SECOND AND THIRD TERM APPROXIMATIONS OF SIEVE-GENERATED SEQUENCES ${ }^{1}$

BY
M. C. Wunderlich and W. E. Briggs

We will consider sequences of natural numbers generated by the sieve process described in an earlier paper [2] by Wunderlich. In that paper, a criterion was presented which characterized the sieve generated sequences $\left\{a_{n}\right\}$ for which $a_{n} \sim n \log n$. The purpose of this paper is to investigate the nature of $a_{n}-n \log n$ for sequences which satisfy the above mentioned criterion. It was hoped that the authors could construct a sequence $\left\{a_{n}\right\}$ for which

$$
a_{n}-n \log n \sim p_{n}-n \log n \sim n \log \log n
$$

where p_{n} is the n-th prime. It is shown that this cannot be achieved by a sieve of this type but the methods employed do suggest a modification of the sieve process which may generate such a prime-like sequence.

For the sake of completeness, the sieve method and the related functions will be defined.

$$
A=\left\{a_{k}\right\}=\bigcap_{k=1}^{\infty} A^{(k)}
$$

where the $A^{(k)}=\left\{a_{1}^{(k)}, a_{2}^{(k)}, \cdots\right\}$ are sequences of natural numbers defined inductively as follows. $A^{(1)}=\{2,3,4, \cdots\}$, and $A^{(k+1)}$ is obtained from $A^{(k)}$ as follows: For each integer $t \geq 0$, choose one element

$$
\alpha_{t}^{(k)} \epsilon\left\{a_{k+t a_{k}+1}^{(k)}, \cdots, a_{k+t a_{k}+a_{k}}^{(k)}\right\}
$$

where $a_{k}=a_{k}^{(k)}$. Delete these $\alpha_{t}^{(k)}$ from $A^{(k)}$ to form $A^{(k+1)}$. The following functions will be used:
(a) $R_{n}(x)$ is the number of elements in $A^{(n)}$ not exceeding x.
(b) $\sigma_{n}=\prod_{k=1}^{n}\left(1-1 / a_{k}\right)$.
(c) $f_{k}(x)=R_{k}(x)-R_{k+1}(x)$.
(d) $l(n)$ is the number of k for which $f_{k}\left(a_{n}\right)=1$.
(e) $t(n)$ is the largest k for which $f_{k}\left(a_{n}\right) \geq 2$.
(f) $\quad d(n)=n /(n+l(n))$.

The following two lemmas from [2] will be used in this paper.
Lemma 1.1. If $x<a_{n}, R_{n+1}(x)=R_{n}(x)$. If $x \geq a_{n}$,

$$
R_{n+1}(x)=\sigma_{n} R_{1}(x)+\sum_{k=1}^{n} \frac{\sigma_{n}}{a_{k}}\left(\left\{\frac{R_{k}(x)-k}{\sigma_{k}}\right\}+\frac{k}{a_{k}}-\varepsilon_{k}\right)
$$

[^0]where ε_{k} is either 0 or 1 , and $\{x\}$ refers to the fractional part of x.
Lemma 1.4. There exists a constant c_{2} such that $t(n)<c_{2} n / \log n$.
We will begin by considering those a_{n} for which $a_{n} \sim n \log n$. Letting $x=a_{n}+1$ in [2, Lemma 1.1], we obtain
\[

$$
\begin{equation*}
\sigma_{n} a_{n}=n-E_{n}\left(a_{n}+1\right) \tag{1}
\end{equation*}
$$

\]

We now proceed to estimate $E_{n}\left(a_{n}+1\right)$
Lemma 1. $E_{n}\left(a_{n}+1\right)=-l(n)+O\left(\frac{n \log \log n}{\log n}\right)$.
Proof. Let c_{2} be the constant obtained in [2, Lemma 1.4], and let

$$
E(k, n)=\frac{\sigma_{n}}{\sigma_{k}}\left(\left\{\frac{R_{k}\left(a_{n}+1\right)-k}{a_{k}}\right\}+\frac{k}{a_{k}}-\varepsilon_{k}\right)
$$

