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Introduction

Various generalizations of the spectral theory for self-adjoint operators have
been considered. Probably best known is the work of N. Dunford [3], [4]
on spectral operators, which possess a countably additive resolution of the
identity. Others, including R. G. Bartle [2], Ro C. Sine [11] and F. Wolf
[13], have considered classes of operators for which the uniform boundedness
of the resolution of the identity is not required. In these latter papers the
basic operators were assumed bounded. In this paper we consider spectral
manifolds for a class of (in general) unbounded operators and obtain generMi-
zations of results in [2] and in [9]. The operators are closed, are defined on
dense subsets of a Banach space, have spectra on the real axis and their
resolvent operators satisfy a growth condition considered by R. G. Bartle in
[2] for bounded operators. The class includes the self-adjoint operators in
Hilbert space and operators of the form -iA where A is the infinitesimal
generator of a strongly continuous group of bounded operators on a Banach
space and has spectrum on the imaginary axis.
In Section 1 the basic properties of local spectra and resolvents for an

operator T of the class are obtained. The principal result is the Approxima-
tion Theorem 1.13 which shows that the vectors with compact spectra are
dense in the space X. The "Lorch Approximation" (Theorem 1.23) is derived
for a first order growth rate. In Section 2 it is shown that T has invariant
subspaces. It T lacks point spectrum, then certain spectral manifolds are
shown to be quasi-complementary in reflexive spaces. In Section 3 under the
further assumption that T has only continuous spectrum, these manifolds
are shown to be quasi-complementary in arbitrary Banach spaces and a
"resolution of the identity" for T consisting of closed projectionsis obtained.

Section 1. Properties of the local spectrum
Let T be a closed linear transformation defined on a dense subset D(T)

of a Banach space X. If the complex number t is such that I T has a
range which is dense in X and has a bounded inverse we say that # is in the
resolvent set p(T) of T and write R() (tI T)-1. The complement
z(T) to p(T) is called the spectrum of T. The following properties are well
known:
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0.1. R(t) is an analytic function of on the open set p(T) and satisfies
R(t) R() (- t)R(t)R() [12, Th. 5. 1C].

0.2. If T is closed nd p(T) is non-empty nd p() is ny polynomial
then p(T) is closed operator [6, Th. 7, p. 602].

0.3. If the polynomial p() is of degree nd if the vector x is in the domain
of T nd is in p(T) then R()x is in the domain of Tm+k nd p( T)R()mx
R()p(T)x. In prticulr, R() commutes with ech power of T [6, Th. 8,
p. 603].

0.4. If T is closed, densely defined nd hs non-empty resolvent set p(T)
then T is densely defined for ech positive integral m [6, Lemm 9, p. 648].

1.1. We shM1 further ssume that the spectrum of T is on the rel xis nd
that the resolvent operator R(z) stisfies the n-th order growth condition:

[Imz[n[[R(z) K for 0 < ]Imz[ 1 and

]Imz]]]R(z)] K for ]Imz] > 1

for some positive integer n, some positive constant K nd 11 non-rel z.
For ny x in X n X-wlued nlytic function F(z) is cMled n analytic

extension of R(z)x if its domain D(F) is open in the complex plane nd the
equation (I T)F() x holds for ech in D(F). R(z)x is sid to hve
the single-valued extension property if ny two of its nMytic extensions gree
on their common domain. If this is the case then R(z)x hs mximM
nalytic extension 2(z) nlytic on n open set p(x) clled the (locM) resolvent
of x. The complement z(x) to p(x) is clled the (local) spectrum of x. We
note that the ssumption that T hs rel spectrum implies, since p(T) is
everywhere dense, that ny two nlytic extensionsin fct, ny two con-
tinuous extensionsof R(z)x must gree on their common domain. Some-
times 2(z) itself will be clled the resolvent of x.
The following properties re immediate consequences of the definition of

local resolvent nd spectrum:

1.2(i) (zI T)2(z) x for ll z in p(x) nd2(z) R(z)x for llzin
(T),

1.2(ii) z(x + y) z(x)U z(y) nd z(x) (x) for ny scMr k
0 nd
1.2(iii) (ax + by)(z) a2(z) + b$(z) for M1 z in p(x) a p(y) nd for

ny scalars a nd b.

1.3 LEMM. If A is any bounded linear operator which commutes with T
then z(Ax) z(x).

Proof. Since (zI T)A2(z) Ax for 11 z in p(x), it follows that
() (Ax).

