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Introduction and summary
The aim of this paper is to describe some full embeddings of categories,

especially full embeddings concerning categories of abstract algebras; e.g.
we prove that every full ctegory of algebras cn be fully embedded into the
ctegory of lgebrs with two unary operations, which strengthens result
of J. Isbell [2, p. 15]. To summarize the results in simple wy we describe
some concrete ctegories that will be referred to:. The objects are couples (X, R), where X is non-void set and
R c X X X ( binary relation on X); the morphisms from (X, R) into
(Y, S) re all the mppings f: X --. Y such that (x, y) eR implies
(f(x), f(y) e S for all (x, y) e R. The morphisms of 9 re sometimes called
compatible mappings.

A (A is set). The objects re systems (X, {R a e A} where X is a
non-void set, R c X X X for every a e A; the morphisms from (X, {R}
into (Y, {S}) are all the mppings f:X Y such that, for every a e A,
(x, y).Ra implies (f(x), f(y)) e Sa.

Let /be an ordinal number, let/ [K a < } be sequence of ordinal
numbers (we consider zero to be n ordinal number, too). Such sequence
/ will be frequently clled type. The symbol a denotes the sum of
ordinals in the ordinary sense.

:(/) (the category of quasi-algebras of the type A). The obiects are
quasi-algebras, i.e. systems (X, {F a < 3’}), where X is non-void set and
F, for every a < 3’, is K-ary partial operation on X, i.e. a mapping of
subset of XK into X for 0, an element of X for 0. The morphisms
from (X,/F a < } into (Y, {G a < /} are all the homomorphisms,
i.e. mappings f" X -- Y satisfying the following conditions"

(1) If a < , 0 and if F,({xl < }) is defined, then
G({f(x) < K}) is defined nd

f(F,({x,} G({f(x) ).

(2) If 0, then f(F) G.

Received February 23, 1965.
The assumptions that the objects of the following categories are non-void sets are

not substantial. All the results of the present paper remain true if we admit void ob-
jects simultaneously in all the categories.
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(A) (the category of algebras of the type A). This is the full subcategory
of :5(A) generated by the algebras, i.e. by the objects

(x, <
such that F, is a mapping of XK" into X for every K, 0.

A (A is set). The objects are systems (X, {
non-void set; are unary operations on X; the morphisms from (X, {,}
into (Y, {} are all homomorphisms.

(A*). (the category of relationul systems of the type A*;

such that , > 0 for every a < ; in general the asterisk over a type indicates
always this fact.) The objects re systems (X, {R, ]a < }), where X is
a non-void set and R, X" for every a < . The morphisms from (X, {R,}
into (Y, {S,} are M1 mappings f X Y such that {f(x,)} S. for every
a < and for every

If there is no danger of misunderstanding, some brackets will be sometimes
omitted. We shall write e.g. (1, 1) instead of ({1, 1}) etc. Let us remark
that A is isomorphic with some (2, 2, ), A with some (1, 1, ).
In the notation given above the mentioned theorem by J. Isbell may be
formulated as follows:

Every full subcategory of some (A) is isomorphic with a full sub-
category of some A.
IrA {,]a < },wedenoteA + 1 {,+ 1]a < }. The symbol

9 (where , are categories) will mean that is isomorphic with a full
subcategory of (the possibility of full embedding of into 9). Obviously,

and 9 imply . We shall show in this paper that there
are full embeddings described by the following diagram ( is a smM1 category,

9.I(1, 1, O)

?I(A) --> :5(A) --> (A*) --> A --> A9 --> 9 --> ?I(1, 1)

(2)

(A) -- (A) follows immediately from the definitions.
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(,) -- (A*) means that there exists A* such that :(4) --+ (4")
it suffices to put 4" 4 W 1.
9(4") A means that there exists a set A such that (4")

The proof is given paragraph 1.
The meaning of -- A is similar ([4], see 4).
A -- Ag follows easily from the definitions. The dotted arrows mean

that, for any 4’, 4’ _> 2, one of the categories (1, 1), (2), H(1, 1,0),
I(2, 0), can be fully embedded in (4’). Actually, any of them can be
embedded in (4’) we describe it in this way only to indicate the proof in 1.

