SPEED OF ENERGY PROPAGATION FOR PARABOLIC EQUATIONS

BY
L. Bosisup?!

It is well known that in a system described by the heat equation an initial
disturbance localized at the origin is felt everywhere at any positive value of
time; that is, the disturbance propagates with infinite spced. Nevertheless,
it seems physically clear that most of the energy introduced by the disturbance
ought to spread over only a bounded region in a finite time; in some sense one-
half the derivative of the diameter of this region as a function of time could be
called the speed of cnergy propagation. In this note these ideas will be
made precise and such a result established for the equation of heat conduction
in n space variables. A weaker result of the same nature will then be estab-
lished for the general second-order linear parabolic equation with Holder-
continuous coefficients.

Turorem 1. The heal equation
(1) Uy = Au

m n space dimensions exhibits “almost finile speed of energy propagation”
in the following sense: giwen any & > 0, then for the solution w of eq. (1) for im-
pulse initial data,

v — [ K(x, t; £)8(¢) d,

where 8(£) is the “Dirac 8-function” and
K(z, t;£) = (4n0) """ exp (—L > (@ — s»?)
i=1
s the heat kernel, there exists a function as(L) having the form
aa(t) =C \/ t

for some constant C (depending on n) such that

(2) [ w(x, t) de <6
|x|>a5(t)
Jor t > 0.

Proof. Since f e 0(E) dE = 1, the 8 in eq. (2) represents the maximum
fraction of the energy lying beyond |z | = as(t). Clearly as(¢) satisifying
(2) cannot be unique; for if as(t) satisfies (2), so does any function bs(?)
such that bs;(¢) > as(¢) for all ¢ > 0. Ideally, we would want the smallest
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function as(¢) satisfying eq. (2). However, we shall here be satisfied with
seeking a function having the required property; we shall show that it suf-
fices to take a;(t) of the indicated form for a certain constant C. Clearly

u(z, t) = (4at) ™" exp <—4% > x2-> = (471-15)‘"/2@"’2’4‘,
=
where i = D ", x;. We are thus looking for a;(¢) such that
(3) (4mt)™* f S, r" e g = S / Y e dy < s,
>a5(t)/2\/t

r>ag(t)

where S, is the surface area of the unit sphere in n-dimensional Euclidean
space.
Before proceeding we determine the asymptotic expansion for

B(a) = / e dr.

Integrating by parts, we have

B(a) = %cz"—ze_“2 + n g 2 f e dr,

etc. This expansion is closely related to that for 4/7/2 (1 — erf a), which it

becomes for n = 1; that it is a valid asymptotic expansion for B(a) is proved
as for A/x/2 (1 — erf a) (Cf. [3, p. 37]). We thus have

| Bla) = 3" | = o(a™"¢™)
asa—> « (areal). Thusfora > k,, where k, is a constant depending on n,
(4) | B(a) | < " %™,

The condition expressed by (3) is just, in terms of the function B,
7 "8, B(as(t)/2 V1) <8,
which will certainly be the case, by eq. (4), if
(as(1)/2 /0" /4t < 7"%5/8,
and as(t)/2 v/t > k.. Let K, be the greatest value of a such that
o = a"%/8,
then for « > K, we have o %™ < 7"%/S,. We define a;(¢) by
as(l) = 2 max {k,, K.} v/ ;

it is clear that this function meets the requirements of the theorem.
We turn now to the differential equation

(5) Lu = 205 ai(®, Otlee; + D imbi(, Oue, + o(z, Hu — ue = 0,
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where the coefficients are defined and continuous in E* X [0, T'] for some 7' > 0.
We assume that L is uniformly parabolic in K" X [0, T];i.e., we require that
there exist positive constants N\, M\ such that for any real n-vector &
N[ £ S 2t an(e, D8 E < M £
for (x, t) e B" X [0, T], where | £|* = "4 & . We assume also that the
coefficients satisfy a Hoélder condition with exponent o, 0 < a < 1:
| aij(e, 1) — ay(@’, () | S A(lz — & [*+ |t = 1]
lbi(xa t) - bi(x/) t) | S AI v — 2 |Ot
|C(Z, t) - c(x', l) I S AI T — |a7

provided z, 2’ € Ii", t, I’ € [0, T'). Then it is known [1], [2] that a fundamental
solution T'(z, ¢; & r) exists and satisfies
IT(2, 655 m) | < enlt — )7 exp (=N — /40t — 1), 0 <<,

where \ 1s a positive constant depending on A, N\, A1, and ¢y is a constant
depending on n and on T.
We shall prove

TurorEM 2. Let & > 0 be arbitrary and let u be the solution of eq. (5) for
impulse inatial data (i.e., w = T'(x, t; 0, 0)). Then for some constant Cr
depending in general on n and T the function

as(t) = Cr/4, 0tLT
salisfies

(6) f u(z, t) de < 8, 0<t<L T
|z|>a5(t)

Proof. This theorem is a simple consequence of Theorem 1, in view of
the bound on I'(z, ¢; 0, 0). Indeed, setting ¢’ = ¢/\, we have

lu(z, 1) | = | T(x,t;0,0) | < const. (¢t')™* exp (—z*/4t),

whence from Theorem 1 we conclude that there exists a constant C'» such that
a;(t) = Crp+/t satisfies incquality (6) for ¢ [0, T].
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