RESTRICTED PRODUCT OF THE CHARACTERISTIC POLYNOMIALS OF MATRICES OVER A FINITE FIELD

BY
L. Carlitz ${ }^{1}$

1. Put $\Phi=G F(q)$, the finite field of order q and let Φ_{m} denote the set of $m \times m$ matrices M with elements in Φ. We separate Φ_{m} into similarity classes and let Φ_{m}^{*} denote a set of representatives of the similarity classes. Now put

$$
U_{m}=\coprod_{M \epsilon \Phi_{m} *} f(M),
$$

where the product is extended over the elements of Φ_{m}^{*} and

$$
f(M)=\operatorname{det}(x I-M)
$$

It is known [1] that

$$
F_{m}=\prod_{\operatorname{deg} A=m} A(x),
$$

the product of the monic polynomials of degree m in $G F[q, x]$, satisfies

$$
F_{m}=\prod_{\substack{m=1 \\ s=0}}^{m-1}\left(x^{q^{m}}-x^{q^{s}}\right) .
$$

We shall show that

$$
\begin{equation*}
U_{m}=\coprod_{t=1}^{m} F_{t}^{u_{t}(m)} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{t}(m)=\sum_{s \geq 1} s\{\beta(m-s t)-q \beta(m-s(t+1))\} \tag{2}
\end{equation*}
$$

and $\beta(m)$ is defined by

$$
\begin{equation*}
\beta(m)=\sum q^{c_{1}+c_{2}+\cdots+c_{m}} \tag{3}
\end{equation*}
$$

the summation extending over all nonnegative c_{1}, \cdots, c_{m} such that

$$
c_{1}+2 c_{2}+\cdots+m c_{m}=m
$$

It is known [2] that $\beta(m)$ is equal to the number of similarity classes of $m \times m$ matrices over Φ.
2. Let $A_{1}, A_{2}, \cdots, A_{m}$ denote the invariant factors of $x I-M$, so that the A_{j} are monic polynomials in $G F[q, x]$ that satisfy

$$
A_{j} \mid A_{j+1} \quad(j=1, \cdots, m)
$$

moreover

$$
f(M)=\operatorname{det}(x I-M)=A_{1} A_{2} \cdots A_{m}
$$

and

$$
m=\operatorname{deg} A_{1}+\operatorname{deg} A_{2}+\cdots+\operatorname{deg} A_{m}
$$

[^0]If we put

$$
A_{1}=B_{1}, \quad A_{j}=A_{j-1} B_{j}=B_{1} B_{2} \cdots B_{j} \quad(j=1, \cdots, m)
$$

then

$$
f(M)=B_{1}^{m} B_{2}^{m-1} \cdots B_{m}
$$

also if

$$
b_{j}=\operatorname{deg} B_{j} \quad(j=1, \cdots, m)
$$

then

$$
\begin{equation*}
m=m b_{1}+(m-1) b_{2}+\cdots+b_{m} \tag{5}
\end{equation*}
$$

Except for this condition the B_{j} are arbitrary monic polynomials. It therefore follows from the definition of U_{m} that

$$
\begin{equation*}
U_{m}=\Pi B_{1}^{m} B_{2}^{m-1} \cdots B_{m} \tag{6}
\end{equation*}
$$

where the product extends over all monic polynomials B_{1}, \cdots, B_{m} that satisfy (4) and (5). Making use of the definition of F_{m} it is clear that (6) reduces to

$$
\begin{equation*}
U_{m} \prod F_{b_{1}}^{m q^{b-b_{1}}} F_{b_{2}}^{(m-1) q}{ }^{b-b_{2}} \cdots F_{b_{m}}^{q^{b-b_{m}}} \tag{7}
\end{equation*}
$$

where $b=b_{1}+b_{2}+\cdots+b_{m}$ and the product extends over all nonnegative integers $b_{1}, b_{2}, \cdots, b_{m}$ that satisfy (5).

