THE PRIMITIVE OPERATORS OF AN ALGEBRA OF SINGULAR INTEGRAL OPERATORS

BY
S. M. Newberger

In [1] we introduced a C^{*} algebra \mathbb{Q} of singular integral operators (\mathbb{Q} is a subset of the bounded operators on $L^{2}\left(R^{n}\right)$) and we extended the σ-symbol of Calderón and Zygmund to a homomorphism σ of \mathfrak{a} onto the bounded continuous functions on $R^{n} \times S^{n-1}$. Two types of primitive operators are basic in the composition of a. They are the multiplication operators and operators whose Fourier transforms are multiplication operators. In this note, we give the conditions for such operators to belong to \mathbb{C}. We use the notation introduced in [1]. Note that we freely confuse multiplication by f with f.

Theorem 1. Let $f \in L^{\infty}\left(R^{n}\right)$. Then
(1) $f \in \mathbb{Q}$ if and only if f is continuous;
(2) If $f \in \mathbb{Q}$ then $\sigma(f)(x, \xi)=f(x)$ for $x \in R^{n}, \xi \in \mathbb{S}^{n-1}$.

Theorem 2. Let $g \in L^{\infty}\left(S^{n-1}\right)$ and let T be the bounded operator on $L^{2}\left(R^{n}\right)$ defined by $F T f(x)=g(x /\|x\|) F f(x)$ where F is the Fourier transform and $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$ for $x=\left(x_{1}, \cdots x_{n}\right)$. Then
(1) $T \in \mathbb{Q}$ if and only if g is continuous;
(2) if $T \in \mathbb{Q}$ then $\sigma(T)(x, \xi)=g(x)$ for $x \in R^{n}, \xi \in S^{n-1}$.

Theorem 1 implies immediately that multiplication by f belongs to the subspace \mathfrak{C} of A (C is the set of B^{∞}-singular integral operators) if and only if $f \in B^{\infty}\left(R^{n}\right)$ (the set of infinitely differentiable, bounded functions, all of whose derivatives are bounded). Since the operators of \mathfrak{C} leave invariant the Sobolev spaces H_{k} the following theorem is interesting. (H_{k} is the set of tempered distributions T on R^{n} whose Fourier transform T^{A} comes from a function for which $\|T\|_{k}^{2}=\int\left|T^{\Lambda}\right|^{2}\left(1+\| \|^{2}\right)^{k / 2}<\infty$.)

Theorem 3. Let $f \in L^{\infty}\left(R^{n}\right)$. Then each H_{k} (k a non-negative integer) is invariant under multiplication by f if and only if $f \in B^{\infty}\left(R^{n}\right)$.

1. The kernel of σ

Recall from [1] that $\sigma: Q \rightarrow B C\left[R^{n} \times S^{n-1}\right]$, that σ is a C^{*} algebra homomorphism of \mathbb{Q} onto $B C\left[R^{n} \times S^{n-1}\right]$, with kernel
(1.1) $\mathscr{K}^{\text {loc }}=\left[T: T\right.$ is a bounded operator on $L^{2}\left(R^{n}\right)$, such that ψT and $T \psi$ are compact for every $\psi \in C_{0}^{\infty}\left(R^{n}\right)$].

[^0]We are interested in the relationship between $K^{\text {loc }}$ and two classes of operators; the first are multiplication operators; $\phi \in L^{\infty}\left(R^{n}\right)$, and the second are operators of the form $F^{-1} \phi F$ where F is the Fourier transform.

For the multiplication operators we have the following well known fact.
Lemma 1. $L^{\infty}\left(R^{n}\right) \cap K^{\text {loc }}=(0)$.
Proof. It is sufficient to show that $L^{\infty}\left(R^{n}\right) \cap \mathfrak{K}=(0)$. Let $f \in L^{\infty}\left(R^{n}\right) \cap \Re$ and assume $f \neq 0$. Then there is a set $E \subset R^{n}$ of positive Lebesgue measure, and an $\varepsilon>0$, such that $|f|>\varepsilon$ on E. Then $f \mid E$ is a compact, invertible operator on the infinite-dimensional Hilbert space, $L^{2}(E)$. This is impossible, QED.