1.4 LMMh. For each x in D(T), a(Tx), z(x).
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Proof. LetF(z) z2(z) x forzin p(x). Then F is analytic and a
calculation shows that (zI T) F(z) Tx. If z’}" is a sequence in p(T)
converging to a real in p(x), then F() limF(z) and a calculation shows
that Tx lim.(I T) F(z). Since I T is closed, it follows that F()
is in D(T) and (I T) F() Tx.
The lemma which follows can be proved as in [5, pp. 254-255], by replac-

ing the continuity of T by its closure.

1.5 LEMMA. Let J be any bounded open interval in (- and let
x} be a sequence of vectors such that p(x) J for each j. If x lim. x.,

then p x J.

1.6 COROLLARY. Let F be a closed set in (-- ). The set of all vectors
whose spectra are in F is a closed linear manifold in X.

1.7. For a development of further properties of local spectra we introduce
integrals of a type first considered by E. R. Lorch [9] and used later by N. Dun-
ford [5]. For each pair a, b of real numbers with a < b, let C(a, b) denote a
piecewise smooth Jordan curve meeting the real axis at the points a and b
at non-zero angles (say, at right angles). Such a curve will be called an
admissible contour. Let K(a, b) be the operator defined on X by

1 fe (z a)’(z b)R(z) dz.1.7(i) g(a, b)

The finite growth rate (G) of R(z) near the reM uxis shows that the integrand
in 1.7(i) is bounded on the contour C(a, b). Thus the integral exists as an

improper Riemann integral in the uniform operator topology and represents a
bounded linear operator. The unlyticity of the integrand off the reM uxis
shows that the integral is independent of the contour C(a, b) provided that it
meets the requirements above.
More generMly, we may form integrMs of the type

fc f(z)(z1.7(ii) J(a, b; f)
(a,,)

a)n(Z b)’R(z) dz

where f(z) is a complex-valued function analytic in some neighborhood of the
closed interval [a, b] and C(a, b) is an admissible contour which lies in this
neighborhood. Properties of 1.7(i) were first studied by E. R. Lorch in the
case where T is a (not-necessarily bounded) self-adjoint operator acting on a

Hilbert space (n K 1). The operator K(a, b) here is the operator
--K,,(n, n) of [9]. The proof of the following lemma given there [9, pp.
141-142] is valid for arbitrary Banach spaces nd will not be repeated here.

1.8 LEMMA. (i)

1 fe (z a)’(z b)’R(z) dz.K(a, b)K(a, b)
(a.)



608 DANIEL KOCAN

(ii) If (a, b) and (c, d) are disjoint open intervals, then

K(a, b)K(c, d) O.

1.9 LEMIA. Let C(a, b) be an admissible contour and let f(z) be analytic
inside and on C a, b ). J a, b f)x is in D T) for each x in X and

TJ(a, b; f)x f zf(z)(z a)n(z b)R(z)x dz.
(a,b)

Proof. Approximate J(a, b; f)x by Riemann sums and use the identity

TR(z)x zR(z)x- x

for z in p(T) and the closure of T to show that J(a, b; f)x belongs to D(T)
and

TJ(a, b; f)x fC(a.b) zf(z)(z a)’(z b)R(z)x dz

I f(z)(z a)(z b )’x dz.
(a,b)

Since the latter integrand is analytic, the assertion follows.

1.10 Remartc. It follows from 1.9, by induction, that J(a, b; f)x is in
D(Tm) for each positive m and that

T’J(a, b; f)x f z’f(z)(z a)n(z b)R(z)x dz.
(a,b)

Hence if p (z) is any polynomial then J(a, b; f)x is in the domain of p (T) and

p( T)J(a, b; f)x f p(z)f(z)(z a)n(z b)’R(z)x dz.
(a,b)

1.11 COROLLARY. For each x in X
(i) K(a, b)x is in the domain of T for each m >_ 1 and

I)( T)K(a, b)z
(,

p(z)(z a)(z b)R(z)z dz

for any polynomial p z

(ii) if is outside C(a, b) then the local resolvent of K(a, b)x is given by

1 fc (z a)n(z b) R(z)x dz
2i (a,b) Z

and

(iii)

Proof.

z(K(a, b)x) [a, b] n z(x).

(i) and (ii) follow from Lemma 1.9 and Remark 1.10 following it
(note that f(z) ( z)-1 is analytic inside and on C(a, b), for outside
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this contour). Thus, p(K(a, b)x) contains the exterior of each admissible
contour C(a, b) so that ((K(a, b)x) c [a, b]. (iii) now follows from Lemma
1.3.

1.12 LEMMA. limllK(a, b)II Oas b al tendstozero.

Proof. Choose anyaandbwithb a < 2 and choose for C(a, b) the
circle of radius (b a)/2 nd center (a b)/2. The change of variable
z (a + b)/2 re with r (b a)/2 yields the estimate

]](Z a)n(z b)nR(z)] r:’2 sin 0
K

r sin 0
2nKrn"

Hence,

K(a, b)]] (1/2)(2Kr’)(2r) 2"Kr+= 0([ b- a ]n+).
The theorem which ollows is fundamental in our work on local spectra.

