if and only if $k^{S^{\prime}}=k$.

3. A construction for binomial extensions of prime degree

A pseudo-linear extension K / k is said to be binomial if it has a generating element a which satisfies a binomial equation over k :

$$
x^{n}-\lambda=0 \quad(\lambda \epsilon k)
$$

We shall not write down the conditions for an arbitrary equation (5) to determine a binomial extension, but confine our attention to a special case which will be used later.

We recall that if E is any field with endomorphism S and S-derivation D, then the ring $E[x ; S, D]$ of skew polynomials, $\sum x^{i} \alpha_{i}$, with commutation rule

$$
\alpha x=x \alpha S+\alpha D
$$

is an integral domain satisfying the right multiple condition of Ore [4], and hence it can be embedded in a field. The least such field is determined up to isomorphism and will be denoted by $E(x ; S, D)$.

Theorem 3.1. Let p be a prime, E any field with an endomorphism S and assume that E contains a primitive $p^{\text {th }}$ root of 1 , ω say, which lies in the centre of E and is left fixed by S. Let D be an S-derivation of E such that

$$
\begin{equation*}
D S=\omega S D \tag{6}
\end{equation*}
$$

and put $K=E(t ; S, D)$. Then S, D may be extended to K by putting

$$
\begin{equation*}
t S=\omega t, \quad t D=(1-\omega) t^{2} \tag{7}
\end{equation*}
$$

and with these definitions

$$
c t=t c S+c D \quad \text { for all } \quad c \in K
$$

Moreover, $\sigma=S^{p}$ is an endomorphism of E, and $\delta=D^{p}$ is a σ-derivation, and if k is the subfield of K generated by t^{p} over E, then $k=E\left(t^{p} ; \sigma, \delta\right)$, and K / k is a binomial extension of degree p.

Proof. Since $\omega^{p}=1$, we have $p \omega^{p-1}(\omega D)=0$; now E has primitive $p^{\text {th }}$ roots of 1 and so cannot have characteristic p; hence we may divide by p and conclude that $\omega D=0$. This shows that ω lies in the centre of K.

In order to show that S, D may be extended to $E[t ; S, D]$ so as to satisfy (7), we need only verify (8) for monomials, by linearity. By (7),

$$
\begin{aligned}
\left(t^{n} \alpha\right) S & =\omega^{n} t^{n} \cdot \alpha S \\
\left(t^{n} \alpha\right) D & =\sum_{\nu=1}^{n} t^{\nu-1} \cdot t D \cdot\left(t^{n-\nu} \alpha\right) S+t^{n} \cdot \alpha D \\
& =t^{n+1}(1-\omega)\left(1+\omega+\cdots+\omega^{n-1}\right) \alpha S+t^{n} \cdot \alpha D
\end{aligned}
$$

hence $\left(t^{n} \alpha\right) D=\left(1-\omega^{n}\right) t^{n+1} \cdot \alpha S+t^{n} \cdot \alpha D$. It follows that

$$
\begin{aligned}
t\left(t^{n} \alpha\right) S+\left(t^{n} \alpha\right) D & =t^{n+1} \cdot \alpha S \omega^{n}+\left(1-\omega^{n}\right) t^{n+1} \alpha S+t^{n} \alpha D \\
& =t^{n+1} \alpha S+t^{n} \alpha D \\
& =t^{n} \alpha t
\end{aligned}
$$

which checks (8). Thus S is an endomorphism of $E[t ; S, D]$; since it is oneone, it can be extended to an endomorphism of the quotient field $E(t ; S, D)=\mathrm{K}$ in a unique manner (cf. [6] for the commutative case). Likewise, D is an S-derivation of $E[\mathrm{t} ; \mathrm{S}, \mathrm{D}]$, which can be extended to K.

That $\sigma=S^{p}$ is an endomorphism, is clear. Note that so far we have not used equation (6) or the fact that ω is a primitive $p^{\text {th }}$ root of 1. These facts will now be used in showing that $\delta=D^{p}$ is a σ-derivation. For this purpose we rewrite (8) as an operator equation

$$
\begin{equation*}
R=L S+D \tag{9}
\end{equation*}
$$

Here R, L indicate right and left multiplication by t respectively and S, D indicate application of S, D to the coefficient in E. With this convention, $S L=L S$, and $D L=L D$. Thus

$$
R^{p}=(L S+D)^{p}=\sum L^{i} f_{i}(S, D)
$$

where $f_{i}(S, D)$ represents the sum of all products with i factors S and $p-i$ factors D. We get these terms by first writing down $S^{i} D^{p-i}$, and then shifting a factor S past a factor D, one at a time. By (6) each such interchange amounts to multiplication by ω, so that altogether we have

$$
\begin{aligned}
f_{i}(S, D)=S^{i} D^{p-i}\left(1+\omega+\omega^{2}+\cdots+\right. & \left.\omega^{c_{p, i}-1}\right) \\
& \left(C_{p, i}=p!/ i!(p-i)!\right)
\end{aligned}
$$