All assertions 9 -- H(1, 1), -- (1, 1, 0), 9 -* (2), --* (2, 0), will
be proved in 2.
A --. has been proved in [4]. 4 contains some consequences of this

assertion.
3 contains some negative results. It is shown that the condition 4 >_ 2

is not only sufficient, but also necessary.
Some results concerning representation of semigroups are given in 4.

Actually, the research on representation of semigroups stimulated the prob-
lems concerning full embeddings of categories. It follows from
where is a small category of an accessible cardinal, and from the results
of 3 that any semigroup with a unit element S is isomorphic with a semi-
group of all endomorphisms of an algebra of a type 4 if and only if 4 _> 2.
This assertion strengthens the result of M. Armbrust and J. Schmidt [1],
which states that every S is isomorphic with a semigroup of all endomorphisms
of an object of some AH.
5 is devoted to some applications of the assertion (4") --. (--*I(1, 1)

etc.). Choosing some special 4", we get some results on full embeddings of
categories of metric, uniform and topological spaces, and topological algebras.

1. Some embeddings
THEOREM 1. Let 4" {Ka a < } be a type. Then there exists a set A

such that 9(4") A.
Proof. Let (X, {R, a < /} ) be an object of (4"). Put

(2) (z u U< (() R.) u {u(2), (2)},
{., ,, I < , < .}),

where
,(a, {x, [ < K,}) x for all

a() u otherwise,

() u for all

() v for allv,(v) u,

() u for allu,(u) v.

This result itself can be obtained as a corollary of the result of [2].
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u(2), v(2) are some different elements, u(2), v(2) X u U((a) X R).
We may choose e.g. u() (0, ), v() (1, 2). If

f-2-, ? (Y, {zl < })
is a morphism, put

q(f)(x) f(x) for x eX

O(f) (a, {x,} (a, {f(x,)} for

q(f)(u) u, q(f) (v) v.

It is easy to see that is a 1-1 functor into A, where

A {(a, /)l a < , , _< K,} u {1, 2, 3}.

Now, we are going to prove that maps (A*) onto a full subcategory of
AI.

Let g q(2) --() be a homomorphism. Let k,,, kl, k2, k3 denote the
operations in q(). We have

g(u) g( u) g(u) u

g(v) g(3 u) b3 g(u) ba u v.

Let x eX. Since ,g(x) g(,x) g(u) u, g(x) Y t {u, v}. If
g(x) u, we have bag(x) v, while g(ax) g(u) u; similarly, if
g(x) v, b2g(x) U V g(x). Hence, g(X) c Y. Let x, eX,
{x,}eR,. We have

and hence g(a, {x,} (a, {y,} according to the definition of k,,. More-
over, we get y, g(x) and, hence, f" X -- Y defined by f(x) g(x) (x eX)
is a morphism and g (f).

LEMA 1. Let/ {,, a < }, /. {h " < } andlet there be a 1-1
mapping of into such that <_ h,,(,) for every a < . Let at least one of the
following two conditions be satisfied:

(1) there is an a < such that ,, 0;
(2) h 0for [e \().

Then the category (z) is isomorphic with a full subcategory of (/).

Proof. Let . (X, {F [a < }) be an object of /(/).
dition (1) is satisfied, let us choose an a0 < , such that g0 0.
the operations F, (on X) as follows"

()
(2)
(3)
(4)
(5)

If the con-
We define

if /e \(/), h, 0, then F, F
if e \(/), X # O, then F’ ({x < X}) Xo
if (a),h 0, thenF F;
if (a),h> 0, thenF,({x,], < ,}) F;
if 9(a), # 0, then F,({x, < ,}) F({x, < }).
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Put(2) (X, {F’.yl’ < ti}). Let ? (Y, {G,la < }) be nother
object of ?I(al). We shll prove that mpping g" X Y is homo-
morphism of into 9 if nd only if it is homomorphism of() into (9).
First, let g be u homomorphism of into 9.

