
THE STRONG SZEGO LIMIT THEOREM

A. DEVINATZ

1. Suppose that f is a cmnplex-valued function belonging to L of the
circle group with the usual Haar measure (normalized to 1) and D is its
n’ Toeplitz determinant defined by

1 D det [](i j)],’=0

It is of considerable importance to be able to obtain an asymptotic estimate
for D as n - o. The now classical theorem by Szeg5 [12] states that if
f 2 0 and logfeL1, then

(2) log Dn (n -- 1) [ log f(0) dO nL- o(n) as n--
J0

Considerably later, Szeg6 [13] obtained a more precise result for a more
limited class of functions. For real positive functions enjoying considerable
smoothness properties he showed that

(3) log D (n -t- 1) f log f(0) dO -k

_
+ o(),

where

log f(0) dO.

The problem was subsequently taken up by M. Kae [10] and others. The
most recent results, obtained by Banaeh algebra techniques, were initiated
by G. Baxter [1], [2], [3] and continued by I. I. Hirsehman, Jr., [8]. The
latter’s result is the following:

if

I1 ( )I <
.r. f( o) / o,. A argf(0) 0,

then

(Z]:) n/ ---> exp Ek=l lc(Nf) (lc) (Xf) --/c),

where t exp f log f(O) dO. He has also obtained analogous results when
the functions are defined on the real line [9].
Banach algebra techniques, as beautiful as they are, have for these prob-

blems certain inherent limitations in that rather severe smoothness require-
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ments are needed for the functions in question. We have, therefore, gone
back to the more classical Hilbert space techniques and. have been able to
obtain more general results. In particular we obtain as special cases Hirsch-
man’s result as well as the following result which seems to be closely related
to a result announced by L. Onsager in the 1964 Gibbs lecture:

If the conditions , ",/, and are satisfied and if in addition
a’. f is continuous ant there is a non-negative, continuous, doubly periodic

function re(O, 9) with re(O, 0) Oandan M > 0 so that for every e [0, 1]

f(o) f(,) go
Mo , n(o, ,)

then the relation (4) is valid.

2. Our results are based upon results obtained in [7] which we shall briefly
review and bring into a form suitable for use in this paper. We shall be
working on the circle group with Haar measure normalized to one. Let us
begin by supposing that f e L and that for all sufficiently large integers n
the Toeplitz determinant D # 0. This means that for all sufficiently large n
we can form the numbers

(5) , D,/D,_l

and moreover there is a unique polynomial
2,ikOu(O) 1 + =,(/c)e(6)

such that

(7) fo e-Zu’(O)f(O) dO O, 1 <_ k, <_ n.

From this it follows immediately that
1

(s) t,,, Jo u,,(o) [ f(0) dO Jo" u,(O)f(O) dO.

For any complex number z let Az designate the principal argument of z.
In order to proceed we shall suppose that in addition to the condition f e L
that

(9) log fl L
and there exists a q( H such that 1/y e H and

(10) A.),f II(R) <2 /2,

where ]]. I1 designates the usual supremum norm. From the facts that
If[ nd log Ill are summable it follows from the well-known Szeg6 factoriza-
tion theorem that
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(11) Ill I =,
where is an outer factor in H". Further, from the condition (10) it follows
from the considerations of [5] that we may write

(1.2) ee ,I,/,I,* (z* complex conjugate of z)

where 1, and 1/ are outer factors in H for some q > 2. Hence, using (11)
and (12) we may write

(13) f gh*,

where g and h /, g and h are outer factors in H", for some p > 1.
Let us denote the conjugation operator by C; i.e., for any u e L1,

Cu() Jo u(O) cot ( 0) dO.

HIt is well known [4] that any g is an outer factor if and only if

g exp {log Ig + iC log Ig + i},

where a is any value of the argument of (0). By Jensen’s inequMity it is
always true that log g e I). However, in general, C log lg e Lv, 0 < p < 1.
We can take

logg logg] + iCloggl +ia,

and in case C log [g e L we can integrate to get

g(o) do log 10(0) i.+
We hve used the fct that g is n outer fctor nd hence log 0(0) is the
integral of log 9 . Hence we my write

9(o) exp J0 log dO.

LIn case C log [h we get the same formula for a(0). Hence, if we define

(14) log f log 9 + log h*
we arrive at the fct that

(,5) (0)(o)* exp J0 og(0) (z0.

Notice that log f depends on the values chosen for the arguments of (0)
and (0) but that exp f log f(O) dO is independent of this choice.