The coefficient on the right is zero unless $i=0$ or p, therefore

$$
\begin{equation*}
R^{p}=L^{p} S^{p}+D^{p} \tag{10}
\end{equation*}
$$

In terms of the action on E this states that

$$
\alpha t^{p}=t^{p} \alpha \sigma+\alpha \delta \quad(\alpha \in E)
$$

hence the subfield k generated by t^{p} over E is actually of the form $k\left(t^{p} ; \sigma, \delta\right)$.
In order to see under what conditions Theorem 3.1 is applicable, we take a field F with an endomorphism S. Consider the ring $R=F[x]$ of polynomials in x over E (with commutation rule $\alpha x=x \alpha, \alpha \in F$), and put

$$
f(x)=1+x+x^{2}+\cdots+x^{p-1}
$$

Then $f R$ is a two-sided ideal, and the quotient $R / f R$ is again a field, provided that f is irreducible over F. Clearly this is so if and only if F has characteristic prime to p (possibly zero) and the equation

$$
x^{p}=1
$$

has no solution $\neq 1$ in F. Under these circumstances the quotient $E=R / f R$ is again a field, an extension of F, and moreover S may be extended to E by putting $x S=x$; with this definition $f(x)$ is left fixed, so that S is well defined on E. Thus we can always adjoin a primitive $p^{\text {th }}$ root of 1 to F, unless one is present already or F has characteristic p. In the latter case the construction of Theorem 3.1 is modified as follows:

Theorem 3.2. Let E be a field of characteristic p, with an endomorphism S and S-derivation D such that

$$
D S=S D
$$

If $K=E(t ; S, D), S$ and D may be extended to K by putting

$$
t S=t, \quad t D=0
$$

and with these definitions (8) holds. Moreover, $\sigma=S^{p}$ is an endomorphism of E and $\delta=D^{p} a \sigma$-derivation, and if k is the subfield of K generated by t^{p} over E, then $k=E\left(t^{p} ; \sigma, \delta\right)$ and K / k is again a binomial extension of degree p.

The first part of the proof is the same as for Theorem 3.1, taking $\omega=1$. To prove (10) we simply raise both sides of (9) to the $p^{\text {th }}$ power and note that now all operators commute: (10) follows because we are in characteristic p.

4. Construction of the example

We begin by constructing, for a given prime p and given commutative field F (containing all $p^{\text {th }}$ roots of 1) an extension K / k of degree p and infinite left dimension, with the centre of K equal to F. Later we shall see how to modify the construction so as to obtain extensions of arbitrary (composite) degree.

Let p be a prime and F a commutative field containing all $p^{\text {th }}$ roots of 1 . For F of characteristic p (or for $p=2$) this is no restriction; when F has characteristic prime to p, it means that F contains a $p^{\text {th }}$ root of 1 other than 1. We denote this by ω, and take $\omega=1$ in case the characteristic of F is p.

Let A be the free associative algebra over F on a countable free generating set $B=\left\{a, b_{i \lambda}\right\}$ where $i=0,1,2, \cdots, \lambda=0, \pm 1, \pm 2, \cdots$. We totally order B by taking first a and then the $b_{i \lambda}$ in the lexicographical order of suffixes. Let S be the endomorphism of A over F defined by

$$
\begin{equation*}
a S=\omega a, \quad b_{i \lambda} S=b_{i+1, \lambda} \tag{11}
\end{equation*}
$$

Further, denote by U the set of basic products in B, relative to the ordering just defined. Formally, these are just certain products of elements of B, bracketed in a certain way (cf. [2]). Clearly U is again totally ordered, with a as first element. We denote by U_{1} the set of basic products $\neq a$.

It is clear from (11) that S is an order-preserving mapping of B into itself (apart from the scalar factor ω attached to a), so if $[u$] is a basic product then [uS] is again basic, except for a factor ω^{k}. We now interpret the basic products
in A as follows (cf. [2]). If $u \in B$, then $[u]=u$; if $[u]=[[v][w]]$ is basic of length >1, then $w<v$ and $v \neq a$. In this case put

$$
[[v][w]]= \begin{cases}{[v][w]-[w][v]} & \text { if } w \neq a \tag{12}\\ {[v] a-a[v S]} & \text { if } w=a\end{cases}
$$

It follows that the ascending monomials in the basic products

$$
p=u_{1} u_{2} \cdots u_{r} \quad\left(u_{i} \in U, u_{1} \leq \cdots \leq u_{r}\right)
$$

form a basis of A. We define the grade of p as

$$
v(p)=\sum\left[l\left(u_{i}\right)-1\right]
$$

and in general for $f=\sum p \alpha_{p}\left(\alpha_{p} \epsilon F\right)$ put

$$
v(f)=\min \left\{v(p) \mid \alpha_{p} \neq 0\right\}
$$

It follows as in [2] that this defines a filtration on A, whose associated graded ring gr (A) has the form $R[a ; S]$ (skew polynomial ring) where $R=F\left(U_{1}\right)$ is the polynomial ring over F in the elements of U_{1} as commuting indeterminates, with the endomorphism S induced from A. Since $R[a ; S]$ is an Ore domain, it follows from the embedding theorem in [1] that A can be embedded in a valuated field V, and S extends to an endomorphism of V, again denoted by S. Let D be the inner S-derivation induced by a, i.e.,