It shows that the vectors with bounded (compact) spectr are dense in the
Bnach spce X. In the case where T is bounded all local spectra are bounded.
In this sense, relative to spectral analysis, Theorem 1.13 allows us to pss
from bounded operators to unbounded operators.

1.13 THEOnE (The Approximation Theorem). For each r > 0 let

[1
1 R(z) dz.L

(-,) pj

Te opera,or8 Ir converge 8oBgly o he ideiy opeao oB X a8 becoB8

infinite.

Proof. Sinoe zR(z)x TR(z) we hve

[ 1 [ ze]nl1
1 R(z)x dz x 1 dz

1
1--

2i (--r,) J Z

2i (-,) z

If x is in D(T), then TR(z)x R(z)Tx by 0.3 andhence Ix x Jr(Tx),
where J is the operator defined by

J (2i)-1 f [1 (z/r)2]n(1/z)R(z) dz.
(--r,r)

w shU how that 0(1) .d Jr O(r-). Thi wm ow that
x lim Ix for x in the dense set D(T) and, hence, (cf. [6, II.3.6]) for 11 x
in X.
To prove the uniform boundedness of the I for r 1 and the uniform con-
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vergence of the Jr to zero we choose for the contour C( r, r) the circle Cr with
center at the origin and radius r. Let A(r) and A(-r) be the intersections at
r and --r respectively, of Cr with the horizontal strip 1 _< Im z

_
1 and let

K+ denote the circular arc above this strip and K-- the arc of Cr below this
strip. On A(r) and A( r) we have the estimate (using z rei)

1--j R(z) _< 2’lsin01
K

r sin 0
2Kr-’

while on K+ and on K- we get the estimate

1 _] R() < 2 sin 0
g

< 2’Kr-1.
r sin 0

Thus, writing Cr as the sum of four contours none of which has length exceed-
ing rr we get

I (2/2z)(2Kr-)(zr) + (2/2z)(2Kr-)(zr) 2K[1 +
Similarly,

J, (2/2z)(2Kr--)(zr) + (2/2z)(2Kr-2)(zr) 2K[r- + r-].

Thus for r 1 we have I 2+K and J O(r-), QED.

1.14 COROLLARY (The Density Theorem). The vectors with compact spectra
are dense in X.

The corollary to the Approximation Theorem which follows is basic to our
lter work. For bounded operator mny results on spectr re obtained
from the operationM cMculus which is bsed on the formula

I (2i)-1 fc R(z) dz.

The next result Mlows us to write

x (2i)- f R(z)x dz

for the dense set of vectors with compact spectra, where the integrand R (z)x
denotes the analytic function 2(z).

1.15. COROLLARY. Let x be any vector with bounded spectrum. Let C be
any piece-wise smooth rectifiable Jordan curve containing z(x) in its interior.

( )(i) x R(z)x dz or (z) dz

1 f R(z)m
dz(ii) () - Z

for each t outside C and
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(iii) 2(tt) is analytic at infinity and has the value 0 there.

Proof. The analyticity of 2(z) outside a(x) shows that any integral of the
form ff(z)2(z) dzwheref(z) is entire is independent of the path C as long
as C contains (x) in its interior. Choosing such a C and then any positive
r such that the circle Cr of radius r and center at the origin contains C in its
interior we get

I x 1- -.j R z x dz
2ri

1- -.j 2 z dz

2(z) dz -{- (--1) 1 z" &(z) dz.

Letting r --+ we get x (2ri)-1 fc2(z)dz, proving (i). The proof of
(ii) is similar to that of Lemma 1.9 and its Corollary 1.11. Applying tI T
to the integral in (ii) we get

1 fcR(Z)Xdz 1 fc(I T) - t z
R(z)x dz x

for outside C. Thus, this integral is an analytic extension of R(z)x to the
exterior of C.
To prove (iii), choose for C a circle Cr with r fixed and sufficiently large so

that a(x) is in the interior of Cr. Choose any p > r and consider z and t
such that z[ r < p < II. The series

converges to t(t z)-1 uniformly for all such z and . Hence, the series
o 2(z)(z/) converges to t2(z)(t z)- uniformly for z nd . In-
tegrating the ltter series term-by-term over the circle C and dividing through
by 2i we get, using (ii),

() ,(,) 1 zi(z)
dz

=o ;

Here we hve used that p(T)x (1/2i)fcp(z)R(z)xdz for ny poly-
nomial p(z), the proof being identical to that of Lemm 1.9 nd Remark
1.10. The convergence of the series in () for M1 with > p shows that
the series S(3) o TYx hs positive rdius of convergence nd thus is
nlytic t 0 nd hs the vlue zero there. Hence, from () we hve

(t) x + Tx Tex Tx
;

is analytic at infinity and has the value zero there, QED.