(1) If e (), 0, then

g(F) g(F.o) G.o
(2) If e (), 0, then

(3) If (a), h , 0, then

g(F’) g(F.) V. G’.
(4) If (a), > 0, then

g(F’( {x, < })) g(F.) G. G’( {g(x,) < ).

(5) If (a),. 0, then

g(F’({x, < })) g(F.({x, <

On the other hand, let g be a homomorphism of @() into @(

() If, (,) 0, theng(F.) g(F(.)) G(.) G,.
(b) Let , 0 < (.) Let us choose an arbitrary system

We have

(c) Let . 0. Let us take a system {x < .}, and let us choose x’s
for. < (.). Wehuve

Consequently, defining (g) () (9) by (g)(x) g(x) for every
homomorphism g , we get n 1-1 functor from (A) onto u full sub-
category of (A).
As a consequence we get

THEonE 2. Let 5 2. Then at least one of the following statements
holds:
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()
(2)
(3)
()

9J(1, 1, O) ---+ .I(A)
(2) - u()
u(2, o) --. u(a).

2. Further embeddings
THEOREM 3. -- 9d(1, 1) and ---+ (1, 1, 0).

Proof. Let X: (X, R) be an object of and u(X:), i 1, 2, two elements
none of them belonging to X or R. We define two unary operations F0, F1
(two unary operations F0, F1, and one nullary operation F., respectively) on
the set X u R u {ul, u.} as follows:

F(x) u+ for every xeX, i 0,1;

F((xl,x2)) x+ for every (x,x2) eR, i 0, 1;

Fo(u) Fo(u) u, F(u) F(u) u.

(F u, resp.).
Let (/) denote the algebr

(X u R u {u, u2} F0, F)

((X u R u {ul, u} F0, F, F), resp.).
Let 2 and l Y, S) be objects of 9. Let f 2 l be a morphism in .

(f) denotes the mapping from

x u R u {u(2), u(2)}
defined by

into Y u S u {u(I),

(I)(f)(x) f(x) for every xeX

(f)((x, y)) (f(x), f(y)) for every

(f)(u(2)) u(]) for i 1,2.

(x, y) e R

First, we are going to prove that (f) is a morphism from (2) into (I?)
in f(1, 1) (in f(1, 1, 0), resp.). Let G, i 0, 1 (0, 1, 2, resp.) denote the
operations in (Y). We must prove that

((f) (F() G(((f) ()

for i 0, 1. In the respective case, (f) (F) G2 follows from the definition.
Let u ;then

((f) (F(u) ((f) (u_) u._ G(,(f) (u) ).

Let xeX. Then

(f)(F(x) (f)(u+) u+ G(((f)(x) ).
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Finally, let (x, x). Then

(f) (F(x x) (R)(f)(x+) f(x+)

G(f(x), f(x.)) G,((f)(x ,x)).

Hence, defines a functor from into 9.I(1, 1)((1, 1, 0) resp.),which is
obviously 1-1. It remains to prove that its image is a full subcategory of the
corresponding category.

Let g "() - (1)) be homomorphism. The proof will be completed,
if we show that g )(f) for some morphism f e . Since

g(u() g(F(u(.) G(g(u(2) ),

we have g(u()) u(z) for u(I) is the only element remaining fixed
undergo. Similarly, g(u.()) u(17"). LetxeX. Ifg(x) u ,wehave
Go(g(x) Go(u) u., while g(Fo(x) g(u) u ;if g(x) (x ,x),
we hve Go(g(x) Go(x x.) x while g(Fo(x) g(u) u Hence,
g(X) Y. Let (x, x)eR; if g() u,, we have Go(g())
Go(u) u while g(Fo() g(x) e Y; if g() x e Y, we have Go(g() )=
Go(x) u, while g(Fo() g(x) e Y. Hence, g(R) S. Now, let
x Rx.. Hence, (x, x) e R and

g((xl, x.)) (yl, y2) eS.
We have

g(x) g(F_(x x) G_(g(xl x.) y,

and, hence, g(xl) S g(x.) and g( (x x.).) (g(xl), g(x2) ). Hence, g =((f),
where f" --* is defined by f(x) g(x). The proof is finished.