In the case of the second class of operators, the situation is not as simple. For instance if T is convolution by any $C_{0}^{\infty}\left(R^{n}\right)$ function ϕ, then T is in this class and also in $\mathfrak{K}^{\text {loc }}$. For if $\psi \in C_{0}^{\infty}\left(R^{n}\right)$ we have

$$
(\psi T) f(x)=\int \psi(x) \phi(x-y) f(y) d y
$$

and

$$
(T \psi) f(x)=\int \phi(x-y) \psi(y) f(y) d y
$$

Both ψT and $T \psi$ are integral operators whose kernels are in $C_{0}^{\infty}\left(R^{n} \times R^{n}\right)$ and hence are compact operators. In addition $T=F^{-1}(F \phi) F$.

However we are really interested in $F^{-1} g F$ where g is a homogeneous function of degree zero.

Let $g \in L^{\infty}\left(S^{n-1}\right)$, the bounded measurable functions on S^{n-1}, measurability with respect to the usual measure ν on S^{n-1}, defined say by using spherical coordinates. Then g extends to a function in $L^{\infty}\left(R^{n}\right)$ via the formula $g(x)=g(x /\|x\|)$. The extended function is called a bounded homogeneous function of degree zero.

In the following we use $\int f$ for the Lebesgue integral on R^{n}, and $\|f\|_{0}$ for the $L^{2}\left(R^{n}\right)$ norm of f.

Lemma 2. Let g be a bounded homogeneous function of degree zero. Suppose the operator $F^{-1} g F \in \Re^{\text {loc }}$; then $g=0$.

Proof. Suppose $g \neq 0$. Let

$$
P=\left[\xi \epsilon S^{n-1}:|g(\xi)| \geq\|g\|_{\infty} / 2>0\right]
$$

where $\|g\|_{\infty}=\sup _{s^{n-1}}|g|$; then $\nu(P)>0$.
Let $E=\left[x \in R^{n}: 1 \leq\|x\| \leq 2\right.$ and $\left.x /\|x\| \epsilon P\right]$ and let $E_{k}=k E=$ [$k k: x \in E$] where $k=1,2 \cdots$. If μ denotes the Lebesgue measure on R^{n}, then it is easily shown by using spherical coordinates that

$$
\mu\left(E_{k}\right)=\nu(P)\left(2^{n}-1\right) k^{n} .
$$

Let $c=\nu(P)\left(2^{n}-1\right)>0$. If g_{k} is the characteristic function of E_{k} and
$h_{k}=\left(1 / \sqrt{ } c k^{n / 2}\right) g_{k}$ then $\left\|h_{k}\right\|_{0}=1$ and since support $\left(h_{k}\right) \subset\left[x \in R^{n}:\|x\| \geq k\right]$, we have that $h_{k} \rightarrow 0$ weakly as $k \rightarrow \infty$. Note also that $h_{k}(x)=k^{-n / 2} h_{1}(x / k)$.

We now show that for some $m \geq 0$,

$$
\begin{equation*}
\int_{\left[x \in R^{n}:\|x\| \leq m\right]}\left|F^{-1} h_{k}\right|^{2} \geq \frac{1}{2} \quad \text { for every } k \tag{1.2}
\end{equation*}
$$

For $\left(F^{-1} h_{k}\right)(x)=k^{n / 2}\left(F^{-1} h_{1}\right)(k x)$ so that

$$
\int_{A_{m}}\left|F^{-1} h_{k}\right|^{2}=k^{n} \int_{A_{m}}\left|\left(F^{-1} h_{1}\right) \circ T_{k}\right|^{2}
$$

where $A_{m}=\left[y \in R^{n}:\|y\| \leq m\right]$ and $T_{k}(x)=k x$ for $x \in R^{n}$. By the change of variables theorem, we have that

$$
\int_{A_{m}}\left|F^{-1} h_{k}\right|^{2}=\int_{k A_{m}}\left|F^{-1} h_{1}\right|^{2} \geq \int_{A_{m}}\left|F^{-1} h_{1}\right|^{2} \geq \frac{1}{2}
$$

for large m, since $\left\|F^{-1} h_{1}\right\|_{0}=\left\|h_{1}\right\|_{0}=1$. This proves (1.2).
There is a $\psi \epsilon C_{0}^{\infty}\left(R^{n}\right)$ such that $\psi=1$ on A_{m} with m large enough for (1.2) to hold. Let

$$
\begin{array}{rlrl}
h_{k}^{\prime}=h(x) / g(x) & & \text { if } x \in E_{k} \\
& =0 & & \text { if } x \notin E_{k} . \tag{1.3}
\end{array}
$$