It is convenient to change the notation slightly. If we put

$$
c_{j}=b_{m-j+1} \quad(j=1, \cdots, m)
$$

then (7) becomes

$$
\begin{equation*}
U_{m}=\prod F_{c_{1}}^{q^{c-c_{1}}} F_{c_{2}}^{2 q^{c-c_{2}}} \cdots F_{c_{m}}^{m q^{c-c_{m}}} \tag{8}
\end{equation*}
$$

where $c=c_{1}+c_{2}+\cdots+c_{m}$ and the product now is over all non-negative $c_{1}, c_{2}, \cdots, c_{m}$ such that

$$
\begin{equation*}
c_{1}+2 c_{2}+\cdots+m c_{m}=m \tag{9}
\end{equation*}
$$

Clearly (8) implies

$$
\begin{equation*}
U_{m}=\prod_{t=1}^{m} F_{t}^{u_{t}(m)} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{t}(m)=\sum_{\pi(m)} \sum_{k_{j}=t} j q^{k_{1}+\cdots+k_{m}-k_{j}} \tag{11}
\end{equation*}
$$

where the outer sum is over all partitions

$$
\begin{equation*}
m=k_{1}+2 k_{2}+3 k_{3}+\cdots \tag{12}
\end{equation*}
$$

Then by (11) and (12)

$$
\begin{aligned}
\sum_{m=0}^{\infty} u_{t}(m) x^{m} & =\sum_{m=0}^{\infty} x^{m} \sum_{\pi(m)} \sum_{k_{j}=t} j q^{k_{1}+\cdots+k_{m}-k_{j}} \\
& =\sum_{k_{1}, k_{2}, \cdots=0}^{\infty} x^{k_{1}+2 k_{2}+\cdots} \sum_{k_{j}=t} j q^{\left(k_{1}+k_{2}+\cdots\right)-k_{j}}
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{t=1}^{m} \sum_{m=0}^{\infty} u_{t}(m) x^{m} y^{t} & =\sum_{k_{1}, k_{2}, \cdots=0}^{\infty} x^{k_{1}+2 k_{2}+\cdots} q^{k_{1}+k_{2}+\cdots} \cdot \sum_{j=1 ; k_{j}>0}^{\infty} j q^{-k_{j}} y^{k_{j}} \\
& =\sum_{j=1}^{\infty} j \sum_{k_{1}, k_{2}, \cdots=0 ; k_{j}>0}^{\infty} x^{k_{1}+2 k_{2}+\cdots} q^{k_{1}+k_{2}+\cdots} q^{-k_{j}} y^{k_{j}} \\
& =\prod_{n=1}^{\infty}\left(1-q x^{n}\right)^{-1} \cdot \sum_{j=1}^{\infty} j x^{j} y\left(1-q x^{j}\right) /\left(1-x^{j} y\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\sum_{m=0}^{\infty} \beta(m) x^{m} & =\sum_{m=0}^{\infty} x^{m} \sum_{c_{1}+2 c_{2}+\cdots=m} q^{c_{1}+c_{2}+\cdots} \\
& =\prod_{n=1}^{\infty}\left(1-q x^{n}\right)^{-1}
\end{aligned}
$$

and

$$
\sum_{j=1}^{\infty} j x^{j} y\left(1-q x^{j}\right) /\left(1-x^{j} y\right)=\sum_{j=1}^{\infty} \sum_{t=1}^{\infty} j x^{j t} y^{t}\left(1-q x^{j}\right)
$$

so that

$$
\sum_{t=1}^{m} \sum_{m=0}^{\infty} u_{t}(m) x^{m} y^{t}=\sum_{m=0}^{\infty} \beta(m) x^{m} \sum_{j=1}^{\infty} j \sum_{t=1}^{\infty} x^{j t} y^{t}\left(1-q x^{j}\right)
$$