In the case where one of the functions C log g or C log h [is not summable
a similar analysis (carried out in [7] shows that we may take

(a) og f og ] + 2ic og + i,
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where now is any argument of(0), and in this formulation the formula (15)
remains valid. Indeed, it is easy to see t.hat the values of logf given by (14),
coincide with the values given by (16) up to an additive constant 2ki,
where/ is an integer. Roughly speaking, the additive constant determines
the "branch of log f", and does not affect the formula (15). For convenience
we shall designate the left side, and hence the right side of (15) by .
We have broken the main thread of our development in order to get an

expression for 0(0)(0)*. Let us return to it. For any nth degree trigono-
metric polynomial of the form q,(O) 1 q-- -. n(lC,)e2rilO, it follows from
(7) and (8) that

tt’* f, u, g(qn h)* dO,

and hence we can write

tn fo Un g(qn h)* dO (0)* fro" .n g d

do.

Frther since (0) (0)/(0), it follows that (q )(0) (0)(0)
and hence - qn dp (0)xI] d0 0.

Therefore, we get

,n --, {,. ) O(0)/,I,} [q /z(0)I,]* dO.

Tgking gbsolute vMues, and gpplying the Schwgrz inequMity we grrive gt

the estimgte

(17)

where II" indicates the usual L norm.
In order to proceed further it is necessary to obtain an estimate for the

quantity u (0)/,I, II. To do this it is necessary to use a theorem
proved in [7]. Let us set I,/,I,* and T the corresponding Toeplitz
operator. Let P be the projection of L onto the (n q- 1)-dimensional
subspace of H generated by the set {ei 0 < k _< n}. If we denote the
latter subspace by H2(), the following is true"

THEOREM A. (a) If fl and log If[ are in L and I1Af I1 o < then there
exists an m > 0 so that for all n and all u H q

(18) m u P, T, u [I.
b Suppose
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where u e L v ]I < r/2 and there is a / with 1/, e so that

If in addition g/g* or h/h* is continuous, then there is an m > 0 and an N
so that (18) is valid for all n > N and all u e H().

Although we hve stated the theorem here nd in [7] only for the special
situation for which it is needed, the proof given in [7] mkes it quite clear
that it cn be formulated in wy so that it will constitute generalization
of theorem of Reich [11].
The inequality (18) implies that D. # 0 (see [7]). Hence the considera-

tions prior to Theorem A re vlid. If p(0) is ny trigonometric polynomial
of the form p(O) =o e then we my write

Hence,

P. T(u. 0(0)/q) sup {I ([u. 0(0)/1 p) p 1}

sup{(0) ],.--, ]]p]l 1}

The ls inequality follows from he fe h P 1 implies h

p(0) I15(o) 1.

Therefore, if p i8 ny elemen of H() nd if f sisfies either of he
hypotheses of Theorem A we hve from (18), for

, P T( )

I I/ $(0) + (? (0)/ I.
Ui hem (17) a oi

HNow is outer nd e nd hence we en find sequence q 8o h
q (0)’ in H. Hence for ll sueien]y ]rge we en find q soh

Using hi8 in he previous inequality we hve rrived he following"

Tuo 1. If f eisfie
i M ) 0 ed N o he for l ) N p H ),

(19)
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COROLLhRY 1. Under the hypotheses of Theorem 1, there is an M > 0
H (q),and an N so that for all n > N and all p,. q e

(20)

3. In order to discuss the strong Szeg5 limit theorem it is necessary for
us to make some observations about a certain Hilbert space of functions which
we will label H1/2. This will be the Hilbert space of all functions on the
circle group for which

(21) c I1/ 1(0)I + Y2%- 111 ()I < .
We shall usually be working with a pseudo-norm on this space and we shall
designate this by

(22) I ll’, %- I11 ()
Thr i n ltrnt xoreion for ’,wii often ry uful. Ti

is given by

, c(O) c()(2’) c IIx/ 2 sin r(0 )
do d.

HIn ease c e n Hx/, then c may be extended analytically inside the unit
disk D and we have the representation

<22-) c 111/2 c’(z)l dx dy, z x -q- iy,

where, c’(z) is the derivative with respect to z of the analytic extension c(z)
of c into the unit disk. As is well known, for almost all O, c(re) c(O)
as r --* 1. (We are somewhat abusing the notation here since quite properly
the boundary function should be denoted by c(e) instead of c(0). However
we think no confusion will result.) Both of these formulas are essentially
an application of the Plancherel theorem and we leave their verification to
the reader. Of course the formulas (22’) and (22’t) are valid even if c
in which case both sides are infinite.