1.16 LEMMA. o(X) is empty if and only if x O.

Proof. If x 0 then 2(z) 0 for all z. Conversely, if z(x) 0, let
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M maxl]2(z) IIfor[z[ 1. If0 < r < 1, applyCorollaryl.15(i) tothe
circle [z 1 to get x - Mr and let r--+ 0.

1.17 THEOREM.
spectrum.

T is bounded if and only if each vector x in X has a bounded

Proof. If T is bounded then each local spectrum is contained in the com-
pact set a(T). Conversely, if each x in X has a compact spectruIn then
D(T) X. This follows from the closure of T and the integral representa-
tion of Corollary 1.15(i).
For a proof of the lemma which follows see [2, Theorem 7 and Corollary 2].

Note that the boundedness of T is not required but merely the representa-
tion x (2i)-1 fc R(z)x dz if the spectrum of x consists of a single point.

1.18 LEMMA. a(X) {a} if and only if(T-- aI)’x O.

1.19 THEOREM (The Unique Representation Property). If A1, A2, z,
are pairwise disjoint subsets of the real line and if x and y are vectors with spectra

rain As for each j and if=x j=y then xj y for each j 1, 2, m

Proof. The vector x yl =2 (y- x.), by 1.2 (ii), has spectrum in
the setAn (/2 Au u A) which is empty. ByLemma 1.16 we get
x yl. A similar argument for any index j shows that x y..

1.20 COROLLARY. If ((x consists of the distinct real numbers a a a
then x can be written uniquely as a sum =x with r(x) laj} for each
j= 1, ...,m.

Proof. The uniqueness follows from 1.19. For the existence of such a

representation, let C. be a (small) circle with center a., j 1, m and with
C exterior to C. for j lc. By Corollary 1.15(i) we have

x (2’i)- (z) dz (2’i)-1 (z) dz xj
=1

where x (2i)-x fo z) z. To show tha (x) {a}, define

w(,) 2i)- [ 2(z)(u--z)- dz.

Then w is analytic for u outside C and a direct computation using the closure
of T shows that (uI T)w(u) x. Hence z(x) is interior to ny suf-
ficiently smll circle huving a as center, so that z(x) {a}. If z(x)
then x 0 and a z(x), contrary to the hypothesis. Hence z(x)
and the proof is complete.
The next theorem, generMization of 1.13, might serve as the bsis of

(germinal) operational calculus which has much in common with n opera-
tionM calculus due to W. G. Bde (see [1]). As this is not needed in the sequel
it will not be developed here.

1.21 THEOREM. U p(z) is a polynomial of degree m and x is in D(T)
then
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limr (2ri)-1 / p(z)[1 (z/r)2]"R(z)x dz
(--r,r)

exists and equals p (T)x.

Proof. If p(z) 1, the result is merely 1.13. Using this for x in D(T)
and Tx in place of x and the fact that R(z)Tx TR(z)x zR(z)x x,
we get

Tx limr (2ri)-1 f [1 (z/r)]nzR(z)x dz.
(--r,r)

The assertion follows for Tx by induction and then, by linearity, for p( T)x.
This section concludes with a proof of the Lorch Approximation in the case

where R(z) satisfies the first order growth (G1). A proof for bounded T can
be found in [2, Theorem 9]. The proof given here uses the following lemma
whose proof is the observation that if x has compact spectrum, then in the
Laurent expansion for (z) in any annulus between z(x) and infinity the co-
efficients of the positive powers must be zero by 1.15(iii).

1.22 LEMMA. If z(x) C [a, b] Interior (C) and a

_ _
b, then

fc (z for m 1, 2, 3,..-)-’R(z )x dz 0

1.23. TgEOnE (The Lorch Approximtiou for (G)). Let R(z) satisfy
(GI) and let > 0 be given. If J is any closed interval of length less than
2 and ]c is any point in J, then

(T )x < (2Z + 1)1] x

for every x with spectrum in J.

