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An open question of long standing in Riemnnin geometry is the following"
given compact orientble even-dimensional Riemnnin mnifold X of
positive Riemnnin sectional curvature, is the Euler-Poincri characteristic
x of X necessarily positive? This is known to be the cse for example when X
is homogeneous spce [5], 4-dimensional mnifold [3], or 6-dimensional
Khler mnifold stisfying certain dditionl hypothesis [1]. A tool vil-
ble for studying this question is the Guss-Bonnet formul [2] which cn be
expressed s

x -- K dV
Cn

where K is the Lipschitz-Killing curvature of X, dV is the volume element,
and c is the volume of the Euclidean unit n-sphere.
The Lipschitz-Killing curvature K has an unwieldy algebraic expression in

terms of the curvature tensor of X and it is not as yet well understood. In
this note we investigate the geometry of this curvature, continuing work
begun in [6], and obtain certain partial results in the direction of the "positive
curvature implies positive characteristic" conjecture.

1. The curvatures "r
Let X be a Riemannian manifold. Since the Riemannian sectional curva-

ture of X completely determines the curvature tensor of X, it determines all
the curvature properties of X and in particular it determines the Lipschitz-
Killing curvature K. It is the nature of this dependence which occupies our
attention here. We would like to know, for example, if , >_ 0 everywhere
implies K >__ 0 everywhere. An affirmative answer to this local question
would yield an affirmative answer to the global question considered above.
Now between the Riemannian sectional curvature and the Lipschitz-

Killing curvature K there is defined a sequence of intermediate curvatures,. The function ,, called the pth sectional curvature, is a smooth function
on the bundle of p-planes over X and it measures the Lipschitz-Killing curva-
ture of geodesic p-dimensional submanifolds. It is defined for all even integers
p between 2 and the dimension of X. , - is the Riemannian sectional
curvature and , K is, for n even, the Lipschitz-Kiling curvature.
That these curvatures ,, lie at the heart of the problem under considera-

tion is well illustrated by the following example. The most definitive result
thus far obtained relative to this problem is its solution in dimensioa 4.
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Milnor showed that if the Riemannian sectional curvature , of a compact
orientable 4-manifold X is either _>0 everywhere or _0 everywhere then
the characteristic x of X is >_0. A close analysis of the proof of this result
(see e.g. [1]) shows that what was in fact proved was that, for arbitrary
Riemannian manifolds, /. >_ 0 everywhere or /.

_
0 everywhere implies

4 >__ 0 everywhere.
Now for p and q even integers with p + q

_
dim X, the (p + q)thsectional

curvature ,+q is completely determined by , and ,q (cf. the remark in 2
below). We need to know more about this dependence. For example we
would like to know if >_ 0 everywhere and ,q >_ 0 everywhere implies
+q >_ 0 everywhere. The author has shown [6] that this is indeed the case
when and ,q are both constant. An affirmative answer to this question
in general would yield a confirmation of the "positive curvature implies
positive characteristic" conjecture.
Our main theorem determines explicitly the dependence of ,+q on

and ,q in the case where ,, (or ,q) is constant.

THEOREM. Let X be a Riemannian manifold with constant pth sectional
curvature . Let P be a (p - q)-plane tangent to X. Then the value at P
of the (p - q)th sectional curvature "+q is equal to the constant value of
multiplied by the average value of "q over all q-planes Q contained in P.

Postponing the proof of this theorem to the next section we derive several
corollaries, the first of which is an immediate consequence of the theorem.

COROLLARY 1. Suppose %, is constant and that ,q teeps constant sign for
some p and q with p - q

_
dim X. Then "+q keeps constant sign and

sign (/+q) sign (, /q).

Remark. This statement is to be interpreted in the broadest possible
sense. Thus, for example, if , is constant > 0 and ’q 0 everywhere then
,+q < 0 everywhere, whereas if 7 is constant > 0 and /q

_
0 everywhere

then +q

_
0 everywhere.