We split up $E_{n}\left(a_{n}+1\right)$ as follows:

$$
\begin{align*}
E_{n}\left(a_{n}+1\right)= & \sum_{k=2}^{s(n)} E(k, n) \\
& +\sum_{k>s(n), f_{k}\left(a_{n}\right)=1} E(k, n)+\sum_{k>s(n), f_{k}\left(a_{n}\right)=0} E(k, n) \tag{2}\\
= & S_{1}+S_{2}+S_{3}
\end{align*}
$$

where $s_{n}=\left[c_{2} n / \log n\right]$.
We first observe that since for all n and $k, E(k, n)$ is bounded, it follows that

$$
\begin{equation*}
S_{1}=O(n / \log n) \tag{3}
\end{equation*}
$$

Since $f_{k}\left(a_{n}\right)=1$ for all k in the range of the second summation, we have that

$$
f_{k}\left(a_{n}\right)=\left[\frac{R_{k}\left(a_{n}+1\right)-k}{a_{k}}\right]+\varepsilon_{k}=1
$$

If $\varepsilon_{k}=1$, then $\left(R_{k}\left(a_{n}+1\right)-k\right) / a_{k}<1$ so that

$$
\begin{equation*}
E(k, n)=\frac{\sigma_{n}}{\sigma_{k}}\left(\frac{R_{k}\left(a_{n}+1\right)}{a_{k}}-1\right) \tag{4}
\end{equation*}
$$

If $\varepsilon_{k}=0$, then $1 \leq\left(R_{k}\left(a_{n}+1\right)-k\right) / a_{k}<2$ or

$$
\left\{\frac{R_{k}\left(a_{n}+1\right)-k}{a_{k}}\right\}=\frac{R_{k}\left(a_{n}+1\right)-k}{a_{k}}-1 .
$$

Hence (4) is true in either event. For k in this range one uses the method in (23) of [1] to obtain

$$
1 \geq \frac{\sigma_{n}}{\sigma_{k}}>1-\frac{c \log \log n}{\log n}
$$

for some constant c. Hence we can now write

$$
\begin{aligned}
S_{2} & =\left(1+O\left(\frac{\log \log n}{\log n}\right)\right) \sum_{k>s(n), f_{k}\left(a_{n}\right)=1}\left(\frac{R_{k}\left(a_{n}+1\right)}{a_{k}}-1\right) \\
& =\left(1+O\left(\frac{\log \log n}{\log n}\right)\right)\left(\sum_{k>s(n), f_{k}\left(a_{n}\right)=1} \frac{O(n)}{a_{k}}-l(n)+O\left(\frac{n}{\log n}\right)\right)
\end{aligned}
$$

since the number of terms in this summation is $l(n)+O(n / \log n)$ and since $R_{k}\left(a_{n}+1\right)=O(n)$. Multiplying and using the fact that $a_{n} \sim n \log n$, we obtain

$$
\begin{align*}
S_{2} & =\left(-l(n)+O\left(\frac{n \log \log n}{\log n}\right)\right)+O\left(\sum_{k=s_{n}}^{n} \frac{n}{k \log k}\right) \tag{5}\\
& =-l(n)+O\left(\frac{n \log \log n}{\log n}\right) .
\end{align*}
$$

Finally, for k in the range of the third summation,

$$
f_{k}\left(a_{n}\right)=\left[\frac{R_{k}\left(a_{n}+1\right)-k}{a_{k}}\right]+\varepsilon_{k}=0
$$

so that

$$
\left(R_{k}\left(a_{n}+1\right)-k\right) / a_{k}<1
$$

Hence

$$
E(k, n)=(1+o(1))\left(\frac{R_{k}\left(a_{n}+1\right)}{a_{k}}\right)=\frac{O(n)}{a_{k}}
$$

One easily proves that

$$
\begin{equation*}
S_{3}=O\left(\frac{n \log \log n}{\log n}\right) \tag{6}
\end{equation*}
$$

Combining (3), (5), and (6) completes the proof of the lemma.
Lemma 2.

