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Introduction

The Gelfand-Neumark representation theorem states that any complex
Banach *-algebra with identity A which satisfies

(1) Ila[[ Ila*ll Ilaa*ll, (2) I[all Ila*ll, and (3) (1 + ha*) -1

exists, for all a e A, is completely isomorphic to a C*-algebra. In [5] Glimm
and Kadison showed that it is sufficient to only assume. (1). The problem
discussed here is the weakening of condition (1).
A crucial point in the proof of the commutative Gelfand-Neumark theorem

is the proof that each Hermitian element h of A has a real spectrum. This
point can be dealt with by a simple argument based on the fact that
II exp ih I] 1 if h is Hermitian. The significance of the exponential func-
tion in the Lorch analytic function theory [6], and the development of a
theory of Cauchy-Riemann equations for that theory, valid only in *-algebras
[4], make it plausible that the formula exp ih 1 is of more than accidental
importance.
In this paper, we prove that any complex Banach *-algebra with identity

A satisfying (la) ]] exp ih 1 when h is a Hermitian element of A, is com-
pletely isomorphic to a C*-algebra. From this result it is easy to see that
each of the stronger conditions (lb) 11 ha* a a* II if a eA and
aa a a, and (lc) there is a neighborhood V of 1 in A and a function
( V --. reals so that (1) 1, ( is continuous at 1, and a a* <- (aa*)
whenever a, a*, and ha* all lie in V, also implies that A is completely isomorphic
to a C*- algebra. Thus whether or not A is C* may be determined by either
(as in (la)) inspecting the Hermitian elements of A, (as in (lb)) testing
the commutative *-subalgebras of A, or (as in (lc)) considering only a
neighborhood of the identity in A.
En route to the commutative theorem, we show that condition (4) there is

a positive constant M so that exp ih <- M, all Hermitian h, implies that A
is topologically *-isomorphic to a C*-algebra. A closely related result appears
in Lumer [8, p. 77]. Another relevant theorem appears in Lumer [7] where
it is shown that condition (ld) ha* (1 -t- o(z))ll a a* for
z 1 a -- o, implies that A is topologically *"-lsomorphm to a C*-al-
gebra, and moreover, that (ld) implies (la). Thus (ld) implies that A is
completely isomorphic to a C*-algebra.

Received February 2, 1966.
This work was partially supported by a National Science Foundation grant.

547



548 BARNETT W. GLICKFELD

The author wishes to thank E. R. Lorch for several valuable discussions.
We also wish to thank W. B. Arveson for calling our attention to an important
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An announcement of the commutative theory presented here (i.e. the

results of Section 1) appears in the January 1964 A.M.S. Notices; the proofs
given in Section 1 also appear in the author’s 1964 Columbia dissertation
[4]. The January 1966 A.M.S. Notices contain an announcement of the non-
commutative theory.
We note here that most of the results, both commutative and non-com-

mutative, presented in this paper have been independently discovered by E.
Berkson in a paper [1] sub:mitred to the Illinois Journal in January 1965.
Berkson obtains the commutative theorem via the theory of scalar type
operators.
A new proof of the commutative theorem has since been completed by

Palmer in his Harvard dissertation [9].
Throughout this paper, A will denote a complex Banach *-algebra with

identity, i.e. a complex Banach algebra with identity and an involution
* A -- A which satisfies (1) (za - b) * a* b*, (2) (ab) * b’a*,
and (3) a** a, for elements a, b of A and complex numbers z. An element
a of A will be called Hermitian iff a a* normal iff aa* a*a, and unitary
iff aa* a*a 1. The set of Hermitian elements of A will be denoted by
H. If a e A, r(a) will denote the spectral radius of a, and exp a the infinite
sum --n _>0 a’/n !.

1. The commutative theory
In Section 1, A will lways be assumed commutative.

LEMMA 1.1. If h is a Hermitian element of A, then

lexpihll >- r(expih) >_ 1.

Proof. Let x yi e z(h x, y real. Since z(h) is closed under complex
conjugation, x Y li e z(h). By the spectral mapping theorem,

exp (lYl +xi) exp (i(x- lYli))

lies inz(expih). But exp(lyl + xi) explyl -> 1.
For the remainder of the paper, assume that A also satisfies condition (4)

i.e. that there is a positive constant M so that exp ih - M if h e H. It
follows from 1.1 that M > 1.

LEMMA 1.2. If h is Hermitian, then z(h is real.

