SPEED OF ENERGY PROPAGATION FOR PARABOLIC EQUATIONS

BY
L. Bobisud ${ }^{1}$

It is well known that in a system described by the heat equation an initial disturbance localized at the origin is felt everywhere at any positive value of time; that is, the disturbance propagates with infinite speed. Nevertheless, it seems physically clear that most of the energy introduced by the disturbance ought to spread over only a bounded region in a finite time; in some sense onehalf the derivative of the diameter of this region as a function of time could be called the speed of energy propagation. In this note these ideas will be made precise and such a result established for the equation of heat conduction in n space variables. A weaker result of the same nature will then be established for the general second-order linear parabolic equation with Höldercontinuous coefficients.

Theorem 1. The heat equation

$$
\begin{equation*}
u_{t}=\Delta u \tag{1}
\end{equation*}
$$

in n space dimensions exhibits "almost finite speed of energy propagation" in the following sense: given any $\delta>0$, then for the solution u of eq. (1) for impulse initial data,

$$
u=\int_{E^{n}} K(x, t ; \xi) \delta(\xi) d \xi,
$$

where $\delta(\xi)$ is the "Dirac δ-function" and

$$
K(x, t ; \xi)=(4 \pi t)^{-n / 2} \exp \left(-\frac{1}{4 t} \sum_{i=1}^{n}\left(x_{i}-\xi_{i}\right)^{2}\right)
$$

is the heat kernel, there exists a function $a_{\delta}(l)$ having the form

$$
a_{\delta}(t)=C \sqrt{ } t
$$

for some constant C (depending on n) such that

$$
\begin{equation*}
\int_{|x|>a_{\delta}(t)} u(x, t) d x \leq \delta \tag{2}
\end{equation*}
$$

for $t \geq 0$.
Proof. Since $\int_{E^{n}} \delta(\xi) d \xi=1$, the δ in eq. (2) represents the maximum fraction of the energy lying beyond $|x|=a_{\delta}(t)$. Clearly $a_{\delta}(t)$ satisifying (2) cannot be unique; for if $a_{\hat{\delta}}(t)$ satisfies (2), so does any function $b_{\delta}(t)$ such that $b_{\delta}(t) \geq a_{\delta}(t)$ for all $t \geq 0$. Ideally, we would want the smallest

[^0]function $a_{\delta}(t)$ satisfying eq. (2). However, we shall here be satisfied with seeking a function having the required property; we shall show that it suffices to take $a_{\delta}(t)$ of the indicated form for a certain constant C. Clearly
$$
u(x, t)=(4 \pi t)^{-n / 2} \exp \left(-\frac{1}{4 t} \sum_{j=1}^{n} x_{j}^{2}\right)=(4 \pi t)^{-n / 2} e^{-r^{2} / 4 t}
$$
where $r^{2}=\sum_{j=1}^{n} x_{j}^{2}$. We are thus looking for $a_{\hat{\delta}}(t)$ such that
\[

$$
\begin{equation*}
(4 \pi t)^{-n / 2} \int_{r>a_{\delta}(t)} S_{n} r^{n-1} e^{-r^{2} / 4 t} d r=\pi^{-n / 2} S_{n} \int_{y>a_{\delta}(t) / 2 \sqrt{ } t} y^{n-1} e^{-y^{2}} d y \leq \delta \tag{3}
\end{equation*}
$$

\]

where S_{n} is the surface area of the unit sphere in n-dimensional Euclidean space.

Before proceeding we determine the asymptotic expansion for

$$
B(a) \equiv \int_{a}^{\infty} r^{n-1} e^{-r^{2}} d r
$$

Integrating by parts, we have

$$
B(a)=\frac{1}{2} a^{n-2} e^{-a^{2}}+\frac{n-2}{2} \int_{a}^{\infty} r^{n-3} e^{-r^{2}} d r
$$

etc. This expansion is closely related to that for $\sqrt{\pi / 2}(1-\operatorname{erf} a)$, which it becomes for $n=1$; that it is a valid asymptotic expansion for $B(a)$ is proved as for $\sqrt{\pi / 2}(1-\operatorname{erf} a)$ (Cf. [3, p. 37]). We thus have

$$
\left|B(a)-\frac{1}{2} a^{n-2} e^{-a^{2}}\right|=o\left(a^{n-3} e^{-a^{2}}\right)
$$

as $a \rightarrow \infty$ (a real). Thus for $a \geq k_{n}$, where k_{n} is a constant depending on n,

