
ON A CLASS OF BINOMIAL EXTENSIONS

BY

1. Introduction

Let K be a field (not necessarily commutative) with a subfield/. Then
the left and right dimensions of the extension K/tc need not be equal, as was
shown by an example, in [2], of an extension of right dimension two and left
dimension greater than two. It is likely that in this example the left dimension
is in fact infinite; this seems difficult to verify directly, butwith a little more
trouble one can construct n extension which is easily seen to hve right di-
mension two and infinite left dimension.
The object of this note is to give such a construction and to show more

generMly that for any finite n > 1 there exists an extension of right dimension
n and infinite left dimension. Moreover, the centre of the extension can be
almost any preassigned commutative field (see Theorem 5.1 for a precise state-
ment).

2. Pseudo-linear extensions

Let K be a field and k a subfield; then K may be viewed as right/c-space or
as left /c-space. We denote the corresponding dimensions by [K:k]R and
[K:k]L respectively. We shall sy that K/k is finite of degree n if [K:k]R n
is finite. An extension K/k is called pseudo-linear, if K is generated, as a ring,
by a single element a over k such that

(1) aa aal + as a k

If we exclude the trivial case a e k, when K k, then the mappings

S" a--* al, D" a-*as

are uniquely determined and it is easily seen that S is an endomorphism of/,
while D is an S-derivation. Moreover, since the kernel of S is an ideal of K
not containing 1, it must be zero, i.e., S is necessarily a monomorphism. Note
that a quadratic extension (i.e., of degree two) is always pseudo-linear [cf. (2) ].

It follows from (1) that K is spanned by the powers of a, as right k-space.
If all these powers are linearly independent, then we iust have the skew poly-
nomial ring k[a; S, D]. Clearly, this is not a field, so the powers of a cannot
all be right/-independent over k, i.e., a satisfies an equation with right co-
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efficients in k. As in the commutative case one sees that the monic poly-
nomial of least degree with a as zero is uniquely determined and if the degree
is n, then [K:/C]R n. The following formula for the left dimension of a
pseudo-linear extension generalizes Theorem 3 of [2].

THEOREM 2.1. Let K//C be a pseudo-linear extension of degree n, with endo-
morphism S; then

(2) [K’k]L 1 + [tc’ks]L + [/C" s2] +... + [.]-L
In particular

(3) [K:/] >_ [K:k]R
with equality if and only if S is an automorphism.

Proof. By hypothesis K contains an element a such that 1, a, a-1 is a
right k-basis for K, and

aa aaS + aD a e k).

DefineK0 k, K aK_l + k (i 1, 2,...,n- 1);then

and each K is clearly a right k-space. It is also a left/c-space, because for
i>0,

aK aaK_ a/c aaSK_ aDK_ a/c K
if we assume that K_I is a left k-space. Thus the result follows by induction.

Let (u) be a left/cS-basis for/; we assert that the set of elements
Si-1 Si-2 S(4) aiu,_, ui_2 uxl uxo

where (X_,
K (mod K_I). For, given a e/c, we have

S 8 Si-1
O/ E 0o U’O E O/’lOS2 UI Uo E ’i-l’"o Ui-1

hence

a axi_...Xo ux_ uxo axi_...xo a ui_ Uxo
which shows thut the dements (4) span K (rood K_).

Conversely, if

ux_ uxo 0 (modK_)
then

s si-a a_...Xo ux_i Uxo 0 (rood K_);
hence

)o) ranges over all i-tuples (for fixed i) is a left/c-basis for

i Si-1E ci-’"Xo UXi_ Uo O.

(mod K_I)

Since the u’s are left kS-independent, we have

a_...Xo u_ ux 0 forall o,
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(6)
and put K E t; S, D).

(7)
and with these definitions

and since S is a monomorphism, we can cancel an application of S. Repeating
this process, we find after i steps that a_l...x0 0 for all suffixes, hence the
elements (4) are left k-independent. This proves that the dimension of
K/K_I, as left k-space is [k" s/c ]L, the number of elements (4), and now (2)
follows by addition. The rest follows because [/:/s]L >_ 1, with equality if
and only if ks’= l.

3. A construction for binomial extensions of prime degree
A pseudo-linear extension K/k is said to be binomial if it has a generating

element a which satisfies a binomial equation over/:

(5) x 0 ( ).

We shall not write down the conditions for an arbitrary equation (5) to deter-
mine a binomial extension, but confine our attention to a special case which
will be used later.
We recall that if E is any field with endomorphism S and S-derivation D,

then the ring E[x; S, D] of skew polynomials, xia, with commutation rule

ax xaS "- aD
is an integral domain satisfying the right multiple condition of Ore [4], and
hence it can be embedded in a field. The least such field is determined up to
isomorphism and will be denoted by E(x; S, D).