In case c is an outer factor it has a non,-vanishing extension into D and
moreover log c can be defined as in Section 2 and this belongs certainly to
H for 0 < p < 1. If we write Xc log c, then the formula (22’) takes the
form

1 *ff XC 1/2 -( dx dy I{log c(z)]’ dx dy.

If c e L1, let (c) be the nth Fejer mean of c and s(c) the nth partial sum
of the Fourier series of c; i.e.,

o,(c)(O) ’.=_, (1 lc l/(n + 1))5(lc)e’,
s.(c)(o) =_. ()e’.
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PROPOSITION 1. If C e H1/2 then

sn( c) --an(C) I1 -- 0 as n --+

Proof. We hve

s,(c)(O) z,(c)(O) [_ I/(n + 1)5()e ]
2(n + 1) %_ k/(n + 1) 1!5()
2

_
/( + )1, il()l.

Break up the sum on the right into two prts. The first part shall consist
of those terms for which I/(n + 1)/ 1/(n + 1)1/ and the second part
will consist of the remaining terms. Noting the fact tKat k I/(n 1) 1
for ik n, we hve

s(c)(o) (c)(0)I

/( + 1)" E.(+,I, I() I: + E>+,, Iil () I.
LSce c e the first term goes to zero as n , and since c e Hn the second

term goes to zero. This completes the proof.

PnOOSTON 2. If 0 m f M < and f satisfies the other hy-
potheses of part () or (b) of Theorem A, then for all suciently large n,

u- ((o)/e)][ o (1/e) 1/e
u s.((o)/e)

In particular if 1/g e H/ both quantities on the left go to zero.

Pro@ Since f satisfies the hypotheses of Theorem A we may factor it as

f gh* and (18) and (19) are valid. Hence, u exists for all sufficiently
large n and we may write

[u(O) s((0)/Z)(0)I I0/() (i(O)/e)()}e’[

In (19) takep s((O)/g) and use the fact that0 < m [ g M.
Then for all sufficiently lrge n,

m u s((O)/g) [[u s[ g M[[s(1/g)- 1/g

where M is a fixed positive constant. Putting this into the previous in-
equality gives the first inequality of our proposition.

Similarly, using (19),

E% () (0(o)/e)() g% () (i(o)/e)()

o (1/e) 1/ [l}.
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The fact that
n 8n(1/g) 1/g O{ llSn(i/g) 1/g

is clear.

PROPOSITION 3 Suppose 0 m

_
Ill -- M and there is a

Hwith 1/7 so that Af II < -/2 and moreover that and log belong to
H1/ Then f H1/ if and only if logf H/ where logf is defined by (14).

Proof. Let us set
k=f.

If Log z represents the principal value of the logarithm then we can clearly
choose the "branches" of log 7 and log f so that

Log f. log 7 + log f.
Let us suppose that f H1/2. Since 7 HI/2 and both 7 and f are bounded

it follows from (22’) that f 7f belongs to Hx/2. As we shall now show
this will imply that Logfl e H/2, and since log 7 H/ it follows that logf e H1/..
Clearly the "branch" of log f that we choose does not affect log f 11/2 and
hence if one "branch" of log f belongs to H/2, any "branch" will also.
To show that Logf belongs to HI/ we simply notice that f is bounded and

bounded away from zero and hence its range lies in a compact set in the open
right complex plane (remember that Af I1 < r/2!). Hence, there is
constant K so that

Logfx(O) Logf() < K lfx(o) fl()

for all 0 and . If we use this inequality in the right hand side of (22’) we see
that indeed Logf H/.

Conversely, suppose that log f is in H/ then Logf H/.. Since f is
bounded and bounded away from zero, Log fl lies in a compact set in the com-
plex plane. Hence, since

cLgfl
there is a constant K so that

for all 0 and . Hence f, HI/ and since f fff7, it follows that f
We have of course used the fact that since 7 and 1/7 are in L, 7 e H/= if and
only if 1/7 H/.

COROLLARY 2. If 0 < m <--Ill <-- M < oo and the argument of f can be
chosen as a continuous function on the circle group, then the conclusions of Propo-
sition 3 are valid.