Then $\left\|h_{k}^{\prime}\right\|_{0} \leq\left(2 /\|g\|_{\infty}\right)\left\|h_{k}\right\|_{0}=2 /\|g\|_{\infty}$ so that $h_{k}^{\prime} \rightarrow 0$ weakly. If $f_{k}=F^{-1} h_{k}^{\prime}$ then $f_{k} \rightarrow 0$ weakly also. But

$$
\left\|\psi F^{-1} g F f_{k}\right\|_{0}^{2} \geq \frac{1}{2}
$$

by (1.2).
Therefore $\psi F^{-1} g F f_{k}$ does not converge to zero in the norm so that $\psi F^{-1} g F$ is not compact. This means that $F^{-1} g F \& \mathcal{K}^{\text {loc }}$, QED.

2. Proofs of theorems

Proof of Theorem 1. Let $f \in L^{\infty}\left(R^{n}\right)$. We first note that if f is continuous, then $f \in \mathbb{Q}$ and (2) holds. This follows for $f \in B^{\infty}\left(R^{n}\right)$ from the definition of σ in [1]. For $f \in U C\left(R^{n}\right)$ (i.e. the uniformly continuous functions) the assertion is óbtained by using uniform convergence and Lemma 10 of [1]. Finally, if f is continuous, and $\psi \in C_{0}^{\infty}\left(R^{n}\right)$, then $\psi f \in U C\left(R^{n}\right)$ so that $f \in \mathbb{Q}$ by the definition of \mathbb{Q}. If $\psi(x)=1$ then also by definition, $\sigma(f)(x, \xi)=f(x)$; hence (2) holds.

To complete the proof, we must show that $f \in \mathbb{Q}$ implies that f is continuous (i.e. that there is a continuous function agreeing with f almost everywhere). We first show that if $\xi_{1}, \xi_{2} \in S^{n-1}$ and $x \in R^{n}$ then $\sigma(f)\left(x, \xi_{1}\right)=\sigma(f)\left(x, \xi_{2}\right)$.

Let ϕ_{m} and δ_{m} be the $C_{0}^{\infty}\left(R^{n}\right)$ functions and real numbers of Theorem 2 of [1]. Let $\psi_{m j}=\phi_{m}(\cdot-x) \varepsilon^{i\left\langle\cdot-x, \delta_{m} \xi_{j}\right\rangle}$ for $j=1,2$. We have $\left\|\psi_{m 1}\right\|_{0}=\left\|\psi_{m 2}\right\|_{0}=1 . \quad$ Therefore

$$
\begin{aligned}
\mid \sigma(f)\left(x, \xi_{1}\right)- & \sigma(f)\left(x, \xi_{2}\right) \mid \\
& =\left\|\left(\sigma(f)\left(x, \xi_{1}\right)-\sigma(f)\left(x, \xi_{2}\right)\right) \psi_{m 1}\right\|_{0} \\
& \leq\left\|\left(\sigma(f)\left(x, \xi_{1}\right)-f\right) \psi_{m 1}\right\|_{0}+\left\|\left(f-\sigma(f)\left(x, \xi_{2}\right)\right) \psi_{m 1}\right\|_{0}
\end{aligned}
$$

But from the definition of $\psi_{m j}$ it follows that $\left|\psi_{m 1}\right|=\left|\psi_{m 2}\right|$, so that

$$
\left\|\left(f-\sigma(f)\left(x, \xi_{2}\right)\right) \psi_{m 1}\right\|_{0}=\left\|\left(f-\sigma(f)\left(x, \xi_{2}\right)\right) \psi_{m 2}\right\|_{0}
$$