Proof. LetJ [a,b]withb- a < 2andletc 1/2(a-t- b). Chooses
and such that s < a < b < and so that 1/2(s-t- t) c. Define the operstor
S S(s,t) by

S (2ri)- fc (z -zS)(Z-c- t) R(z) dz,

where C C(s, t) is the circle with center c and radius r 1/2(t s). An
estimate on norms using (G) shows that on C, the integrand for S is bounded
by2KsothatlISll 2Kr. Letz(x) J. Then from 1.22 (within 1),
1.15 (i) and the identity

(z a)(z- b)/(z- c) z- c + (ab c")/(z- c)

it follows that

T ci)x (2ri)-1 fc (z c)R(z)x dz

(2.i)_1 fc (z za)(z-- c-- b) R(z)x dz.
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Thus

(T cI)x Sx (2 i)- fc(z a)(z b)z -- c(Z s)(z t) R(z)x dz

(ab c2)(2’i)-1fc (z c)-R(z)x dz O,

again by 1.22. HenceSx T cI)x and so T cI)x _< 2Kr x [[.
Since this holds for each r 1/2(t s) greater than 1/2(b a), it follows that

[I(T cI)x < 2Ke x [[.
If/ is in J, the triangle inequality now yields

(T ]cI)x

_
2K x + 1/2(b a) < (2K + 1) II x II, Q.E.D.

Section 2. Assumption of no point spectrum
2.0. Throughout this section we shall assume that T lacks a point spec-

trum. Thus, T is closed, densely defined, has a real spectrum containing no
eigenvalues and R (z) satisfies (G,).

2.1 Remark. A non-zero vector cannot have a discrete spectrum. For, by
1.16, 1.18, 1.20 and 2.0 it follows that if x has a finite discrete spectrum then
x 0. Hence, if x has an infinite discrete spectrum then each approximating
vector I x to x is zero and x 0.

2.2 LEMMA. Let J, J2, "", Jm be closed intervals in (--, ) which
pairwise are disjoint or have at most a common endpoint. If =1 x =yi

with z(x), z(y) c J for each j then x y.

Proof. This follows from 2.1 and 1.19.

We now consider the case where z(x) is contained in an interval.

Definition, Notation and Discussion. If a and b are finite real numbers let
(a, b) denote the open interval a < < b and [a, b] its closure. Let

M(a, b) [x z(x) [a, b ]}, M(- o, a) {x z(x) c (- , a]} and

M(b, {x z(x) a [b,

Let L(a, b) denote the closure of the range and N(a, b) the nullspace of the
operator K(a, b) defined in 1.7. The span (denoted by Y .") of any col-
lection of mnifolds is the smallest closed linear manifold contMning each of
them. Two closed linear manifoldsM and N are called quasi-complementary
if M V N X and M a N (0). This is equivalent to the existence of a
closed densely defined idempotent E which has M as range and N as null-
space [10, Lemma 10]. E will be called a closed projection or, simply, a pro-
jection.

E. R. Lorch in [9] showed that L(a, b) and N(a, b) are orthogonal corn-
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plements in the case where T is a self-adjoint operator in a Hilbert space X.
In this section we show that M(a, b) and N(a, b) are quasi-complements if X
is reflexive and in Section 3 we prove that these manifolds are quasi-comple-
ments for an arbitrary space X in the case where T has a purely continuous
spectrum.

2.3 LEMMA. The vector x is in N(a, b) if and only if (a, b) c p(x).

Proof. Suppose first that K(a, b)x O. Let C(a, b) be an admissible
contour and le- t be inside C(a, b) and outside [a, b]. If R(t) is applied to
0 K(a, b)x (written as an integral over C(a, b)) the resolvent equation
0.3 yields the result

R(t)x ( a)-n(# b)-n(2ri)-1 (z a)n(z b)R(z)x dz.

The right-hand side of this equation represents an analytic function of for
inside C(a, b), and an application of I T to this expression yields x.

This follows by an argument similar to that in the proof of 1.9. This ex-
pression is thus an analytic extension of R(z)z into the interior of C(a, b) so
that (a, b) is in p(x).

Conversely, suppose that (a, b) c p(x). For real s and with a < s .<
< b, let C(a, s), C(s, t), C(t, b) and C(a, b) be admissible contours no two

of which meet off the real axis and such that the first three are in C(a, b).
If F(z) is defined s

then

(2i)-1 fc(a,b)

(z- a)n(z- s)(z- t)(z- b)R(z)x,

F(z) dz (2)-
"{fc F(z) dz-l-fc F(z) dz--fc F(z) dz}.(a,s) (s,t) (t,b)

The analyticity of (z) inside and on C(s, t) shows that the integral over this
contour is zero so that by 1.11(i) this equation cn be written as

(T sI)+(T tI)+K(a, b)x

(T- tI)+(T- bI)+K(a, s)x - (T- aI)+(T sI)’K(t, b)x.

Letting s -+ ad- and using the closure of (T tI)n(T bI) n, by 0.4, and the
fact that K(a, s)x -- O, by 1.12, we get

(T aI)(T tI)’K(a, b)x (T aI)K(t, b)x.