Proof. Let x yiez(h), where x and y are real. By the proof of 1.1,
x Y lie z(th), thus exp (tl y + itx) lies in the spectrum of exp ith. Hence
M _> r(expith) >_ exptlyl, allt > 0, soy 0.
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,
LEMMA 1.3. The Gelfand representation is a -homomorphsm of A into

Proof. 1.3 follows directly from 1.2.

LEMMA 1.4. There exists an > 0 so that < 1 and h2 >- when h is
Hermitian and IIh II 1.

Proof. Let be some number between 0 and 1, assume there is some Her-
mitianhsothat Ilhll landll h211 - . Then forn >_ 1,

h h n and h2n+ h2n h n.
Set ; then for n 1,

h2n 2n and

So if k 2, h . Now fort > 0,

-exptS t.

Hence M W exp t, all > 0. Setting M 2 yields the inequality
exp (M W 2) 2. Thus cannot come arbitrarily close to0; since ,
neither can .
LEMI.5. There exists an > O so that < land h h [ when

h is Hermitian.

Proof. 1.5 follows directly from 1.4 via normalization.

LEM 1.6. If is as in the statement of 1.5, then r(h) h when h is
Hermitian.

Proof. By induction on N and 2.5, h -1 h for N > 0.
Taking 2-th roots of this inequality, letting N and applying the spec-
tral radius formula, we obtain r(h) h .
LEMA 1.7. If is as in the statement of 1.5, then

r(a) r[ a ]/2 when a eA.

Proof. Set a h ih, where h and h are Hermitian. By 1.2,
r(a) r(h),i 1, 2. Thus

 r(a) r(h ) +
by1.6. Buth] + r[h ra
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Theorem 1.8. If A is a commutative Banach *-algebra with identity such that
there is a positive constant M so that II exp ih II - M when h is Hermitian, then
the Gelfand representation of A is a topological *-somorphsm of A onto C().

Proof. By 1.3, is a -homomorphsm. By 1.7, A is semisimple, so
is an isomorphism. An application of the Stone-Weierstrass theorem shows
that ^(A) is dense in C(t); since by 1.7 ^(A) is a complete subalgebm
of C(!ff), (A) C()). The continuity of ^- also follows from 1.6.

For the remainder of the paper, assume that the M in condition (4) can
be taken to be 1. By 1.1 this is equivalent to requiring that exp ih 1
whenever h is Hermitian.
We now state the central theorem of this paper.

THEOREM 1.9. If A is a commutative Banach *-algebra with identity so
that exp ih 1 when h is Hermitian, then the Gelfand representation of A is
an isometric *-isomorphism of A onto C().

Proof. By 1.8, it is sufficient to prove that is isometric. Define a new
norm ][] [][ on C(!fft) via I]] fill ^-(f)II. By 1.7 and 1.8, [[[ ][[ and
the sup norm are equivalent norms for C();since is norm-decreasing
[[[f[[I -> [[f]] forfeC()). We must show that [[[f[[[ [[f[[,allfeC(Yt)"

LEMMA 1.10. Let q be a real-valued function in C(); then

exp Ill II
Proof. Set a ^-(q);then llexpiqlll Ilexpia[[ 1.

LEMMA 1.11. Let f C()) so that f(F) O, all F ). Suppose further
that there is some direction exp ixo (xo a real number) in the complex plane so

that there is no F in j such that f(F) p exp ixowith p O. Then

Proof. Without loss of generality we can assume that f 2. Let
be u rel-vlued element of C() such that Arg f. Set Y equal to the

intersection of the complex circle of radius 1 and center 1 with the closed
upper half plane. Define R [0, 2] --* Y by setting R(s) equal to that unique
point of Y satisfying[R(s) s. Set

u inf {If(F) F e!fft} > 0;

define S "In, 2] -- reuls viu S(s) Arg R(s), where 0

_
Arg R(s)

_
r/2.

If F e ,
R([ f(F) [)e-iS(lf(F)i)eiv(F) R([ f(F) ]) eiArg/(v),

which is just f(F). Thus

(R o If ])e(-(sll)) f (R o If[ 1)e(-(sl’)) -b e(-(s’’)).
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Hence
IIIflll - Ill (Rolfl 1) ei(-(lsl))]l] + I]lei(-(lsl))lll-- IIIRlfl 1111 + 1. (by 1.10)

But clearly R fl 1 can be written in the form exp i, where b is a real-
valuedfunctionofC()). Byl.10,][]Ro]fl- 111[ 1,soil[f J[ 1_2= Ilfll.
Therefore Ill f 1[[ f ][.
LEMMA 1.12. Let f e C()). Suppose further that there is a direction

exp ixo (Xo a real number) in the complex plane so that there is no F such
that f(F) p exp ixo p > O. Then lll f [l[ lfll.

