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It is well known that in a system described by the heat equation an initial
disturbance localized at the origin is felt everywhere at any positive value of
time; that is, the disturbance propagates with infinite speed. Nevertheless,
it seems physically clear that most of the energy introduced by the disturbance
ought to spread over only a bounded region in a finite time; in some sense one-
half the derivative of the diameter of this region as a function of time could be
called the speed of energy propagation. In this note these ideas will be
made precise and such a result established for the equation of heat conduction
in n space variables. A weaker result of the same nature will then be estab-
lished for the general second-order linear parabolic equation with H61der-
continuous coefficients.

THOtEM 1. The heat equation

(1) u u

in n space dimensions exhibits "almost finite speed of energy propagation"
in the following sense: given any > O, then for the solution u of eq. (1) for im-
pulse initial data,

u f K(x, t; )() d,

’where () is the "Dirac &jhnction" and

K(x, t;

is the heat ernel, there exists a nction a( t) haing the rm
a(t) C t

for some constant C (depending on n) such that

(2)

for O.

Proof. Since fw, 8()cl 1, the a in eq. (2) represents the maximum
fraction of the energy lying beyond ix aa(t). Clearly a(t) satisifying
(2) cannot be unique; for if aa(t) satisfies (2), so does any function ha(t)
such that be(t) _> aa(t) for all _> O. Ideally, we would waist the smallest
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function a(t) satisfying eq. (2). However, we shall here be satisfied with
seeking a functio having the required property; we shall show that it suf-
rices to take a(t) of the indicated form for a certain constant C. Clearly

( 1 ) _n/2e_r2/4x (4t)u(x, t) (4t)-/ exp 4 =
where r L x. We re thus looking for a(t) such that

>a(t) >a(t)/2t

where S is the surface area of the unit sphere in n-dimensional Euclidean
space.

Before proceeding we determine the symptotic expansion for

B(a) r-e- dr.

Integrating by pars, we have

B(a) 1 an-ee-a
_
n 2 rn-ae-r dr

etc. This expansion is closely related to that for /2 1 erf a), which it
becomes for n 1; that it is a valid asymptotic expansion for B(a) is proved
as for /2 (1 err a) (Cf. [3, p. 37]). We thus have

[B(a) ---a e o(an-ae-a)
as a (a real). Thus for a k k,, where It, is a constant depending on n,

(4) [B(a) a"-e
The condition expressed by (3) is just, in terms of the function B,

n/2,B(a(t)/2 t) ,
which will certainly be the case, by eq. (4), if

and a(t)/2 t lc,. Let K be the greatest value of a such that- - "/"/S
n2 n[2e /then fora k K, wehavea e v o/,. Wedefinea(t) by

a(t) 2 mx {, K.} t
it is clear that this flmction meets the requirements of the theorem.
We turn now to the differential equation

(5) Lu := a(x, t)u + .% b(x, t)u + c(x, t)u u, O,
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where the coefIicients are defined and continuous in E X [0, T] for some T > 0.
We assume that L is uniformly parabolic in E X [0, T]; i.e., we require that
there exist positive constants X0, Xl such that for any real n-vector

for (z, t) eE" X [0, T], where [ [ . We assume also that the
coefficients satisfy a H6lder condition with exponent a, 0 < a 1"

a(x, t) a(x’, t’) 5 A(I x x’ + It t’ 1")

b(z, t) b(x’, t)[ A] x x’

t) t) AI
provided z, z’e t, e [0, T] Then it is known [1] [2] that a fundamental
solutioI F(z, t; , r) exists and satisfies

IF(z,t;, r)[ _<_ cr( r)-n/2exp (-Xlz f;12/4( r) 0 < <_ i’,

where X is a positive constant depending on A, X0, hi, and cr is a constant
depending on n and on T.
We shall prove

THEOREM 2. Let > 0 be arbitrary and let u be the solution of eq. (5) for
impulse initial data (i.e., u P(x, t; 0, 0)). Then for some constant Cr
depending in general on n and T the function

satisfies
a(t) C w/t, 0 N < T

u(z,t) dx N 0 <_ <_ T.(6)
xl>a(t)

Proof.
the bound on r(x, t; 0, 0). Indeed, setting t’ t/X, we have

u(z, t) IF(z, t; 0, 0) < const. (t’)-/2 exp (-x/4t’),
whence from Theorem 1 we conclude that there exists a constant Cz such that
a(t) Cr x/t satisfies inequality (6) for e [0, T].
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This theorem is a simple consequence of Theorem 1, in view of