THEOREM 3.1. Let p be a prime, E any field with an endomorphism S and
assume that E contains a primitive pt root of 1, o say, which lies in the centre of
E and is left fixed by S. Let D be an S-derivation of E such that

DS oSD

Then S, D may be extended to K by putting

tS t, tD (1 )t

(8) ct tcS -- cD for all c e K

Moreover, S is an endomorphism of E, and D is a (-derivation, and if
is the subfield of K generated by over E, then tc E(t; , ), and K/lc is a

binomial extension of degree p.

Proof. Since o" 1, we have pco’-(oD) 0; now E has primitive pt
roots of 1 and so cannot have characteristic p; hence we may divide by p and
conclude that D 0. This shows that o lies in the centre of K.
In order to show that S, D may be extended to E [t; S, D] so as to satisfy (7),

we need only verify (8) for monomials, by linearity. By (7),

(ta)S
(tna)D = t-.tD.(t-a)S _- t.aD

t+(1 ) (1 -- o -- + -)aS - tn.aD;
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hence (tna)D (1 on)tn+l"oS + t’’aD. It follows that

t(ta)S -4- (ta)D tn+l"otSon + (1 (2n)tn+lotS + taD

tn+aS -f- taD

t’at

which checks (8). Thus S is an endomorphism of E[t; S, D]; since it is one-
one, it can be extended to an endomorphism of the quotient field E(t; S, D) K
in u unique munner (cf. [6] for the commutative case). Likewise, D is an
S-deriwtion of E[t; S, D], which can be extended to K.
That z S is an endomorphism, is clear. Note that so far we have not

used equation (6) or the fact that x is a primitive p root of 1. These
facts will now be used in showing that D is a z-derivation. For this
purpose we rewrite (8) as an operator equation

(9) R LS -t-- D.

Here R, L indicate right and left multiplication by respectively and S, D
indicate application of S, D to the coefficient in E. With this convention,
SL LS, and DL LD. Thus

R’ (LS+D)’ Lf(S,D)
where f(S, D) represents the sum of all products with i factors S and p i
factors D. We get these terms by first writing down SD-, and then shifting
a factor S past a factor D, one at a time. By (6) each such interchange
amounts to multiplication by , so that altogether we have

f(S, D) SD-(1 -t- ,0 -t- co - + oc’-1)
(C, p i/i!(p i) !).

The coefficient on the right is zero unless i 0 or p, therefore

(10) R LS+D.
In terms of the action on E this states that

atv tva -4- a a e E

hence the subfield k generated by over E is actually of the form k(tV;z, ).
In order to see under what conditions Theorem 3.1 is applicable, we take a

field F with an endomorphism S. Consider the ring R F[x] of polynomials
in x over E (with commutation rule ax xa, a e F), and put

f(x) 1+ x + x + -t-x-1.

Then fR is a two-sided ideal, and the quotient R/fR is again a field, provided
that f is irreducible over F. Clearly this is so if and only if F has charac-
teristic prime to p (possibly zero) and the equation

xP= 1
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has no solution 1 in F. Under these circumstances the quotient E R/fR
is again a field, an extension of F, and moreover S may be extended to E by
putting xS x; with this definition f(x) is left fixed, so that S is well defined
on E. Thus we can always adjoin a primitive pth root of 1 to F, unless one
is present already or F has characteristic p. In the latter case the con-
struction of Theorem 3.1 is modified as follows"

THEOREM 3.2. Let E be a field of characteristic p, with an endomorphism S
and S-derivation D such that

DS SD.

If K E t; S, D ), S and D may be extended to K by putting

tS=t, tD=O

and with these definitions (8) holds. Moreover, ( S is an endomorphism of
E and D a z-derivation, and if tc is the subfield of K generated by over E,
then tc E t’; (, and K/tc is again a binomial extension of degree p.

The first part of the proof is the same as for Theorem 3.1, taking 1.
To prove (10) we simply raise both sides of (9) to the pt power and note
that now all operators commute: (10) follows because we are in charac-
teristic p.

4. Construction of the example
We begin by constructing, for a given prime p and given commutative

field F (containing all pth roots of 1) an extension K/k of degree p and infinite
left dimension, with the centre of K equal to F. Later we shall see how to
modify the construction so as to obtain extensions of arbitrary (composite)
degree.