Now by Theorem 2 of [1] both terms of the sum tend to zero as $m \rightarrow \infty$ which means that

$$
\sigma(f)\left(x, \xi_{1}\right)=\sigma(f)\left(x, \xi_{2}\right)
$$

Let $h(x)=\sigma(f)(x, \xi)$. Then h is well defined; it is a bounded continuous function on R^{n}. By the first part of the proof, $\sigma(h)(x, \xi)=h(x)=\sigma(f)(x, \xi)$. Therefore $f-h \epsilon \operatorname{kernel} \sigma=\Re^{\text {loc }}$; hence $f=h$ by Lemma 1, QED.

Proof of Theorem 2. We note that if g is continuous, then $T \in \mathbb{Q}$ and (2) holds. This follows for $g \epsilon B^{\infty}\left(S^{n-1}\right)$ from the definition of σ and for $g \epsilon C\left(S^{n-1}\right)$ by the Stone-Weierstrass theorem.

To complete the proof, we must show that $T \in \mathbb{Q}$ implies that g is continuous (i.e.-that there is a continuous function agreeing with g almost everywhere on $\left.S^{n-1}\right)$. We first show that if $x_{1}, x_{2} \in R^{n}$ and $\xi \in S^{n-1}$, then $\sigma(T)\left(x_{1}, \xi\right)=$ $\sigma(T)\left(x_{2}, \xi\right)$.

With ϕ_{m} and δ_{m} as in the proof of Theorem 1, this time let

$$
\psi_{m j}=\phi_{m}\left(\cdot-x_{j}\right) e^{i\left\langle\cdot-x_{j}, \delta_{m} \xi\right\rangle}
$$

for $j=1,2$. Note that $\left\|\psi_{m 1}\right\|=\left\|\psi_{m 2}\right\|=1$ and $\left|F \psi_{m 1}\right|=\left|F \psi_{m 2}\right|$. Now using also the fact F is an isometry of $L^{2}\left(R^{n}\right)$ the proof proceeds exactly as in Theorem 1 with T replacing f. Having shown $\sigma(T)$ is independent of x, we define $h(\xi)=\sigma(T)(x, \xi)$ as before; it is a continuous function on S^{n-1}. Let $F S f(y)=h(y /\|y\|) F f(y)$; then $S \in \mathbb{Q}$ and $\sigma(S)=\sigma(T)$. Therefore $S-T \in \mathscr{K}^{\text {loc }}$; hence $g=h$ by Lemma 2.

Proof of Theorem 3. (a) Suppose $f \in B^{\infty}\left(R^{n}\right)$ (bounded functions in $C^{\infty}\left(R^{n}\right)$ whose derivatives are in $\left.L^{\infty}\left(R^{n}\right)\right)$. Then by the Leibniz rule for distributions, we have that if $g \in H_{k}$ and $|\alpha| \leq k$ then

$$
D_{\alpha}(f g)=\sum_{\beta \leq \alpha} C_{\beta}\left(D_{\beta} f\right)\left(D_{\alpha-\beta} g\right)
$$

Here differentiation is in the sense of Schwartz and C_{β} is a constant for each β. Since $D_{\beta}(f) \epsilon L^{\infty}\left(R^{n}\right)$ and $D_{\alpha-\beta} g \in L^{2}\left(R^{n}\right)$, we have that $D_{\alpha}(f g) \in L^{2}\left(R^{n}\right)$. Therefore $f g \epsilon H_{k}$. This proves the "if" part of the assertion.
(b) We will show that if multiplication by f maps $H_{k_{j}}$ into $H_{k_{j}}$ for a sequence $k_{j} \rightarrow \infty$ (k_{j} is a non-negative integer) then $f \in B^{\infty}\left(R^{n}\right)$.

For any compact set G, there is a $\psi \epsilon C_{0}^{\infty}\left(R^{n}\right)$ such that $\psi=1$ on G. Then since $\cap H_{k_{j}} \subset B^{\infty}\left(R^{n}\right)$ we have $f \psi \in B^{\infty}\left(R^{n}\right)$, which shows that $f \in C^{\infty}\left(R^{n}\right)$.