THEOREM 4. H(1, 1) -- H(2), H(1, 1) -- H(2, 0).

Proof. Let . (X; F0, F1) be an object of H(1, 1). A binary operation
F on the set X X u {v(.), v2()/ (where v() are some elements which
are not in X) is defined as follows"

Fo(X, v) Fo(x), F’o(Vl x) F(x) for xeX,

Fg v v v

F(z, z) v otherwise.

We put F v. in the case of the proof of the second assertion.
Let ., " Y; Go, G) be objects of 1, 1), and let f" .-- > be a homo-

morphism. We define a mapping ((f) X’ -. Y’ putting

>(f) () f(z) for every x e X,

>(f) (v()) v(?).
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First, we shall prove that (f) is a homomorphism of (.) into
Really, for x X,

(f) (Fg(x, vl)) (f)(Fo(x)) Go((f)(x)) a’o((f)(x), (f)(vl)).

Similarly for(f)(Fo(V x) ).

(f) (F(v, v) (f)(v) v e((f)(v), (f)(v)).

(f) (Fg(z, z’)) eg((f)(z), (f)(z’) vz

in the remaining cases. Hence defines a functor, which is evidently 1-1.
Let g () -- ( l?) be a homomorphism. Let us, to simplify the nota-

tion, designate the operations F, Gg by juxtaposition. We get

e{vl,v} for any eX’, Y’resp.
As vvl v and vv v, the mapping g maps {v, v} onto {v, v}. We
have

since v v v vl w.. Let g(x) w. for some x e X. We get the following
contradiction"

If g(x) v then v g(v)g(x) g(v x) v hence, g(v) v i 1, 2,
and g(X) c Y. If we define a mapping f X - Y by f(x) g (x), we get
easily f(F,(x)) G(f(x) ), i.e. f is a homomorphism of - into I7. We have
g (f).

3. Some groups of endomorphisms
Throughout this paragraph (X; , {o, a e A} is a quasi-algebra with

one partial unary operation , and with nullary operations o,, a e A, where A
is a set. Define a relation C on X as follows"

(x, y) e C if and only if there exist i, j _> 0 such that q(x) (x), where
q is the identity mapping and ’(x) (-1(x)) if the symbol on the right
hand side is defined.

C is an equivalence relation, and if Y is a class of equivalence defined by C,
then (Y) c Y. Y Y -- Y is defined by Y(x) (x). The quasi-
algebra

" (Y; r, {o.I n Y)

is called a component of

LEMMA 2. Let fb b B} be the family of all components of a quasi-algebra
f(, and let E(f()--the semigroup of all endomorphisms of f(--be a group. Then
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every E (b is a group and

E() IX {E(b), b

where II denotes the direct product.

Proof. Let f . -+ be a homomorphism. We know that the image of a
component under is a subset of a component. We shall show that in the
discussed case we have f(X) c Xo. Really, if f(Xo) c Xc, b c, the map-
ping g X --* X defined by

g(x) f(x) for xeX,

g(x) x otherwise

is a homomorphism. Since E() is a group, g ought to possess an inverse,
but g is not a 1-1 mapping.

Let hb -- ., b e B, be homomorphisms. The mapping h X -- X de-
fined by h(x) h(x) for x e X is evidently a homomorphism of into itself.
In particular, we immediately see that the E(b) are groups, since h-1 [X
forms the inverse homomorphism of h. Now, it is easy to see that the
mapping

(R)" E (2) - IIE (2)
defined by

(f) If z ]beS}

is a group isomorphism.
Put B(x) {y i > O, y x}. B (x) is said to be simple if and only if

x =y =zimpliesy z.