$$
\begin{equation*}
|B(a)| \leq a^{n-2} e^{-a^{2}} \tag{4}
\end{equation*}
$$

The condition expressed by (3) is just, in terms of the function B,

$$
\pi^{-n / 2} S_{n} B\left(a_{\delta}(t) / 2 \sqrt{ } t\right) \leq \delta,
$$

which will certainly be the case, by eq. (4), if

$$
\left(a_{\delta}(t) / 2 \sqrt{ } t\right)^{n-2} e^{-a_{\delta}{ }^{2}(t)} / 4 t \leq \pi^{n / 2} \delta / S_{n}
$$

and $a_{\delta}(t) / 2 \sqrt{ } t \geq k_{n}$. Let K_{n} be the greatest value of α such that

$$
\alpha^{n-2} e^{-\alpha^{2}}=\pi^{n / 2} \delta / S_{n} ;
$$

then for $\alpha \geq K_{n}$ we have $\alpha^{n-2} e^{-\alpha^{2}} \leq \pi^{n / 2} \delta / S_{n}$. We define $a_{\delta}(t)$ by

$$
a_{\delta}(t)=2 \max \left\{k_{n}, K_{n}\right\} \sqrt{ } t ;
$$

it is clear that this function meets the requirements of the theorem.
We turn now to the differential equation

$$
\begin{equation*}
L u \equiv \sum_{i, j=1}^{n} a_{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b_{i}(x, t) u_{x_{i}}+c(x, t) u-u_{t}=0, \tag{5}
\end{equation*}
$$

where the coefficients are defined and continuous in $E^{n} \times[0, T]$ for some $T>0$. We assume that L is uniformly parabolic in $E^{n} \times[0, T]$; i.e., we require that there exist positive constants λ_{0}, λ_{1} such that for any real n-vector ξ

$$
\lambda_{0}|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \leq \lambda_{1}|\xi|^{2}
$$

for $(x, t) \in E^{n} \times[0, T]$, where $|\xi|^{2}=\sum_{i=1}^{n} \xi_{i}^{2}$. We assume also that the coefficients satisfy a Hölder condition with exponent $\alpha, 0<\alpha \leq 1$:

$$
\begin{aligned}
& \mid a_{i j}(x, t)-a_{i j}\left(x^{\prime}, t^{\prime}\right) \mid \leq A\left(\left|x-x^{\prime}\right|^{\alpha}+\left|t-t^{\prime}\right|^{\alpha}\right) \\
&\left|b_{i}(x, t)-b_{i}\left(x^{\prime}, t\right)\right| \leq A\left|x-x^{\prime}\right|^{\alpha} \\
&\left|c(x, t)-c\left(x^{\prime}, t\right)\right| \leq A\left|x-x^{\prime}\right|^{\alpha}
\end{aligned}
$$

provided $x, x^{\prime} \in E^{n}, t, t^{\prime} \in[0, T]$. Then it is known [1], [2] that a fundamental solution $\Gamma(x, t ; \xi, \tau)$ exists and satisfies
$|\Gamma(x, t ; \xi, \tau)| \leq c_{T}(t-\tau)^{-n / 2} \exp \left(-\lambda|x-\xi|^{2} / 4(t-\tau)\right), \quad 0<t \leq T$, where λ is a positive constant depending on $A, \lambda_{0}, \lambda_{1}$, and c_{T} is a constant depending on n and on T.

We shall prove
Theorem 2. Let $\delta>0$ be arbitrary and let u be the solution of eq. (5) for impulse initial data (i.e., $u=\Gamma(x, t ; 0,0))$. Then for some constant C_{T} depending in general on n and T the function

$$
a_{\delta}(t)=C_{T} \sqrt{ } t, \quad 0 \leq t \leq T
$$

satisfies

$$
\begin{equation*}
\int_{|x|>a_{\delta}(t)} u(x, t) d x \leq \delta, \quad 0 \leq t \leq T \tag{6}
\end{equation*}
$$

Proof. This theorem is a simple consequence of Theorem 1, in view of the bound on $\Gamma(x, t ; 0,0)$. Indeed, setting $t^{\prime}=t / \lambda$, we have

$$
|u(x, t)|=|\Gamma(x, t ; 0,0)| \leq \text { const. }\left(t^{\prime}\right)^{-n / 2} \exp \left(-x^{2} / 4 t^{\prime}\right)
$$

whence from Theorem 1 we conclude that there exists a constant C_{T} such that $a_{\hat{\delta}}(t)=C_{T} \sqrt{ } t$ satisfies inequality (6) for $t \epsilon[0, T]$.

References

1. F. G. Dressel, The fundamental solution of the parabolic equation, Duke Math. J., vol. 13 (1946), pp. 61-70.
2. A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs, Prentice-Hall, 1964.
3. E. D. Rainville, Special functions, New York, Macmillan, 1960.

[^0]: Received November 29, 1965.
 ${ }^{1}$ Research supported by NASA.