$$
a_{n}=(n / d(n)) \sum_{k=2}^{n} d(k) / k+O\left(n(\log \log n)^{2}\right)
$$

Proof. Using (1) and Lemma 1, we obtain

$$
\begin{align*}
\sigma_{n} a_{n} & =n+l(n)+O\left(\frac{n \log \log n}{\operatorname{lon} n}\right) \\
& =\frac{n}{d(n)}+O\left(\frac{n \log \log n}{\log n}\right) \tag{7}
\end{align*}
$$

Hence

$$
\frac{1}{\sigma_{k} a_{k}}=\frac{d(k)}{k}+O\left(\frac{\log \log k}{k \log k}\right)
$$

Now summing this from 2 to n and using the fact that

$$
\sum_{k=2}^{n} 1 / a_{k} \sigma_{k}=\sum_{k=2}^{n} 1 / \sigma_{k}-1 / \sigma_{k-1}=1 / \sigma_{n}-\frac{1}{2}
$$

we obtain

$$
\begin{align*}
\frac{1}{\sigma_{n}} & =\sum_{k=2}^{n}\left(\frac{d(k)}{k}+O\left(\frac{\log \log k}{k \log k}\right)\right)+\frac{1}{2} \tag{8}\\
& =\sum_{k=2}^{n} \frac{d(k)}{k}+O\left[(\log \log n)^{2}\right]
\end{align*}
$$

The proof of the lemma is completed by multiplying (7) by (8) and using the fact that $\frac{1}{2} \leq d(n) \leq 1$.

Lemma 3. Suppose $d(k)=(1+\delta(k)) \cdot d$ where $\frac{1}{2} \leq d \leq 1$ and $\delta(k)=o(1)$. Then

$$
\begin{aligned}
a_{n}=n \log n+[1+o(1)] n \sum_{k=2}^{n} & \delta(k) / k \\
& -[1+o(1)] n \delta(n) \log n+O\left(n(\log \log n)^{2}\right)
\end{aligned}
$$

Proof. First observe that

$$
n / d(n)=(n / d)(1-(1+o(1)) \delta(n))
$$

Hence from Lemma 2,

$$
\begin{aligned}
a_{n}= & (n / d)(1-(1+o(1)) \delta(n)) \\
& \cdot\left(\sum_{k=2}^{n} d / k+\sum_{k=2}^{n} d \delta(k) / k+O\left(n(\log \log n)^{2}\right)\right) \\
= & n \log n+(1+o(1)) n \sum_{k=2}^{n} \delta(k) / k-(1+o(1)) n \log n \delta(n) \\
& +O\left(n(\log \log n)^{2}\right)
\end{aligned}
$$

We are now going to apply this lemma to a number of specific sequences. To do this, we will suppose that $r_{n}=k-n$ where $a_{k}^{(n)}$ is the smallest element eliminated from $A^{(n)}$ to form $A^{(n+1)}$. We will further stipulate that r_{k} / k is asymptotic to a constant, and r_{k} is non-decreasing. We first of all need a lemma connecting r_{k} with $\delta(k)$.

Lemma 4. If $r_{n}=n \cdot r(1+\rho(n))$ where r is a positive constant and $\rho(n)=o(1)$, then

$$
\begin{aligned}
\delta(n)= & \frac{r}{(r+1)(r+2)}(1+o(1)) \rho(k) \\
& \quad+O\left[|\rho(k+1)-\rho(k)|+\rho^{2}(k+1)+\rho^{2}(k)+1 / \log n\right]
\end{aligned}
$$

where k is defined by

$$
\begin{equation*}
r_{k}+k \leq n<r_{k+1}+k+1 \tag{9}
\end{equation*}
$$

Proof. Using (9) and the fact that $r_{k}=k \cdot r(1+\rho(k))$ we obtain

$$
\begin{aligned}
k((r+1) / n)= & 1-(r /(r+1)) \rho(k) \\
& +O\left[|\rho(k+1)-\rho(k)|+\rho^{2}(k+1)+\rho^{2}(k)+1 / n\right]
\end{aligned}
$$

Since $t(n)<c_{2} n / \log n$, we have

$$
k=l(n)+O(n / \log n)
$$

and so

$$
\begin{aligned}
& l(n)=(n /(r+1))[1-(r /(r+1)) \rho(k) \\
&+O(|\rho(k+1)-\rho(k)| \\
&\left.+\rho^{2}(k+1)+\rho^{2}(k)\right]+O(n / \log n)
\end{aligned}
$$

Now using the fact that $d(n)=n /(n+l(n))$ a routine calculation completes the proof of the lemma.