LEMMA 3.
that

Let there be an element Xo e possessing a non-simple B Xo), such

(B(xo)\{/Xo i 1, 2,... }n {o,1 9.
Then E(2) is not a group.

Let B (xo)\B(xo) 0. We define, for y e B (xo)\B(xo),

/c (y) rain {/ qY z, z qk-iy}.

As B (x0) is not simple, such a/c exists. Put

n rain {/c(y)] y e B(xo)\B(xo)},

and let us take a y such that/c(y) n; let us take an element zl qn-ly such
that ny Zl. As n is minimal, there exists a sequence {z i 1, 2,
such that Cz z_l for i 2, 3, .... The mapping g X -- X defined by

g(qy) z,_, i O, 1, ..., n- 1,

is evidently a homomorphism of into itself possessing no inverse.

otherwise,
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Now, let B (x0) c qB (x0). We consider two cases:

I. x0 qXo for some i > 0. Let n be the least i with this property. Let
us define n(z), for z eB(xo)\{JXo}, to be the least natural number such that
x0 n(Z)Z. The mapping g X -- X defined by g (x) q.n-n()X0 (/C is such
that .n n(x) > 0) for x eB(xo)\{JXo}, g(x) x otherwise, is a homo-
morphism of 2 into itself possessing no inverse.

II. i > 0 implies ix0 x0. Let us define n(x) in the same way as in the
cse I. We take a sequence {ai] i 1, 2, such that x0 al, ai a+
nd put

g(x) a() for x B(xo)\(xo)

g (x) x otherwise.

The mpping g X --+ X defined in this way is a homomorphism of 2 into it-
self possessing no inverse.

LEMMA 4. Let 2 consist of one component. Let E 2) be a non-trivial group.
Then

(1)
(2)
(3)
(4)

A --q is a 1-1 mapping of X onto itself,
X- lxli --1, O, 1, ...},
E(];) Z if cardX n,
E(2) Z if X is an infinite set.

Z is the additive group of integers, Z is the additive group of integers rood n.)

Proof. Let A 0. Put Y {x[B(x) {o,} 0}. As E(2) is non-
trivial, the set Y is non-void and, by Lemma 3, B (x) is simple for any x e Y.
Moreover, there exists y e Y and a homomorphism g" 2 -- such that
g(y) y. Let/ be the least ntural number such that y o, for some
j and a. B (yl), y g-(y), is simple and, hence, there is a uniquely defined
sequence {y} (finite or infinite) such that y qy+ for i 1, 2, .... Let
us define a mapping f X -- X as follows:

f(y) g(y), f(x) x otherwise.

f is a homomorphism of ) into itself and has no inverse. Hence, A 0.
Let 9 be not defined on the whole X. Then, according to the definition of

component, it is undefined in exactly one element x0 e X and we have
X B (x0). The previous lemma shows that X {x0, x, (the sequence
being finite or infinite) such that x+l x(i 0, 1, 2, ...). Let g be a
non-identical homomorphism of . into itself. Hence, there is g(x) xn for
some m # n. We get easily n > m, g(x) Xn-,n+ and g is not mapping
onto.
Now, since A 0 and is defined on the whole X, the mapping is a homo-
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morphism of into itself nd therefore it hs n inverse. The rest of the
proof is evident.

THEOREM 5. Let X , o a e A} be a quasi-algebra with one partial
unary operation and with nullary operations o,(a e A ). Let E ) be a non-
trivial group. Then either

(1) E() is the infinite cyclic group, or
(2) E() is a direct product of at most a countable number of finite cyclic

groups with orders which mutually do not divide each other.