The invertibility oI T aI by 2.0 now yields (T aI)’K(t,b)x
(T tI)K(a, b)x. Letting -- b- and using the closure of (T aI)
and the fact that K(t, b)x 0 we get 0 (T bI)nK(a, b)x. Hence
K(a, b)x 0 by the invertibility of T bI, Q.E.D.
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2.4 LEMMA. A necessary and sucient condition for
(*) (T- aI)n(T- bI)nx K(a, b)x

is that x be in N(c, d) for each interval (c, d) disjoint from (a, b).

Proof. Let x satisfy (*). Apply K(c, d) to this equation for any interval
(c, d) which is disjoint from (a, b) and use 1.8(ii) and 2.0 to get K(c, d)x O.

Conversely, suppose x satisfies the condition. Consider any approximating
vectorI, xtoxwithr> max(]al, lbl). LetC1 C(-r,a),C2 C(a,b)
and Ca C(b, r) be admissible contours in C(-r, r). Then

T aI)n( T bI)’Ir x

(2ri) -1 f (z a)’(z b)" [1 (z/r)2]nR(z)x dz
(--r,r)

= (2i)-if (z-- a)’(z-- b)’[1- (z/r)2]’R(z)x dz

p(T)K(-- r, a)x + ([ T/r)’K(a, b)x + q(T)K(b, r)x

where p(T) and q(T) are polynomials in T by 1.11(i). By the assumption,
K(--r, a)x K(b, r)x 0 so that

(T aI)n(T bl)nXr x (I T2/r)"K(a, b)x.

Letting r -- and using the closure of (T aI)"(T bI)" we get
(T aI)"(T bI)’x K(a, b)x, Q.E.D.

2.5 THEOREM. M a, b) consists precisely of those vectors which satisfy
equation (*) of Lemma 2.4.

Proof. xisinM(a, b) if and only ifp(x) (-, a) u (b, ). The
result now follows from 2.3 and 2.4.

2.6 COROLLARY. M(a, b) is a closed linear manifold which is invariant
under T.

Proof. This follows from 1.4 and 1.6, because any vector which satisfies
(*) of 2.4 is in the domain of T.
These results imply the existence of (non-trivial) invariant subspaces for

T. For a different proof in the case of a bounded operator see [2, Theorem 6].

2.7 THEOREM. If X (0) then T has non-trivial invariant subspaces.

Proof. We assume that T has no eigenvalues, otherwise the eigenspaces of
T meet the requirements. If T is an unbounded operator, then since X (0)
and X is the span of the manifolds M(-r, r), r > 0 by 1.13, it follows that
at least one of the manifolds M(a, b) is different from X and (0). If T is
bounded we may assume that z(T) has only one component; for, otherwise,
there are invariant spaces of the form (2ri)- fc R(z)X dz where C is a con-
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tour about one component which excludes the others. The problem thus is
reduced to the case where (T) [a, b], a bounded interval. A straight-for-
ward argument then shows that for any c between a and b at least one of
M(a, c) and M(c, b) is different from X and (0).

2.8 Remarlc.
(s, t) (x).

"One-sided" improper integrals. Suppose x is such that
Then for any a and b with s < a < < b the integral

Y(a, b; f) f(z)(z b)nR(z)x dz

exists for any entire function f and satisfies:

(i) Y(a, b; f) is independent of a provided that s < a < and
(ii) a( Y(a, b; f) [t,b].

Similarly, integrals of the form fc(a,b)f(z)(z a)R(z)z dz exist in the ease
where a < s < b < and have analogous properties (i’) and (ii’).

2.9 LEMlVIA. N(a, b) M(--, a) M(b, ).

Pro@ If x is in N(a, b), then (a, b) c p(x) by 2.3. Consider any approxi-
mating vector I x to x with r > max (I a I, bl) Choose any s and with
a < s < < b and admissible contours C1 C(-r, s), C2 C(s, t) and
Ca C(t, r) which are inC(-r, r). ThenIrx xl x2 - x3, where

x.- (2i)-1 [1- (z/r)2]nR(z)x dz.

Since 2(z) is analytic inside and on C., x. 0. By 2.8(ii) and (ii’), (Xl) c
[-r, a] and (x.) c [b, r] so that Ir x is in M(- , a) if- M(b, ). Letting
r-- ,wegetxisinM(--,a) M(b, ) so that

N(a, b) M(--, a) Y M(b, ).

For the reverse inclusion we show that N(a, b) contains M(- o, a) and
M(b, ). Let x be in M(--, a) and consider any approximating vector
Lx with r > a I. As(Ix) c I-r, a] by 1.11(iii), it follows from 2.3 that
K(a, b)l,x 0. By the continuity of K(a, b) it follows that K(a, b)x 0
so that N(a, b) D M(-, a). Similarly, N(a, b) D M(b, ), so that
N(a, b), by its closure, contains M(-- , a) V M(b, ), Q.E.D.