Proof. Since arg f(0) is continuous there is a real trigonometric polynomial
p(O) E=--n (])e2rikOSO that p(O) argf(O)ll < r/2. Choose

7(0) exp 2i{/(0)/2 q- _.%x
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Clearly , and 1/, are in H=, A,f < and log -ye Ht/.. Further, since
-g is continuously differentiable as a function of 0, it also belongs to H/. The
result now follows from Proposition 3.

PROPOS[TION 4. If f gh* with g, h, 1/g, 1/h in H, then logf (as defined
by (14) belongs to H1/2 if and only if g and h are in HI/, or either of the equiva-
lent conditions" l/g, 1/h e H/ log g, log h e H1/.).

Proof. Since logf logg -t- logh*, it follows that (Xf)’(/c) (Xg)^(k)
for/c > 0and (Xf)^(/c) (Xh)^(k) * fork < 0, whereXf log f, etc. Hence,
it is enough to show that g e H/ if and only if Xg H/ and the same for h.
However, since g and h are bounded and bounded away.from zero we have

xg 1il/ dx dy o d

#2o/11
and vice versa. Of course, the same is true for h. This completes theproof.

4. We are now in a position to obtain some results about the limit of
D " n+
n/# Our first result gives conditions under which this limit exists, but

does not specify its value.

THEOREM 2. If f e and satisfies the hypotheses of either (a) or (b) of
theorem A and if in addition lid and 1/h are in H/ then

lim.. Ln/tt

exists as a finite non-zero number.

Proof. Suppose that no is an integer so that for n no, D. 0. Then we
may write

n0+l

We should, of course, note that under the conditions of theorem A, exists nd
is non-zero number (see [7]).
A sufficient condition that the product on the right hve finite non-zero

lmit is of course that

From the estimates (17) and (20) and the fact that @ fl is bounded we
get

I1 /[ 0{ p (O)lg . q (O)lh

where p and q can be taken to be any ntl degree "analytic" trigonometric
polynomials with constant coefficient 1. We choose

Pn 8n(O(O)/g), qn
Then
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k>no 1 tk/t O{ l>no j>kl(1/g) ^(J)i]/[>l(1/h)^(J)12]l/2}
Applying the Schwarz inequality on the right we finally get

COROLLARY 3. If the hypotheses of Theorem 2 are satisfied, then

(,/,)1 as n.

Proof. This corollsry is reslly s corollsry to the proof of Theorem 2. As
we hsve shown in the proof

1 / O{[k>n I(1/g) ()le]*/[> I(1/h) (k)l]/=}
Since 1/g snd 1/h sre in H/, it follows thst

/ o(i/n).
This ssys thst

(n/) 1 (l + Shin) 1,

where ’0. Hence, given > 0, thereis snN sothstn > n implies
< - snd hence for n > N

l(,d,) 1 (. + . /) 1 1.

In order to identify the limit in Theorem 2 it will be necesssry for us to mske
more stringent sssumptions sbout the outer fsctors g snd h which sppesr in
the fsctorizstion of f. It will slso be necesssry for us to use sn identity due to
Bsxter [1] snd Szeg5 [13]. In order to write down the Bsxter-Szeg5 identity
we first note thst ifD # 0 then there exists s unique trigonometric polynomial

so that
vn( O) 1 3- =1 9,( lc)e2i

o" 2iko 1 "< k, < n.e v, (O)f(O) dO O,

Clearly it is possible to obtain for the sequence {vn} results analogous to those
we have obtained for the sequence [un}. The functions u, nd v can clearly
be extended analytically into the unit disk (indeed over the entire complex
plane) and the Bxter-Szeg5 identity suys that if these polynomials do not
vnish in the closed unit disk (which means in particular that they are outer
factors) then

THEOREM 3. Suppose f is a conplex-valued function on the circle group which
satiCes the following hypotheses:

1. f is continuous and f(O) 0,
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3. flargf 0
4. C log f is continuous.

Then
D / nq-1lim,-oo n/ exp{= k(Xf) (lc)(Xf) (-k)}.

Proof. We here take log f log f q- i arg f, where arg f is continuous o
the circle group. The conditions 1 and 3 imply that

f gh*

where g, h, 1/g and 1/h are in Hv for some p > 1. This follows from the dis-
cussion at the beginning of Section 2 and the proof of Corollary 2. Indeed, up
to non-essential multiplicative constants we may take

g exp 1/2{log f q- iC log f}

h exp -}{log f* q- iC log f*}.
This is always true for factorizations of the form (13) for functions satisfying
(9) and (10). In this case the proof is particularly simple. Designate the
right hand sides of the above expressions by gl and hi respectively. As is well
known [4] any functions which can be written in this form are outer factors and
indeed because of the assumptions 1 and 4 we have that gl, hi, 1/gl and 1
are continuous outer factors. Further it is clear that

and hence
f= gh* g, h

g/gl (hl/h)* constant.