Theorem 1. If $r_{k}=k \cdot r(1+\rho(k))$ where $\rho(k)=O\left(\frac{\log \log k}{\log k}\right)$, then

$$
a_{n}-n \log n=O\left(n(\log \log n)^{2}\right)
$$

Proof. Since the k in Lemma 4 is asymptotic to $n /(r+1)$, Lemma 4 yields

$$
\delta(k)=O\left(\frac{\log \log k}{\log k}\right)
$$

Hence

$$
\sum_{k=2}^{n} \frac{\delta(k)}{k}=O\left(\sum_{k=1}^{n} \frac{\log \log k}{k \log k}\right)=O(\log \log k)^{2}
$$

The theorem then follows from Lemma 3.
Theorem 2. If $r_{k}=k r(1+\rho(k))$ where r is a positive constant and $\rho(k)=o(1)$ and furthermore has the property that $\rho(k \cdot \alpha \cdot(1+o(1)) \sim \rho(k)$ where α is a constant, then

$$
\begin{aligned}
a_{n}=n \log n+[1+ & o(1)] \frac{n r}{(r+1)(r+2)} \sum_{k=2}^{n} \frac{\rho(k)}{k} \\
& -(1+o(1)) \frac{r n \log n}{(r+1)(r+r)} \rho(n)+O\left(n(\log \log n)^{2}\right)
\end{aligned}
$$

Proof. For the k in Lemma 4,

$$
\rho(k) \sim \rho(n) \quad \text { and } \quad|\rho(k+1)-\rho(k)|=o(\rho(k))
$$

Also, $\rho^{2}(k)+\rho^{2}(k+1)=o(\rho(k))$. Hence

$$
\delta(n)=\frac{r}{(r+1)(r+2)}(1+o(1)) \rho(k)+O\left(\frac{1}{\log n}\right)
$$

Lemma 4 completes the proof of the theorem.
Theorem 2 can now be used to construct sieve-generated sequences $\left\{a_{n}\right\}$ for which $a_{n}-n \log n$ is asymptotic to any given function lying between $n \log n$ and $O\left(n(\log \log n)^{2}\right)$. To demonstrate this, we will produce one for which

$$
a_{n}-n \log n \sim c n(\log n)^{1-\varepsilon}
$$

for any given $1>\varepsilon>0$. To do this, we let

$$
r_{k}=k\left\{1+(1-\varepsilon) /(\log k)^{\varepsilon}\right\}
$$

and apply Theorem 2:
This yields

$$
\begin{aligned}
a_{n}= & n \log n+[1+o(1)] \frac{n}{6} \sum_{k=2}^{n} \frac{(1-\varepsilon)}{k(\log k)^{\varepsilon}} \\
& \quad-[1+o(1)] \frac{n \log n(1-\varepsilon)}{6(\log n)^{\varepsilon}}+O\left(n(\log \log n)^{2}\right) \\
= & n \log n+[1+o(1)] n(\log n)^{1-\varepsilon} / 6 \\
& \quad-[1+o(1)](1-\varepsilon) n(\log n)^{1-\varepsilon} / 6+O\left(n(\log \log n)^{2}\right) \\
= & n \log n+[1+o(1)] \varepsilon n(\log n)^{1-\varepsilon} / 6 .
\end{aligned}
$$