2.10 THEOREM. There exists a closed idempotent which has M(a, b) as its
range and N a, b) as its nullspace.

Pro@ Define Ex (T aI)-(T bI)-K(a, b)x for each x for which
this expression exists and let D(E) denote the domain of E. Let x be in
D(E) and let y Ex so that (T aI)(T bI)’y K(a, b)x. Applying
K(a, b) to this and using 1.8(i) we get

(T- aI)’(T- bI)nK(a, b)y (T- aI)(T- bI)’K(a, b)x
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so that by 2.0 K(a, b)y K(a, b)x. Hence

(T- aI)-’(T- bI)-’K(a, b)y y,

or Ey y, i.e., E2x Ex, so that E is an idempotent on D(E). M(a, b) is
the range of E, as Ex x is equivalent to (*) of 2.4 and N(a, b) is, clearly,
the nullspace of E. The closure of E follows from that of M(a, b) and of the
operator T aI)’( T bI) ’.

2.11 LEMMA. If a < b < c, then N(a, c) N(a, b)n N(b, c).

Proof. Let C(a, b) and C(b, c) be admissible contours in C(a, c) and let

F(z) (z- a)’(z- b)(z- c)R(z).
Then

(27f’i)--1fc F(z) dz (27i)-1fc F(z) dz + (27I’i)-lf F(z) dz.
(a,c) (a,b) C(b,c)

By 1.10 this equation can be written

(T bI)’K(a, c) (T cI)K(a, b) + (T aI)nK(b, c).

The assertion follows from this identity and from 2.3 and 2.0.
Since M(a, b) n N(a, b) (0), the sets M(a, b) and N(a, b) are candidates

for quasi-complements in X. However, it seems difficult to show that their
span is X without making further assumptions, such as (1) X is reflexive or
(2) T has a purely continuous spectrum. This section concludes with a
result in case (1). Section 3 is concerned with obtaining the result in case (2).

2.12 THEOREM. Let X be reflexive and let T and its adjoint T* have empty
point spectrum. Then M a, b) and N a, b) are quasi-complements in X.
Moreover, if a_l < a < a+ is any partition of (- , oo with
and as the only limit points of the a then X / M(ai_l a).

Proof. Let L* (a, b) be the closure of the range and N*(a, b) be the null-
space of K(a, b) *, the adjoint of K(a, b). As X is reflexive, T* has the same
properties as T; viz., (i) T* is closed and densely defined in X*, (ii) T* has
a real (and eigenvalue-free) spectrum and (iii) its resolvent R(z; T*) satisfies
(G), since R(z; T*) R(z; T) * and R(z) R(z; T) is a bounded operator.
Hence since L(a, b) n N(a, b) (0) by 2.10 and the fact that L(a, b) c
M(a, b) it follows that L*(a, b) N*(a, b) (0"). Taking the orthogonal
complement of this in X we get X is the span of N(a, b) and L(a, b) so that
X N(a, b) V M(a, b). By 2.10 it follows that M(a, b) and N(a, b) are
quasi-complements.

If x is in N(aj_l, a) for every j, then x 0 by 2.3 and2.1. Thus
N*(a_l, a) (0") by symmetry in X*. Taking orthogonal comple-

ments in X we get / L(a._, at) X so that /. M(a_l, a.) X, Q.E.D.
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Section 3. Assumption that T has a purely continuous
spectrum; the "resolution of the identity" for

3.0. Throughout this section we will assume, in addition to its other
properties, that T has a pure continuous spectrum.
This will guarantee that certain direct sums will be dense in X. For con-

venience, we use the following notation" let Do X, D1 D(T) and induc-
tively for l > 1,

Dk {x" x, Tx, ..., T-lx are in D(T)}.

The lemma which follows is a direct consequence of 0.3 and induction on m.
In fact, the asserted set inclusion can be replaced by an equality.

3.1 LEMMA. If Z is non-real, then R(z)D, D,+I, m O, 1, 2, ....
3.2 LEMMA. The set T a I) T as I) T a, I D, is dense in X

for any real numbers al a2 a,.

Proof. Introduce the "Cayley transform" operator defined by

Y- (iI- T)(iI + T)-= (T- iI)R(-i).

Since V is closed and has X as domain, it is bounded. If

tj (i- as)(i + a)-,
then a computation yields V t I (1 + ts) T as I)R(-i). By
assumption T has only continuous spectrum, hence V tc)X T as I)D
is dense in X. An induction argument and 3.1 complete the proof.