Proof. By Lemm 2, E() is group for every component ) of . Evi-
dently, every homomorphism must mp every component into itself. Con-
sidering Lemm 4, we obtain" if there is component

2 /x [i -1, 0, 1,...}

such thatx re different for different i, there is no other . with a non-trivial
E(), since my be homomorphically mapped onto any such . Simi-
larly, a component with a non-trival group consisting of n elements, n being a
natural number, may be mapped on such a component consisting of/ elements,
if k divides n.

4. Main theorems
The following definitions play n important role in this prgrph.
A couple (X, R), where X is set and R c X X X, is called rigid if there is

only one compatible mpping of (X, R) into itself, namely the identity.
The symbol (a), where a is a cardinal, denotes the following assertion"

There isarigid (X,R) suchtht cardX_> a.

We shall use the following assertions"

THEOREM 6. (crd A) (A -- ).For the proof see [4].

THEOREM 7. (a) holds for every cardinal .
Proof. The ssertion is n immediate consequence of the result of [5].

THEOREM 8. Let be a small category; let K be the set of its morphisms.
Then ----> K.

A very simple proof is given in [4].
Now, we shall prove theorem concerning embeddings of small categories

into the ctegories of algebras and representation of semigroups by semigroups
of endomorphisms of lgebras of a given type.

THEOREM 9. The following assertions are equivalent:

(1) -- 9.I (A) for any small category .
(2) A for any small category .
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(3) If S is a semigroup with a unity element, there exists an algebra X of the
type A such that S is isomorphic with E X).

(4) If S is a semigroup with a unity element, there exists a quasi-algebra X of
the type 4 such that S is isomorphic with E X).

Proof. Evidently, (1) (2) (4) and (1) (3) (4). (4) (5),
by the results of paragraph 3. Let (5) hold. Then -- ?I (A), by Theorems
2, 3 and 4. As if(card ) holds, we have K -- (where K is the set of
morphisms of ), by Theorem 6. By Theorem 8, we get -- K. Hence,
(5) (i).

We remark that the previous result contains as a corollary the statement
that the category (4) (:5 (4), resp.) is universal if and only if 4 _> 2.
The definition of a universal category is given in [4].

THEOREM 10. Let 4, 4’ be types, 4’ >_ 2. Let be a full subcategory of
(4). Then

u(a’).

In particular, ?I - ?( 1, 1) for any full category of algebras ?I.
If A’ < 2, then (4) -- (A’) does not hold for any 4 such that 4 >_ 2.

Proof. By Theorem 1, (4) -- A. By Theorems 6 and 7, A - .Since -- ?i(4’) (by Theorems 2, 3 and 4), we obtain (4) -- (4’), and,
hence,g - (4’).

Now, let 4’ < 2, 4 >_ 2. Consider an arbitrary non-abelian group
G. By Theorem 9, there exists an algebra X of the type 4 such that E(X) is
isomorphic with G. Let @ be a full embedding of I(4) into (4’). Then
E(@(X)) is isomorphic with E(X) and, hence, with G, which is not possible
by Theorem 9.

5. Applications

We shall apply previous results to some concrete categories.

(A) Let X (X, r) be a topological space. We designate

x(Z) sup {x(x)l x eX},

where x(x) is the character of the point x in (X, r), i.e. the least cardinality of
a set of neighbourhoods of x which is confinal in the directed system of all
neighbourhoods of x.

Designate by (a) the category of topological spaces X with x(X) _< a and
all their continuous mappings.

LEMMA 5. (a) -- (A) for some A.
Proof. The idea of the proof is based on replacing the topology by an

equivalent convergence structure.
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Let A be a set, card A a. Evidently, there exists a set C with the follow-
ing properties"

(1) the elements of C are directed sets (B, < ), where B c A;
(2) if (D, < ’), card D

_
a, is a directed set, then there exists (B, - e C

isomorphic with (D, < ’)
(3) if (B1, <1) and (B2, <2) are isomorphic elements of C, then

(B1, <1) (B2,-(2).

Evidently, card C

_
22" for infinite cardinals.