Remark. Greub and Tondeur [4] have recently obtained a related result
in the case of compact locally symmetric homogeneous spaces. They proved
that, for such spaces, ,, >_ 0 for all p.

ConoLAnY 2. Let X be a compact orientable Riemannian manifold of even
dimension n. Suppose "y is constant and that 7n-- keeps constant sign for
some p. Then the Euler-Poincar$ characteristic of X has the same sign as

’p n--p

Proof. By the theorem, the sign of is everywhere the same as that of, ,_. But , is the Lipschitz-Killing curvature, i.e. the integrand in the
Gauss-Bonnet formula for the characteristic x. Thus x also has this sign.
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COROLLARY 3. Let X be conpact orientable and of even dimension n. As-
sume that "n--2 is constant. Then the Euter-Poincar characteristic of X is
given by the formula

2K,-2 fxx n(n- 1)cn
pdV

where cn is the volume of the Euclidean unit n-sphere, Kn_2 is the constant value
of ,,_, and p is the scalar curvature of X.

Proof. By the theorem, the Lipschitz-Killing curvature at x e X is
equal to Kn_ multiplied by the average value of the Riemannian sectional
curvature , over all 2-planes at x. In terms of the components of the curva-
ture tensor R relative to any orthonormM frame at x, this average is given by

(n 2)! 2! E R. 1 E R.. 1
n! < n(n- 1) , n(n- 1)p(x).

Inserting this information into the Gauss-Bonnet formula completes the
proof.

2. Proof of the theorem

We shall adopt here the notation used in [6] and shall assume the results of
that paper. Recall that, from the curvature forms . of the Riemannian
connection of X, we constructed p-forms

1 ..i .. (il, "’’, i, ;j, ...,.i)fsl v v p-lJp

on the orthonormal frame bundle F. These forms are defined for each selec-
tion (i) (i, i) from {1, ..., n}. The sum here ranges over all
such selections (j) (j, ..., j). The symbol

(il, ,iT;j1, ,j)

is zero unless (j) is a permutation of (i) in which case it is equal to the sign
of this permutation. These forms are the components of a p-form 0() on
F with values in the pth exterior powerR of real n-space.
Now the p sectional curvature of X is given by the formula

(2) (x, P) O)...(b)(fx, f’)
where b (x; f, f) is any orthonormal frame at x such that {f, fpl
spans P nd f is any vector at b which projects onto f(i {1, ..., n}).
Furthermore ,p is constant if and only if the equations

(3) 0
are satisfied for all (i), where K is the eonstant value of and ,
are the canonical 1-forms on F.
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In the proof of the theorem we shall use the following lemma, which was
implicit in [6].

LEMMA The form ’+q) can be expressed as",,i *ip+q

0+) P! q! )(p +
,,

where the sum ranges over all partitions A (A1, A2) of
il, i+q}

into sets AI of p elements and A. of q elements, and where (t k+q) is, for
each A, an even permutation of (i, ..., ip+q) such that

t te A and k+ tCp+qe A.
The proof of this lemma is contained in the proof of Theorem 6.2 of [6]

and will not be repeated here.

Remark. It follows from this lemma that +q is completely determined by, and ,q. For in fact ,p+q is, according to formula (2), determined by
0(p-q) which by the lemma is determined by 0() and o(q), But 0() is
completely determined by ,p (and similarly for O(q)). For if there existed
two such p-forms 0(’) and 0(’)’ (horizontal equivariant R-valued p-forms
on F whose components satisfy the Bianchi type identity of Lemma 4.4 (i) in
[6]) such that , was obtained from each by formula (2), then replacing the
in the proof of Theorem 5.1 in [6] by 0(p) 0(’)’ and applying that proof

implies that 0() 0()’ --- 0.