3.3 THEOREM. The manifolds M(-- , a) and M(a, o are quasi-com-
plements in X, for each real a.

Proof. By 2.1, M(- , a) r, M(a, (0). Let D’ (T aI)’D,
and let D" be the set of all vectors y of the form

y (T aI)’Irx (2ri)-1 f (z a)[1 dz
(--r,r)

for all x in X and positive r. By 3.2, D’ is dense in X. By 1.21, the elemerts
of D’ are approximable by vectors in D", so that D" is dense in X. We will
be finished if we show that each element of D" is in M(-- , a) + M(a, ).
For this let y (T aI)Ir x be a vector in D". If r

_
a, then

a(x) I-r, r] [-r, a]

so thatyisinM(--, a). If--r_> a, thenz(x) [a,r], so thatyisin
M(a, ). Finally if-r < a < r, theny y’+y"where

y’ (2ri)-1 f (z a)[1 (z/r)]’R(z)x dz
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is in M(--, a) nd

yt f (z a)[1 (z/r)2]’R(z)x dz

is in M(a, o ), the integrals being tken over dmissible contours C(-r, a)
nd C(a, r), resp., in C( r, r). Hence

Z CI(D") M(-oo, a) V M(a, oo).

3.4 Remark. By 3.3, there exists closed projection E(a) which hs
M(--oo, a) s rnge nd M(a, o s nullspce. We cll the fmily

{E(t).- <t< }

so obtained the resolution of the identity for T. Let M(E) denote the rnge
nd N(E) the nullspce of ny projection E. The fmily stisfies"

(1) if s < thenE(s) _< E(t); i.e.,M(E(s)) M(E(t)) ndN(E(s)
N(E(t) ),
(2) ny bounded linear operator which commutes with T commutes with

ech projection of the fmily nd
(3) limt_ E(t)x z nd limt_-= E(t) 0, for dense set of vectors.

The first ssertion is obvious. The second follows trom 1.3. For (3), let
x hve bounded spectrum, sy r() [a, b]. Then x is in M(-, t) for
11 _> b nd is in M(s, for 11 s _< a. Hence (3) holds (t least) on the
dense set of vectors with compact spectr.
Theorem 3.3 hs the following generalization.

3.5 THEOREM. Let {al, a2,..., a,} be any set of real numbers with
a_l < at. Then

(0) M(-- oo, al) n M(al a) M(a, oo)
and

X M(--oo, al) V M(al, a2) V V M(a,_, a,) V M(a,, oo).

Proof. Let

D’ (T-- aI)n(T-- aI)n... (T-- a,

nd let D’ be the set of ll vectors of the form

y (T- aI) (T- a,I)’Irx

for x in X, r > 0, nd then proceed s in the proof of 3.3.

3.6 COOLLAa. If a < b, then M(a, b) and N(a, b) are quasi-complements
in X.

Proof. X M(a, b) V (M(-oo, a) V M(b, M(a, b) V N(a, b)
by 3.5 nd 2.9, while (0) M(a, b) N(a, b) by 2.10.
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This shows that the closed indempotent E E(a, b) introduced in (the
proof of) 2.10 is a projection. The next result shows the relation of E(a, b) to
the spectral family of 3.4.

3.7 THEOREM. If a < b, then E(b) E(a) is a densely defined idempotent
which has M(a, b) as its range, M(-, a) M(b, as its nullspace and
E a, b) as its closure.

Proof. If P and Q are idempotents such that P

_
Q (i.e., such that

M(P) M(Q) and N(P) N(Q)) then Q P is an idempotent which has
M(Q) nN(P) as range and M(P) + N(Q) as nullspace. Hence
E(b) E(a) is an idempotent with M(-- , b) nM(a, M(a,b) asrange
and M(--, a) -- M(b, as nullspace. The proof of 3.6 shows that
E(b) E(a) hs a dense domain. Thus taking closures in the relation
E(b) E(a) E(a, b), we get [E(b) E(a)] E(a, b).

3.8 COROLLARY. The projections E( t) are pairwise densely defined.
3.9Remarlc. More generally, ny finite subset of IE(t) - < < } has

a common dense domain. For, suppose t < t < < t, and let
D =D(E(t)). Letx be nyvector of the form x ’=oxwithxoin
M(- , t), x, in M(t,, and x in M(t., t.+) for j 0, m. Then each
x. is in D and E(t)x. is 0 for k < j and is x. for k

___
j. Thus

M(-- , t) + M(t t) + ...-- M(t,

is contained in D and hence D is dense in X by 3.5.
The family {E(t) -- < < } is seen to hve many of the properties of

the classical resolution of the identity for a self-adjoint transformation in a
Hilbert space. The results above could now be used to obtain the integral
representation of such a transformation in the case of a pure continuous
spectrum. The details are given in the author’s dissertation.
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