Let the set C be well ordered, say by an ordinal . If (B, < ’) is the a-th
element of C according to the well ordering, we choose an ordinal K with
card K card B. Let us direct every set in such a way that (, < is
isomorphic with (B, < ’).

If (X, r) is an object of g(a), put

) (x, <
where R(r) (abbreviated R) is the set of all those systems

with the following property:for every neighbourhood U of the point xK there
is 0 such that 0 < implies x, e U.
The lemma will be proved if one shows that a mapping f X -- Y is a con-

tinuous mapping of (X, r) into (Y, z) if and only if it is a morphism from
O(X, r,) into(Y,) in (A), whichis almost evident. (A {K + 1 ]a < $}.)

Let the symbol (a,/) denote the category, the objects of which are sets X
endi0wed simultaneously by a topology (such that x(X)

_
a) and by a rela-

tional structure of the type A, and morphisms are all the continuous mappings
satisfying the condition required for morphisms of (A). In particular, if the
relational structures on two objects are structures of algebra, the morphisms
are continuous homomorphisms.

LEMMA 6. (a, A) -- (A’) for some A’.

The proof can be made similarly to the proof of Lemma 5.
modify it by adding the relational systems.

We must only

COROLLARY.
etc.).

Let be afull subcategory of , ix).

In particular, the assertion holds for the following categories:
objects: morphisms
metric spaces continuous mappings
metric linear spaces continuous linear mappings
normed linear spaces bounded linear mappings
Banach algebras continuous homomorphisms.

(B) Denote by lI(a) the category, the objects of which are uniform spaces
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(X, N) such that contains a confinal subsystem of a cardinality less than or
equal to a; the morphisms are all their uniformly continuous mappings.
Further, denote by 1I (a, A) the category of uniform spacesX having the men-
tioned property, and endowed by relational structures of the type A, where the
morphisms are uniformly continuous mappings which are morphisms of 9(A).

LEMMA 7. 1I (a, A) -- (A’) for some A’.

Proof. The proof will be given for ll(a), as the generalisation is obvious.

We find a system (K,, < ,) similarly as in the proof of Lemma 5.
put A’ [2K, [a < } and define

Here we

(x, <
where {x, < 2,} R,(t) if and only if, for every U l, there is a 0 such
that [x,, xK.+,] U for every 0.

Finally, if f (X, t) -- (Y, ) is a uniformly continuous mapping, we de-
fine (f) :(X, ) -- (Y, 2) by iP(f)(x) f(x). It is easy to see that
(f) is a morphism of (A’), and that ) is a 1-1 functor onto a full subcate-
gory of 9(A’).

COROLLARY. Let be a full subcategory of lI(a, A). Then-- (--?I(1, 1) etc.).

THEOREM 11. The category of metric spaces and their uniformly continuous
mappings is isomorphic with a full subcategory of (and ?I 1, 1) etc.).

The proof follows from the fact that the uniformity defined by a metric
contains a countable confinal subsystem.

(C) Let (X, p), (Y, ) be metric spaces, f X --* Y. f is called a con-
traction, if

(r(f(x), f(y))

_
p(x, y) for all x, y e X.

THEOREM 12. The category of metric spaces and their contractions is iso-
morphic with a full subcategory of 9 (?I 1, 1 etc. ).

Proof. Let A be the set of all non-negative real numbers. We shall prove
that the category under consideration is isomorphic with a full subcategory
of A. For a metric space (X, p), put

(I)(X, p) (X, IRa a e A} ),

where [x, y] e Ra if and only if p(x, y)

_
a; (f) f.

embedding.
Obviously, is a full

(D) We state explicitly a corollary concerning representation of semi-
groups by commuting mappings.

COROLLARY. Let S be a semigroup with a unity element. Then there exist
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a set X and two transformations fl, f of X such that S is isomorphic with the
semigroup (under composition)

{ X-- X, qo f fo, i 1,2}.

The proof follows immediately from Theorem 9.
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