This implies

$$
\sum_{m=0}^{\infty} u_{t}(m) x^{m}=\sum_{m=0}^{\infty} \beta(m) x^{m} \sum_{j=1}^{\infty} j x^{j t}\left(1-q x^{j}\right)
$$

and therefore

$$
u_{t}(m)=\sum_{j \geq 1} j\{\beta(m-j t)-q \beta(m-j(t+1))\}
$$

This completes the proof of (2).
In particular we have

$$
\begin{aligned}
u_{m}(m) & =\beta(0)=1 \\
u_{m-1}(m) & =\beta(1)-q \beta(0)=0 \quad(\mathrm{~m}>2)
\end{aligned}
$$

Note that

$$
\begin{array}{ll}
u_{m-2}(m)=\beta(2)-q \beta(1)=q & (m>4) \\
u_{m-3}(m)=\beta(3)-q \beta(2)=q & (m>6) \\
u_{m-4}(m)=\beta(4)-q \beta(3)=q^{2}+q & (m>8) .
\end{array}
$$

3. Comparing degrees on both sides of (1) and using the fact that the number of factors in the product (6) is $\beta(m)$, we get

$$
\begin{equation*}
m \beta(m)=\sum_{t=1}^{m} t q^{t} u_{t}(m) \tag{13}
\end{equation*}
$$

This can be verified directly, thus affording a partial check of (1). It follows from

$$
\sum_{m=0}^{\infty} \beta(m) x^{m}=\prod_{1}^{\infty}\left(1-q x^{n}\right)^{-1}
$$

by differentiating with respect to x that

$$
\begin{equation*}
\sum_{0}^{\infty} m \beta(m) x^{m}=\prod_{1}^{\infty}\left(1-q x^{n}\right)^{-1} \cdot \sum_{1}^{\infty} n q x^{n} /\left(1-q x^{n}\right) . \tag{14}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
\sum_{m=1}^{\infty} x^{m} & \sum_{t=1}^{m} t q^{t} u_{t}(m) \\
& =\sum_{m=1}^{\infty} x^{m} \sum_{t=1}^{m} t q^{t} \sum_{s \geq 1} s\{\beta(m-s t)-q \beta(m-s(t+1))\} \\
& =\sum_{s, t=1}^{\infty} s t q^{t} x^{s t} \sum_{m=0}^{\infty} \beta(m) x^{m}-q \sum_{s, t=1}^{\infty} s t q^{t} x^{s(t+1)} \sum_{m=0}^{\infty} \beta(m) x^{m} \\
& =\sum_{m=0}^{\infty} \beta(m) x^{m}\left\{\sum_{s, t=1}^{\infty} s t q^{t} x^{s t}-\sum_{s, t=1}^{\infty} s(t-1) q^{t} x^{s t}\right\} \\
& =\sum_{m=0}^{\infty} \beta(m) x^{m} \sum_{s, t=1}^{\infty} s q^{t} x^{s t} \\
& =\sum_{m=0}^{\infty} \beta(m) x^{m} \sum_{s=1}^{\infty} s q x^{s} /\left(1-q x^{s}\right) .
\end{aligned}
$$

Comparing this with (14) it is evident that we have proved (13).
Incidentally it follows from (14) that

$$
\begin{equation*}
m \beta(m)=\sum_{j=1}^{m} \sigma(j) \beta(m-j) \tag{15}
\end{equation*}
$$

where

$$
\sigma(n)=\sum_{s t=n} s q^{t}
$$

Note that, for $q=1, \beta(m)$ reduces to $p(m)$, the number of unrestricted partitions of m.
4. U_{m} can also be exhibited in the form

$$
\begin{equation*}
U_{m}=\prod_{k=1}^{m}\left(x^{q^{k}}-x\right)^{u_{k}(m)} \tag{16}
\end{equation*}
$$