Consequently, all of the conditions of (b) of theorem A are satisfied and in
particular proposition 2 is valid for both un and vn. In the case of v, of
course, we must consider s(iz(O)/h). It follows from our hypotheses and
Corollary 2 that log f e H1/. and hence from Proposition 4 that g, h, 1/g, 1/h
are in H1/,.. Hence Proposition 1 is valid for these functions.

Since 1/g is continuous it follows from Propositions 1 and 2 that

Since 1/g is outer and does not vanish on the circle group it follows that its
analytic extension does not vanish in the closed unit disk. Hence using the
maximum modulus principle and the uniform convergence of u to ((O)/g it
follows that there is an n, so that n > n, implies that the analytic extension of
u. does not vanish in the closed unit disk. In the same way v, -+ (0)/h uni-
formly and we may as well suppose that we have chosen n, large enough so that
n > n implies that the analytic extension of v does not vanish on the closed
unit disk.
We shall presently show that
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go to zero as n --+ . From this it follows that

=1 k(kUn)(lf,)(XVn)^(k) $
.--). Ek_.l k(Xg)^(/c)(Xh)^(/c) *

Z:% (xf)^()(/)^(-).

Taken in conjunction with the Baxter-Szeg5 identity this tells us that

limn-> nn/lZ+1 exp ’k=l ]c(Xf)^( lc)(Xf)^(

However, from Corollary 3 we know that (#n/) n+l --+ 1, and hence the proof of
our theorem will be complete.
We shall only establish the fact that hu, h(l/g) ]]’1/2 - 0 since the proof

for hv,- X(l/h) is the same. First of all we notice, using Proposition 2, that

o/ll ,(/) /e I’1/} o - .
;U(z) -t- g(z) dx dy

u(z) 0(0)t 1 12 112

.0(o)
u(z)(z)

1 dxdy11/2

For n > nl the first integral of this last sum is

o{ u. O(O)/g

which we have noted above goes to zero, and since O(O)/u,,(z)g(z) -- 1 uni-
formly in the closed unit disk and log g H1/, we have shown thatXu --+ X(l/g).

Remarlcs. If in Theorem 3 we replace condition 4 by the condition

4’. C log f is continuous

then it is an immediate consequence of Theorem 2 that the limit of D,/un*l

exists. This follows from the fact that g/g* and h/h* are continuous and hcnce
the conditions of Theorem 2 are fulfilled.

In the simple situation of Theorem 3, that is to say where the functionsg and
h are continuous, it is of course possible to use Reich’s theorem [11] instead of
our more general Theorem A to obtain the needed estimates corresponding to
(17) and (19).
We should perhaps also note that the limit of Dn/t,n+/-l can be alternatively

written in the form

exp . (z)/\ h(z) /
5. The fact that Theorem 3 contains Hirschman’s theorem is quite clear.
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It will still take a small amount o work to show that it contains the last result
of 1. To do this it will be enough to show that the condition a’ implies our
condition 4, namely that C log f is continuous. We begin with a slightly more
general result.

PROPOSITION 5. If f e L1, is continuous at [0, 1], and

f(O) f(,)(23)
0 , dO

then the conjugate function Cf is continuous at if and only if

dt o(1) as h -- O.f( t) + h)(24)
,,t + h

Proof. Our proof is a modification of a proof given in Zygmund [14, p. 122]
for a similar situation. It will be more convenient to work on the interval
[-1/2, 1/2]. The condition (23) is clearly equivalent with

dO <f(o) f()
1/2 tanr(0- )

We can write

fl/2f(q t) --f(w)Cf() !o-1/2 tan rt
dt,

Let us set

[l/, f( t) --f( + h) dt.Cf(qo -t- h)
o-1/2 tail 7r(t-t- h)

Ii(h)
-tl tart 7rt

I(h) f(, t) -f(, / h)
9lhl tan r(t + h)

I(h) I(h) + I(h).
Then we write

dt,

by the continuity of f at , the corresponding term is o(1) as h --+ 0.
Let us now concentrate our attention on the first set of integrals.

write
/2

[f(qv t) f(q)] [cot r(t + h) cot rt] dt

(26)

We may

f(q t) f(,)
sin rt

sin rh
sin r(t + h)

dt.
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Let m(t) be a positive monotone decreasing function on (0, 1/2] so that
m(O-}-) and

/e f(,p t) --f(g,)
dt

sin t

This is always possible since [f(, t) f()]/sin rrt is a summable function of
t. Given c > 0, choose t so that l/m(6) < e and then h sufficiently small so
thatO< 2]hl < and

(27) f( t) f(,)
sin rt

Further, we have

( t) -f()
h sin t

sin rh
sin -(t + h)

dt<e.

sin rh
sin (t + h)

dt

f(,p t) f(,p)
sin

re(t) dt

< fo
t/2 f(g, t) f(,)

sin
m(t) dt.