Let p be a prime and F a commutative field containing all pth roots of 1.
For F of characteristic p (or for p 2) this is no restriction; when F has
characteristic prime to p, it means that F contains a ph root of 1 other than 1.
We denote this by , and take o 1 in case the characteristic of F is p.

Let A be the free associative algebra over F on a countable free generating
setB /a,bx} wherei 0, 1,2, ,) 0, +/-1, +/-2, -... We totally
order B by taking first a and then the bx in the lexicographical order of
suffixes. Let S be the endomorphism of A over F defined by

(11) aS oa, b S b_l.,

Further, denote by U the set of basic products in B, relative to the ordering
just defined. Formally, these are just certain products of elements of B,
bracketed in a certain way (cf. [2]). Clearly U is again totally ordered, with
a as first element. We denote by U1 the set of basic products a.

It is clear from (11) that S is an order-preserving mapping of B into itself
(apart from the scalar factor attached to a), so if [u] is a basic product then
[uS] is again basic, except for a factor 0. We now interpret the basic products
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in A as follows (cf. [2]). If u e B, then [u] u; if [u] [[v][w]] is basic of
length > 1, then w < v and v a. In this case put

v][w]- [w][v] if w a,
(12) [[v][w]]

[v]a a[vS] if w a.

It follows that the ascending monomials in the basic products

p uu u (u, e U, u _<

_
u)

form a basis of A. We define the grade of p as

v(p) ’ [/(u,) 11
and in general for f pa (a e F) put

v(f) rain {v(p) [a 0}.
It follows as in [2] that this defines a filtration on A, whose associated graded
ring gr (A) has the form R[a; S] (skew polynomial ring) where R F(U)
is the polynomial ring over F in the elements of U as commuting indeter-
minates, with the endomorphism S induced from A. Since R[a; S] is an Ore
domain, it follows from the embedding theorem in [1] that A can be embedded
in a valuated field V, and S extends to an endomorphism of V, again denoted
by S. Let D be the inner S-derivation induced by a, i.e.,

xD xa a.xS for allxeV.

Then xSD xSa a. xS, xDS xS. aS aS. xS2, whence
DS SD.

Denote by K the subfield of V generated by B over F, then K admits S and
D and its centre is F. Further, if k is the subfield of K generated by a and
U over F, then k again admits S and D. We shall show that [K :k] p,
[K:k] oo. Since K/k is a pseudolinear extension, the first assertion will
follow if we can show that a k, and the second follows by Theorem 2.1 once
we have shown that [h:hs]L

(i) The proof that a / is precisely as in [2] and will not be repeated here.
(ii) To prove that [k:ks]L oo, it is enough to show that the elements

box are left S-independent; in fact we shall show that they are left KS-in-
dependent. To see this we first observe that Ks is the subfield of V generated
by a, b, (i > 0) over F. Now if there is a relation

(13) cx box 0 (cxe Ks)
with coefficients not all zero, say Co 0, then we can express boo in terms of a
and the bx boo over F. Let W be the closed subfield of V generated by a
and the bx boo over F. The construction of V by the embedding theorem
shows that W is iust the valuated field of fractions of the free associative
algebra on a and the bx boo over F, using the same definitions (11) and (12).



424 . . coi

Thus there are no special relations in W, due to the presence of boo in V.
Since a und the bx (including boo) form a free generating set of A, it follows that
boo W, und this contradicts the existence of a non-trivial relation (13).
Hence the box are left kS-independent and it follows that []c:]cs] .

5. Extensions of arbitrary degree
With the help of the example constructed in Section 4 it is esy to obtain

extensions of any finite degree and infinite left dimension.
Let n > 1 be given and let F be any field. If the characteristic of F is

prime to n, ssume Mso that F contins root of x 1 other thn 1. Then
it follows that F contains a primitive pt root of 1, say o, where p n. If the
characteristic of F divides n, we set 1. In either case, by the results of
Section 4, there exists n extension K/t in which K has centre F nd
[g:] p, [K:] .
Now ny permutation of the second suffix of the b is n utomorphism of

A which extends to an outer automorphism of K, nd it is clear that the group
of these utomorphisms cts fithfully on/. Thus k hs outer utomorphisms
of ny finite order. Write n pn nd let a be ny outer utomorphism of
A of order n. The fixed field /Co then stisfies [/c: k0] [/:/0] n
(cf. [3] p. 163) nd hence

[K:k0] pn n, [K:/c0] .
This completes the proof of

THEOREM 5.1. Let n be any integer greater than one, and F any field such that
if char F is prime to n, then F contains a root of x 1 other than 1. Then there
exists a skew field K with centre F, and a subfield tc of K such that

[K:/] n, [K:/] .
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