Indeed by (1)

$$
\begin{aligned}
U_{m} & =\prod_{t=1}^{m} F_{t}^{u_{t}(m)}=\prod_{t=1}^{m}\left\{\prod_{k=1}^{t}\left(x^{q^{k}}-x\right)^{q^{t-k}}\right\}^{u_{t}(m)} \\
& =\prod_{k=1}^{m} \prod_{t=k}^{m}\left(x^{q^{k}}-x\right)^{q^{t-k_{u}} u_{t}(m)} \\
& =\prod_{k=1}^{m}\left(x^{q^{k}}-x\right)^{\sum_{t=k^{q^{t-k}}}^{m} u_{t}(m),}
\end{aligned}
$$

so that

$$
\begin{aligned}
u_{k}^{\prime}(m) & =\sum_{t=k}^{m} q^{t-k} u_{t}(m) \\
& =\sum_{t=k}^{m} q^{t-k} \sum_{s \geq 1} s\{\beta(m-s t)-q \cdot \beta(m-s(t+1))\} \\
& =\sum_{t=k ; s t \leq m}^{m} s q^{t-k} \beta(m-s t)-\sum_{t=k+1 ; s t \leq m}^{m} s q^{t-k} \beta(m-s t) \\
& =\sum_{s k \leq m} s \beta(m-s k)
\end{aligned}
$$

Thus

$$
\begin{equation*}
u_{k}^{\prime}(m)=\sum_{1 \leq s \leq m / k} s \beta(m-s k) \tag{17}
\end{equation*}
$$

Since $u_{k}^{\prime}(m)-q u_{k+1}^{\prime}(m)=u_{k}(m)$, it is evident that (17) and (2) are equivalent.
5. It would be of interest to evaluate

$$
V_{m}=\prod_{M} \operatorname{det}(x I-M)
$$

where now the product is over all Φ_{m}. We can show that

$$
\begin{equation*}
V_{m}=\prod_{t=1}^{m} F_{t}^{v_{t}(m)} \tag{18}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
V_{m}=\prod_{t=1}^{m}\left(x^{q^{t}}-x\right)^{v_{t}(m)} \tag{19}
\end{equation*}
$$

However it seems difficult to evaluate $v_{t}(m)$ or $v_{t}^{\prime}(m)$.
To prove (18) let $x I-M$ have $k_{i j}$ elementary divisors P_{i}^{j}, where $\operatorname{deg} P_{i}=d_{i}$. An exact formula for the number of nonsingular matrices that commute with M is known [3, pp. 229-236]. This number depends only on the elementary divisors but is very complicated. Let $e\left(k_{i j}, d_{i}\right)$ represent this number and let $g(m)$ be the total number of nonsingular $m \times m$ matrices. Then

$$
N\left(k_{i j}, d_{i}\right)=g(m) / e\left(k_{i j}, d_{i}\right)
$$

is the number of matrices similar to M. It follows that

$$
\begin{equation*}
V_{m}=\prod P_{i}^{j N\left(k_{i j}, d_{i}\right)} \tag{20}
\end{equation*}
$$

the product extending over all irreducible P_{i} of degree d_{i} such that

$$
m=\sum_{i, j} j d_{i} k_{i j} .
$$

Since

$$
\prod_{\operatorname{dog} P=d} P=\prod_{r s=d}\left(x^{q^{r}}-x\right)^{\mu(s)}
$$

it is evident that (20) implies (19) which in turn implies (18). Unfortunately the value of $v_{m}(t)$ obtained in this way is very complicated.