If we combine (27) and (28) we see the left side of (26) is o(1) as h -- 0.
Analogously we can work with the integral over [-1/2, -2 h I]. Hence we see
that the first set of integrals in (25) is o( 1 as h-. 0.

It remains to examine I(h). Since [f( 4- t) f()]/tan rt is a summable
function of t, Ii(h) o(1) ash-+0. Hence Cf is continuous at if and only if
I(h) o( 1 which is clearly equivalent with (24).

COROLLARY 4. If f is continuous and there is a non-negative, continuous,
doubly periodic function re(O, ) with m(0, 0) 0 and an M > 0 so that for
every , e [0, 1]

(29) j0’ f(o) -f() do
n(o, )

then (24) is satisfied for f and hence Cf is continuous.

Proof. Let us again work on [-1/2, 1/2-].
satisfied it-will be enough to show that

To show that condition (24) is

(30)
11

f(, t) -.](, + h)
t+h

dt o(1) as h--+O.

However, from (29) the condition (30) is almost trivial. Indeed, set n(t, o)
m( t, ); clearly n(t, e) is a continuous periodic function and n(0, o) 0.
Now given and e take h sufficiently small so that n(t + h, + h) < e/M for
Itl _< 21hi. Then
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f( t) f( + h)
dt

t+h
f( t) --j’( + h)

t+h
n(t + h,q + h)
n(t + h, q + h)

dt

Of course Corollary 4 can be proved directly since the condition (29) will.
make the integral defining Cf uniformly convergent.
Some special cases of condition (29) are as follows: If 0 < a 1 and there is

an M > 0 so that for all e [0, 1]

f0 [f() --’f(q)["dO< 31
0__1

Indeed, choose re(O, ) If(O) f()[1-. Also, ifthen (29) is satisfied.
p :> 1 and for all

pf(O) f(q)
dO < M

then it is easy to show there s an 0 ,: a <: 1 for which the previous inequality
is satisfied. Of course in this last case the continuity of Cf is immediate.

COROLLARY 5. Yf f satisfies 1 and 3 of Theorem 3 and in addition (29) of
Corollary 4 is satisfied then C log f is continuous.

Proof. From the proof of Corollary 2 there is an analytic trigonometric
polynomial p so that if , exp (-p) and

the. Af II < /2. urthr, it is clear that

f(o) f()l O{I f(o) f()l + l(0) ()l}.
Since is continuously differentiable it is clear that (30) is true for ,. Since
(30) is true for f, it is true for f.
Now, log f Logf + p, where as before Log z is the principal branch of the

logarithm function. Since

Log f,(0) Logfl()l OIIfx(O)

it follows that (30) is true for Logf. Since p is continuously differentible
(30) is true for p. Hence (30) is true for log f. Since log f is continuous the
proof is completed by applying Proposition 5.

D / n--I6. As Szeg6 has pointed out for f real /t is non-decreasing and hence
the limit will always exist, although it may not necessarily be finite. Using
results obtained in [6] we can establish the following"

! nlIf 0 m

_
f

_
M then L,./p goes to a finite limit if and only if

f e H1/2.
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Because of the boundedness conditions on f, it has a factorization f g 12,
where g is outer. It follows from Propositions 3 and 4 that if f H1/2 then
1/g HI/2. The suificiency is then a consequence of Theorem 2.
To prove the necessity we notice that since f is real, > u for all n and

hence 1 (n/) is always non-positive. From the proof of Theorem 2 it
follows that a necessary and sufficient condition for the convergence of
to a finite limit is that

We have shown in [6] that f m > 0 implies there is a constant a so that

> l(1/g)(l)[ <. 11 u./u 1.
Summing over n we arrive at the fact that

el(1/g)’(l)l a =o] 1 --/[ < ;
i.e., 1/g H/. Propositions 3 and 4 imply that f H,,.
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