An interesting sequence can be produced letting

$$
r_{k}=k\left(1-(1-\varepsilon) /(\log k)^{\varepsilon}\right)
$$

In this case, one can apply Theorem 2 and get

$$
a_{n}=n \log n-[1+o(1)] \varepsilon n(\log n)^{1-\varepsilon} / 6
$$

In view of the fact that $p_{n}=n \log n+(1+o(1)) n \log \log n$ where p_{n} is the n-th prime number, this yields a sieve-generated sequence for which $a_{n}<p_{n}$ for n sufficiently large. This sequence for $\varepsilon=\frac{1}{2}$ was computed on the I.B.M. 709 computer at the University of Colorado and for $n=73,594, a_{n}>p_{n}$. ($a_{n}=1,239,993$ and $p_{n}=931,783$).
If we consider a smaller class of sieve-generated sequences, we can obtain sharper estimates for $a_{n}-n \log n$. In this sieve, we eliminate those elements in $A^{(n)}$ of the form $a_{n+r_{n}+m a_{n}}^{(n)}$ for $m=0,1,2, \cdots$ to form $A^{(n+1)}$. The method described by Briggs in [1] will yield

Theorem 3. (a) If the sequence $\left\{r_{k}\right\}$ is non-decreasing and $r_{k}=o(k / \log k)$, then
$a_{n}=n \log n+(n / 2)(\log \log n)^{2}-(\gamma+\log 2) n \log \log n+o(n \log \log n)$.
(b) If $c>0, r_{1}=1$, and $r_{n}=[c n / \log n]+1, n>1$, then
$a_{n}=n \log n+(n / 2)(\log \log n)^{2}$
$-(\gamma+\log 2-c / 2) n \log \log n+o(n \log \log n)$.
(c) If $c>0$ and $r_{n}=[c n]+1$, then
$a_{n}=n \log n+(n / 2)(\log \log n)^{2}$

$$
-(\gamma+\log (c+2) / c+1) n \log \log n+o(n \log \log n)
$$

(d) If $0<c \leq 1$ and $r_{k}=\left[c a_{k}\right]+1$, then
$a_{n}=n \log n+(n / 2)(\log \log n)^{2}-\psi(c) n \log \log n+o(n \log \log n)$
where $\psi(z)=-\Gamma^{\prime}(z) / \Gamma(z)$.

One notices that all of the estimates of $a_{n}-n \log n$ contain a term of the form $O\left(n(\log \log n)^{2}\right)$. For sequences generated by this sieve process, this term cannot be eliminated for the second and third summation in (2) both contain a term of the form $\sum R_{k}\left(a_{n}+1\right) / a_{k}$ and hence

$$
\begin{aligned}
E_{n}\left(a_{n}+1\right) & =\sum_{k>s(n)} \frac{R_{k}\left(a_{n}+1\right)}{a_{k}}-l(n)+O\left(\frac{n \log \log n}{\log n}\right) \\
& \geq \sum_{k>s(n)} \frac{n}{c k \log k}>c n\left(\frac{\log \log n}{\log n}\right) .
\end{aligned}
$$

Applying this to the proof of Lemma 2, one sees that the term $O\left(n(\log \log n)^{2}\right)$ cannot be replaced by $o\left(n(\log \log n)^{2}\right)$. Thus, the asymptotic expression

$$
p_{n}=n \log n+(1+O(1)) n \log \log n
$$

for the n-th prime cannot be duplicated for sequences of this nature. There is some evidence to support the conjecture that the following modification of the sieve process could eliminate this objectionable term: Let $g(n)$ be a number theoretic function such that $g(n)>n^{1+\varepsilon}$. When obtaining $A^{(n+1)}$ from $A^{(n)}$ one does not sieve out any element of $A^{(n)}$ which is less than $a_{n+g(n)}^{(n)}$. Elements greater than $a_{n+g(n)}^{(n)}$ are sieved out in the usual manner. This sieve method is quite similar in some respects to the sieve of Eratosthenes when $g(n) \sim \frac{1}{2} n^{2} \log n$.

The authors would like to thank the referee for clearing up certain difficulties in Lemma 4.

References

1. W. E. Briggs, Prime-like sequences generated by a sieve process, Duke Math. J., vol. 30 (1963), pp. 297-312.
2. M. Wunderlich, Sieve-generated sequences, Canad. J. Math., vol. 18 (1966), pp. 291299.

State University of New York
Buffalo, New York
University of Colorado
Boulder, Colorado

[^0]: Received August 11, 1965.
 ${ }^{1}$ This research was sponsored by a National Science Foundation grant awarded to the University of Colorado.