To illustrate we compute V_{2} by a direct method. Take

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

so that

$$
x I-M=x^{2}-(a+d) x+a d-b c .
$$

Then

$$
V_{2}=\coprod_{a, b, c, d}\left(x^{2}-(a+d) x+a d-b c\right)
$$

the product extending over all $a, b, c, d \epsilon G F(q)$. Now

$$
\begin{aligned}
\prod_{b c}(y-b c) & =y^{q} \prod_{b \neq 0} \prod_{c}(y-b c) \\
& =y^{q} \prod_{c}(y-c)^{q-1} \\
& =y^{q}\left(y^{q}-y\right)^{q-1}
\end{aligned}
$$

If we take $y=(x-a)(x-d)$ it is clear that

$$
\begin{aligned}
V_{2} & =\prod_{a, d}(x-a)^{q}(x-d)^{q} \cdot \prod_{a, d}\left(x^{2 q}-x^{2}-(a+d)\left(x^{q}-x\right)\right)^{q-1} \\
& =\left(x^{q}-x\right)^{2 q^{2}} \cdot \prod_{a}\left(x^{2 q}-x^{2}-a\left(x^{q}-x\right)\right)^{q(q-1)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(x^{q}-x\right)^{2 q^{2}}\left\{\left(x^{2 q}-x^{2}\right)^{q}-x^{q}-x\right)^{q-1}\left(x^{2 q}-x^{2}\right)\right\}^{q(q-1)} \\
& =\left(x^{q}-x\right)^{2 q^{2}}\left(x^{q}-x\right)^{q^{2}}(q-1)\left\{\left(x^{q}+x\right)^{q}-\left(x^{q}+x\right)\right\}^{q(q-1)} \\
& =\left(x^{q}-x\right)^{q^{3}+q}\left(x^{q^{2}}-x\right)^{q(q-1)}
\end{aligned}
$$

Thus

$$
\begin{equation*}
V_{2}=\left(x^{q}-x\right)^{q^{3}+q^{2}}\left(x^{q^{2}}-x\right)^{q^{2-q}}=F_{1}^{2 q^{2}} F_{2}^{q^{2-q}} \tag{21}
\end{equation*}
$$

6. We can compute $v_{m}(m)=v_{m}^{\prime}(m)$ in the following way. If $\operatorname{det}(x I-M)=P$, where P is an irreducible polynomial of degree m, then M is nonderogatory. Thus the matrices that commute with M are given by $f(M)$, where $f(x)$ is an arbitrary polynomial of degree $<m$. To get the nonsingular matrices that commute with M we take $f(x) \neq 0$. Thus the number of nonsingular matrices that commute with M is equal to $q^{m}-1$. Therefore the number of matrices similar to M is $g(m) /\left(q^{m}-1\right)$, where $g(m)$ is the number of nonsingular $m \times m$ matrices. It follows at once that

$$
\begin{align*}
v_{m}(m)=v_{m}^{\prime}(m)=g(m) /\left(q^{m}\right. & -1) \tag{22}\\
& =\left(q^{m}-q\right)\left(q^{m}-q^{2}\right) \cdots\left(q^{m}-q^{m-1}\right)
\end{align*}
$$

It is also not difficult to compute $v_{m-1}^{\prime}(m)$ for $m>2$. Put $\operatorname{det}(x I-M)=$ $(x+a) P$, where P is irreducible of degree $m-1$. As before M is nonderogatory and we find that the number of nonsingular matrices that commute with M is equal to $(q-1)\left(q^{m-1}-1\right)$. Then the number of matrices similar to M is equal to

$$
(q-1)^{-1}\left(q^{m-1}-1\right)^{-1} g(m)
$$

It follows that

$$
\begin{equation*}
v_{m-1}^{\prime}(m)=q(q-1)^{-1}\left(q^{m-1}-1\right)^{-1} g(m) \quad(m>2) . \tag{23}
\end{equation*}
$$

References

1. L. Carlitz, On polynomials in a Galois field, Bull. Amer. Math. Soc., vol. 38 (1932), pp. 736-744.
2. L. Carlitz and John H. Hodges, Distribution of matrices in a finite field, Pacific J. Math., vol. 6 (1965), pp. 225-230.
3. L. E. Dickson, Linear groups, New York, Dover, 1958.

Duke University
Durham, North Carolina

[^0]: Received December 16, 1965.
 ${ }^{1}$ Supported in part by a National Science Foundation grant.