Proof. For n 1, 2, setf f (exp ixo)/n.
f II, all n; since f converges uniformly to f,

By 1.11 I[[f III

LEMMA 1.13. Let f eC(), IIf 1; let N be a non-negative integer.
Suppose there is a direction exp ixo in the complex plane so that there are no
F eandp> 1--2-Nsatisfyingf(F) pexpixo. Thenl[Iflll IIf]l =1.

Proof. By induction on N. Note that 1.12 deals with the case N 0.
We thus assume thatN > 0 and that 1.13 is valid forN 1. Choose s
so that 0 < e < 1/2N+. Choose ti > 0 so that

If(F)

_
1 2-t- e when x0- i_ Argf(F)

_
x0+ t and t < r.

We now divide the closed unit disc D of the complex plane into 6 closed sec-
tors, as indicated in Figure 1.
We define a continuous function G D -- D by defining it on each of the

six sectors separately as follows" if z e I,

G(z) z/2(1 2-).
If z e II,

G(z) z/21 z I.
If z e III, write z in the form

z rexpi(x0-- t),

where0_ t_ land0_ r_ 1- 2-. Then

G(z) z(1 -- 21-r(t- 1))/2(1- 2-N).
If z e IV, write

z rexpi(x0- tt),
where0_ t_ land1- 2-_ r_ 1. Set

If z V, write
G(z) z(1 + 2(t- 1)(1 r))/2r.

z rexpi(x0+ ti),
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FIGURE 1

where0_< t_< land0_< r_< 1- 2-N. Then define

G(z) z(1 -t- 21-N(t- 1))/2(1 2-).
If z e VI, write

z r exp i(x0 -b t/t)

where0

_ _
land 1 2-z _< r_ 1. Set

G(z) z(1 -b 2(t- 1)(1 r))/2r.

Among the relevant properties of G(z) are: G(z) is a continuous mapping of
D into itself. If z e D, G(z) is a non-negative multiple of z, [G(z)

_
1/2,

G(z)[

_
zl, and

z- zl [e(z)[ < 1/2.

Now define g, h -* complex numbers via

g(F) G(f(F)) and h(F) f(F) g(F).

Clearly g, h e C(!Ft) and g q- h f. By the above properties of G, g I[ - 1/2,
h - 1/2, and g(F) and h(F) are both non-negative multiples of f(F), all F.
Suppose that Fe), so that g(F) 0 and Argg(F) x0. Then

Argf(F) x0, by hypothesis f(F)

_
1 2-v. Thus f(F) lies in sector

III, so
Ig(F) < 2 2

Since f g -t- h, g 1/2 II h I];so we can apply the induction hypothesis to
2g;thus g Ill g Ill 1/2.
Now suppose that F 9Y such that h(F) 0 and Arg h(F) Xo 6.

ThenArgf(F) x0 6, by the choice of 6, If(F)[ _< 1 2- -- e. If
f(F) lies in sector I, then

h(F) f(F) G(f(F)

_
2- 2-r.
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:FIGURE

If f(F) e sector II, then

Set h, 2h, then h, 1; furthermore there are no p and F such that

Fe, p > 1-- 2-(N-l) A-2e and h,(F) pexpi(xo- ).

We now focus our attention upon h,. For convenience of notation, set
Xl= x0- . Chooseti* > 0sothat* < r, and

h,(F) _< - 21- + 4
whenever F e if)2 and Xl- * < Arg h,(F) <_ xl A- *. Note that

1- 21--[-4 < 1

by the construction of . Divide the closed unit disc into three closed sec-
tors as indicated in Figure 2. We will define a continuous function G* D -- Dby defining it on each of the three sectors separately. We will not explicitly
write out the formulas for G*, but we will say what G* does, and it will be
clear that the formulas could be written out if necessary. On sector I,
G*(z) z. On sectors II and III, G*(z) is a non-negative multiple of z

Id- 2-_< I*()1 < ]1.
Furthermore, G*(t exp ix) (1 21-r) exp ix when 1 2-N _< _< 1.
Now for F e ff), set

h(F) *(h,(F)) nd h() h,(F) h(F);

hl,h2eC(F) andhl-4- h2 h,. Sincellh, 1, and]h,(F) < lwhen
h,(F) lies in II or III, hx 1. But if h(F) lies on the ray through 0
and exp ix, then h(F) < 1 2-(-1) by the construction of hi. Thus the
nductive hypothesis can be applied" ]]] h I]1 h, 1. Therefore
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But h2 -< 4e. Since and III III are equivalent norms, there is a
positive constant v such that III III -< vii II. Thus h. -< 1 -f- 4w, so

Lettingv--0, we see that III flll -< 1. Thus Ill/Ill Ilfll 1. 1.13 is
proved.