We will first complete the proof under the additional assumption that multiplication by f is a bounded operator on each of the Hilbert Spaces $H_{k_{j}}$. Let $\phi \in C_{0}^{\infty} ; \phi=1$ on $\left[x \in R^{n}:\|x\|_{i\left\langle x_{0}, .\right\rangle} \leq 1\right]$. Then if $x_{0} \in R^{n},\left\|\phi\left(\cdot-x_{0}\right)\right\|_{k_{j}}=$ $\|\phi\|_{k_{j}}$ because $F\left(\phi\left(\cdot-x_{0}\right)\right)=e^{i\left\langle x_{0} \cdot \cdot\right\rangle}(F \phi)$. Therefore, by Sobolev's lemma, we have for $|\alpha|<k_{j}-n / 2$ that

$$
\sup _{R^{n}}\left|D_{\alpha}\left(f\left(\phi\left(\cdot-x_{0}\right)\right)\right)\right| \leq C\left(k_{j}\right)\left\|f\left(\phi\left(\cdot-x_{0}\right)\right)\right\|_{k_{j}} \leq C^{\prime}\left(k_{j}\right)\|\phi\|_{k_{j}}
$$

But this means that $\left|D_{\alpha} f(x)\right| \leq C^{\prime}\left(k_{j}\right)\|\phi\|_{k_{j}}$ if $\left\|x-x_{0}\right\| \leq 1$ where $C^{\prime}\left(k_{j}\right)$ does not depend on x_{0}. Since x_{0} is arbitrary, this shows that $f \in B^{\infty}\left(R^{n}\right)$.

We will now remove the added assumption. Let $\phi_{m}(x)=\phi(x / m)$. We wish to show that if $s=k_{i}$, then for any $g \epsilon H_{s}, \phi_{m} f g$ converges to $f g$ in the H_{s} norm as $m \rightarrow \infty$. Then since $\phi_{m} f \in B^{\infty}\left(R^{n}\right)$, it is easily seen from the method of part (a) that multiplication by $\phi_{m} f$ is a bounded operator from H_{s} into H_{s}. Therefore, by the uniform boundedness theorem, multiplication by f is also a bounded operator from H_{s} into H_{s}.

It is sufficient to show that if $|\alpha| \leq s$ and $g \in H_{s}$ then

$$
\left\|D_{\alpha}\left(\phi_{m} f g-f g\right)\right\|_{0} \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty .
$$

For this let $\varepsilon>0$. Since $f g \epsilon H_{s}$, we have $D_{\beta}(f g) \epsilon L^{2}\left(R^{n}\right)$ for $|\beta| \leq s$. Therefore there is a number N such that $\int_{E_{N}}\left|D_{\beta} f g\right|^{2}<\varepsilon$ for $|\beta| \leq s$ where $E_{N}=\left[x \in R^{n}:\|x\| \geq N\right]$. Then if $m \geq N$,

$$
\int\left|D_{\alpha}\left(\left(\phi_{m}-1\right)(f g)\right)\right|^{2}=\int_{E_{N}}\left|\sum_{\beta<\alpha} C_{\beta} D_{\beta}\left(\phi_{m}-1\right) D_{\alpha-\beta}(f g)\right|^{2}
$$

But $D_{\beta} \phi_{m}=\left(1 / m^{|\beta|}\right)\left(D_{\beta} \phi\right)_{m}$ so that $\left|D_{\beta}\left(\phi_{m}-1\right)\right| \leq \sup _{R^{n}}\left|D_{\beta} \phi\right|$. Therefore, if $m \geq N,\left\|D_{\alpha}\left(\phi_{m}-1\right) f g\right\|_{0}^{2} \leq M \varepsilon$, where M is independent of ε, QED.

Reference

1. S. M. Newberger, The σ-symbol of the singular integral operators of Calderón and Zygmund, Illinois J. Math., vol. 9 (1965), pp. 428-443.

University of California
Berkeley, California

[^0]: Received July 9, 1965.