Proof of the theorem. From the lemma,

O+q) P! q! 0"’.ip x--’ip+l..’ip+"+q (p + q) A

where (i) (il, i+q) is, for each partition A (A1, A2) of
{1, p - q}, an even permutation of (1, p + q) such that

(i, .-.,ip) eA and i+, ...,i+qeA.

Since , is constant, equations (3) imply that

(4) ’(+q) P! q!
KpOil v v oip v 0(q)

ip/l..W)I" p+q (p

_
q) .

where K is the constant value of ,.
Now ((q) is a horizontal q-form on F. Since the set,’ip+l., ip+q

is a basis for the horizontal q-forms at each point of F, there exist functions
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S(iv+l iv+q ;jl jq) on F, defined for each selection (jl, jq) from
{1, n} and completely alternating in the j’s, such that

or.q) ()S(iv+ iv+q ;ji jq)ol v v wiqp+1" ip+

where the sum ranges over all (j) with j < < jq. Putting this into (4),
we obtain

c(v+q) P q
(5) l...v+q (p -t- q). Kv [(.) S(iv+ iv+q ;j jq)

Oil V V OOip V O,jl V V

For (x, P) a (p -]- q)-plane on X, let b (x; f, fn) e F be a frame at
x such that If, fv+q} spans P. By (2), the sectional curvature ’v+q at
(x, P) is obtained by evaluating the left hand side of (5)"

%,+q(x, P) O..+.q)+q(b) (f
But, for each A, the only terms in the brackets on the right hand side of (5)
which are non-zero upon such evaluation are those where

(i iv j jq)

is a permutation of (1, p q), i.e. those where (jl, jq) is a permuta-
tion of (iv+, iv+q). In this case, let a denote this permutation"

(iv+l ""iv+qI.
\ Jl jq /

Then
S(iv+ iv+q j jq) (sgna)S(iv+ iv+q ;iv+"" iv+q)

Ojl V V Ojq--(sgna)oi+l v v o+q

so, since (i, iv+q) is an even permutation of (1, p -[- q),

"v+q(x, P)

or

(P + q)

(p + q)

Kv (sgn o’)S(iv+ iv+ ;iv+ iv+q)
A

"Oi i,+(f; fv+q)

Kv S(iv+ iv+q ;iv+ iv+q)
A

o v v ov+q(f;, "",fv+q)

(6) "v+q(x, P)
(p .+_ q) . S(iv+ iv+q i+ iv+q)

It remains only to express the terms in this summation in terms of ,q. For
this, let Q(A) be the q-plane spanned by

{fi+, ,f+}.
Letb (x;e,...,en) eFbesuchthate =f+for/ce{1,...,q}. Then
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bl bg for some g [gi] e O(n). Note that the first q columns of g are
determined by our requirement on bl. Let e R, fip+k for k /1, q}
where R, denotes the differential of right translation by g on F. Then e.
projects onto ek and, by (2),

,q(X, Q(A)) oq.!.q(bl)(e eq)

0[?!.a(bg)(R,. f+, R.f+)
R* O?!.(b)(f,+,,

where R* is the map on differential forms induced by right translation by g.
But, by equivariance of O(q) (cf. [6, 4]),

((q)

((q)
ip+ l...ip+q

We have used here our knowledge of the first q columns of g. Putting this into
the above expression for "q(X, Q(A)) we obtain

(’) (b) (f,+l f+)(x, Q(A)) i+l...i,+

Thus, from (6),
Plql(7) -+(x, P)

(p + q)!
K, "(x, Q(A)).

Since there are exactly (p + q) !/p! q! partitions A of 1, p + q},

P!q! 7(x,Q(A))
(p -+- q)!

is the average value of , over all q-planes Q which can be obtained as the span
of q vectors in the chosen basis fl, f+q of P. But from (7) it is clear
that this value is independent of the basis f, f+q chosen. Hence this
value is in fact equal to the average value of /q over all q-planes Q contained
in P.
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