LEMMA 1.14. Let f e C(9)) such that tfll 1;then Ifll I[flll.

Proof. Clearly f is the uniform limit of a sequence of functions f to which
we can apply 1.13.
But now Theorem 1.9 is proved, as the restriction f 1 of 1.14 is easily

removed.

2. The non-commutative theory
We now remove the restriction that A be commutative. Still in effect is

the requirement that exp ih 1 if h is Hermitian.

LEMMA 2.1. (Vidav [11]) A can be renor,med with the equivalent norm

III III so that A, I[] 111) is completely isomorphic to a C*-algebra, and
II] h III h if h is Hermitian.

LEMMA 2.2. A can be renormed with the equivalent norm 1]1 I][ so that
d, III III) is completely isomorphic to a C*-algebra, and a ]11 a III if a is

normal.

Proof. 2.2 follows easily from 1.9 and 2.1.
We must now pass from Ilall llalll, all normal a, tollall llalll,

all a A.

LEMMA 2.3. (Russo and Dye [10]) If A is completely isomorphic to a C*
algebra, and is a continuous linear mapping of A into a normed linear space
X, then

sup {]] (a) :he A, a unitary}.

Now we can prove

THEOREM 2.4. Let A be a Banach *-algebra with identity; suppose that
exp ih 1 when h is Hermitian. Then A is completely isomorphic to a

C*-algebra.

Proof. Let I]1 III be as in 2.2.; let 1A: (A, I[] III)- (A, II) be defined
by 1A(a) a. By 2.2. III a [11 a for unitary a, so a --< II a Ill for
allaby2.3. But ifa0eAandlla011 < I]a0111then
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which is impossible. (The preceding argument is due to Bonsall [2].) There-
fore a Ill a Ill, all as A; A is completely isomorphic to a C*-algebra.
We conclude by proving the corollaries to 2.4 which are alluded to in the

introduction.

COROLLARY 2.5. Let A be a Banach *-algebra with identity. Suppose that
a a* aa* when a is a normal element of A. Then A is completely

isomorphic to a C*-algebra.

Proof. Set SN(a) 1 - a - aV/N!; SN is the N-th partial sum
of exp. If h is Hermitian, SN(ih) is normal and SN(ih)* SN(-ih). Thus

Letting N --, oo we see that

lexpihll lexp- ihll (expih)(exp-- ih) 1.

By 1.1 (which can easily be extended to non-commutative A) exp ih 1.
By 2.4, A is completely isomorphic to a C*-algebra.
COROLLARY 2.6. Let A be a Banach *-algebra with identity. Suppose there

is a neighborhood V of 1 in A and a function V ---> reals so that (1) 1,
is continuous at 1, and a a* II - (aa*) whenever a, a*, and aa* all lie

in V. Then A is completely isomorphic to a C*-algebra.

Proof. Again set SN(a) 1 + a + + aN/N!. Choose an open
neighborhood U of 0 so that U -U and exp iU is contained in the interior
of V. Let h’ be a Hermitian element which lies in U. Then SN(ih’)*

Sv(--ih’). But eventually SN(ih’) and SN(-ih’) lie in V; since

lim-, SN(ih’)S(-ih’) (exp ih’)(exp- ih’) 1,

eventually SN(ih’)SN(-ih’) lies in V. So eventually

SN(ih’) SN(--ih’) ]l <- (S(ih’)S(-ih’) ),

letting N -- we see that

I]expih’ll lexp- ih’ <- (1) 1.

But as in the proof of 2.5, an application of 1.1 shows that

exp ih 1.

Now let h be an arbitrary Hermitian element of A. Choose u positive
integer J so that h h/J lies in U. Then

exp ih exp iJh’ "4 exp ih’ [[ 1,

so by 1.1 exp ih 1. Thus 2.4 can again be applied; A is completely
ismorphic to a C*-algebra.
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