$$
x D=x a-a \cdot x S \quad \text { for all } x \in V
$$

Then $x S D=x S a-a \cdot x S^{2}, x D S=x S \cdot a S-a S \cdot x S^{2}$, whence

$$
D S=\omega S D
$$

Denote by K the subfield of V generated by B over F, then K admits S and D and its centre is F. Further, if k is the subfield of K generated by a^{p} and U_{1} over F, then k again admits S and D. We shall show that $[K: k]_{R}=p$, $[K: k]_{L}=\infty$. Since K / k is a pseudolinear extension, the first assertion will follow if we can show that $a \notin k$, and the second follows by Theorem 2.1 once we have shown that $\left[k: k^{S}\right]_{L}=\infty$.
(i) The proof that $a \notin \bar{k}$ is precisely as in [2] and will not be repeated here.
(ii) To prove that $\left[k: k^{S}\right]_{L}=\infty$, it is enough to show that the elements $b_{0 \lambda}$ are left k^{s}-independent; in fact we shall show that they are left K^{s}-independent. To see this we first observe that K^{S} is the subfield of V generated by $a, b_{i \lambda}(i>0)$ over F. Now if there is a relation

$$
\begin{equation*}
\sum c_{\lambda} b_{0 \lambda}=0 \tag{13}
\end{equation*}
$$

$$
\left(c_{\lambda} \in K^{s}\right)
$$

with coefficients not all zero, say $c_{0} \neq 0$, then we can express b_{00} in terms of a and the $b_{i \lambda} \neq b_{00}$ over F. Let W be the closed subfield of V generated by a and the $b_{i \lambda} \neq b_{00}$ over F. The construction of V by the embedding theorem shows that W is just the valuated field of fractions of the free associative algebra on a and the $b_{i \lambda} \neq b_{00}$ over F, using the same definitions (11) and (12).

Thus there are no special relations in W, due to the presence of b_{00} in V. Since a and the $b_{i \lambda}$ (including b_{00}) form a free generating set of A, it follows that $b_{00} \notin W$, and this contradicts the existence of a non-trivial relation (13). Hence the $b_{0 \lambda}$ are left k^{s}-independent and it follows that $\left[k: k^{S}\right]_{L}=\infty$.

5. Extensions of arbitrary degree

With the help of the example constructed in Section 4 it is easy to obtain extensions of any finite degree and infinite left dimension.

Let $n>1$ be given and let F be any field. If the characteristic of F is prime to n, assume also that F contains a root of $x^{n}=1$ other than 1 . Then it follows that F contains a primitive $p^{\text {th }}$ root of 1 , say ω, where $p \mid n$. If the characteristic of F divides n, we set $\omega=1$. In either case, by the results of Section 4, there exists an extension K / k in which K has centre F and $[K: k]_{R}=p,[K: k]_{L}=\infty$.

Now any permutation of the second suffix of the $b_{i \lambda}$ is an automorphism of A which extends to an outer automorphism of K, and it is clear that the group of these automorphisms acts faithfully on k. Thus k has outer automorphisms of any finite order. Write $n=p n_{1}$ and let α be any outer automorphism of A of order n_{1}. The fixed field k_{0} then satisfies $\left[k: k_{0}\right]_{L}=\left[k: k_{0}\right]_{R}=n_{1}$ (cf. [3] p. 163) and hence

$$
\left[K: k_{0}\right]_{R}=p n_{1}=n, \quad\left[K: k_{0}\right]_{L}=\infty .
$$

This completes the proof of
Theorem 5.1. Let n be any integer greater than one, and F any field such that if char F is prime to n, then F contains a root of $x^{n}=1$ other than 1. Then there exists a skew field K with centre F, and a subfield k of K such that

$$
[K: k]_{R}=n, \quad[K: k]_{L}=\infty .
$$

References

1. P. M. Сohn, On the embedding of rings in skew fields, Proc. London Math. Soc. (3), vol. 11 (1961), pp. 511-530.
2. --, Quadratic extensions of skew fields, Proc. London Math. Soc. (3), vol. 11 (1961), pp. 531-556.
3. N. Jacobson, Structure of rings, Providence, R. I. 1956.
4. O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2), vol. 32 (1931), pp. 463-477.
5. A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Zeitschrift, vol. 70 (1959), pp. 372-380.
6. O. Zariski and P. Samuel, Commutative algebra I, Princeton, Van Nostrand, 1958.

University of Chicago, Chicago, Illinois
Queen Mary College, University of London

[^0]: Received March 8, 1965.
 ${ }^{1}$ This work was partly supported by a grant from the National Science Foundation.
 ${ }^{2}$ Such a construction was indicated (without proof) in [2]. For other consequences of this example, see [5].

