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Introduction

Let L be a finite-dimensional Lie algebra over an algebraically closed field
and let V(L) be the Grassmann variety of n-dimensional subspaces of L;
r,,(L) is a projective algebraic variety. We denote by e the (Zariski) closed
subset of I’(L) consisting of all n-dimensional subalgebras. The algebraic
group Aut(L) of automorphisms of the Lie algebra L acts in an obvious
manner ts an algebraic transformation group on F(L) and ( is stable under
the action of Aut(L). Let M be an n-dimensional subalgebra of L and let m
denote the point of I’(L) corresponding to M. If G is a subgroup of Aut(L),
then we say that M is a rigid subalgebra of L with respect to G if the orbit
G(m) is a (Zariski) open subset of (. Intuitively, this definition says that
every small deform:tion of the subalgebra M is trivial. It follows from the
definition that there are only a finite number of eonjugaey classes (under G)
of rigid subalgebras of L. The following theorem gives a suttieient "infini-
t,esimal" condition that a subalgebra M be rigid.

To-\s 9.3, 11.4. Let L be a Lie algebra over an algebraically closed

.field resp. over the field C of complex numbers) and let G be an algebraic sub-
group resp. complex Lie subgroup) of Aut(L) wih Lie algebra g. Le M be a

sublgebra of L such lha every crossed homomorphism of M into lhe M-module
L/M is induced by a derivation D g of L. Then M is a rigid subalgebra of L
wih respec to G.

The idea of the proof is quite simple. Roughly speaking, we show that the
tangent spce of ( t m is included in the space of crossed homomorphisms.
Similarly, the tangent space to G(m) at m includes the space of crossed
homomorphisms induced by elements of g. A simple result on algebraic
transformation groups completes the proof in the tlgebric cse. In the com-

plex cae we also need. an auxiliary result concerning linear Lie groups
on lgebmic sets.
The most natural subgroup of Aut(L) to consider is the group of inner

auomorphisms of L (if it exists). In this ease the infinitesimal condition
for rigidity elm be expressed by Lie algebra cohomology.

COaOLLa. Let L be a conplex Lie algebra resp. the Lie algebra of a linear

algebraic group over an algebraically closed field) and le G be he group of inner

aulomorphisms of L.
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(a) Let M be a subalgebra of L such that Hi(M, L/M) O. Then M
is rigid with respect to G.

(b) There exists only a finite number of conjugacy classes (under G) of
subalgebras M’ of L such that HI(M’, L/M’) O.

The above results also hold for real IAe algebras, with only minor modifica-
tions.
The corollary above shows that a semi-simple sublgebra of a real or com-

plex Ifie algebra L is always rigid. A Cartan subalgebra of L is also rigid.
A number of other examples of rigid subalgcbrns are given in 12.
The bove results are easily carried over to subalgebms of associative al-

gebras. In this case, of course, Lie algebra cohomology is replaced by the
cohomology of associative algebras.
We also prove similar rigidity theorems for ideals (of a Lie or associative

algebra) and for submodules.
We would like to dd that a similar rigidity theorem holds for subgroups

of Lie groups. In this case, Lie algebra cohomology is replaced by the (dif-
ferentiable) cohomology of groups. Details will appetr in a forthcoming pall)er

by the author.
0. Preliminaries

All vector spaces and algebras over field k will be ssumed tinitc dimen-
sionnl. We shall use the notation V (R):; W. for both internal and ex-

ternM direct sums of vector spaces. In particular, we shall consider W.
:ts a subspace of V without further comment. If V and W are vector spaces,
then Horn(V, W) denotes the vector sptce of all linear mappings of V into W.
This notation will be used even if V or W admit additional structures, such
as that of a Lie algebra.

Let V W1 (R) We and let

H {TeHom(V, V) T(We) {0} and T(V)
H is a vector subspace of Horn(V, V) and is canonically isomorphic to
Hom(Wi, We). Throughout this paper, if we re given a direct sum de-
composition V W (R) We, we shll identify Hom(-Wx, We) with the sub-
space tt of Horn(V, V) by means of the canonical isomorphism.
Our basic reference for algebraic geometry will bc [7].

algebraic variety is always considered as topological space, with the Zariski
t.opology; subsets of n algebraic variety are given the induced opology.
Algebraic groups (lways over an algebmicdly closed field) are as in [6].
The closed subgroups of ,n lgebmic group are just the algebraic subgroups.
For details (;oncerning the Ific algebra of a linear algebraic group, we refer
to [:].

R (resp. C) denotes the field of real (resp. complex) numbers.

1. I.inear coordinates on the Grassmannian variety
Let V be a vector spt(’c over a field k and let n _< dim V be a positive integer.

We denote by I(V) the Grassmannim variety of n-dimensionM subspaees
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of V. If/ is algebraically closed, then Fn(V) has a natural structure of pro-
jective algebraic variety. (See, e.g., [6, Expos 5, p. 5-12].) If W is a sub-
space of V of codimension n, we shall denote by Fw the subset of F(V) con-
sisting of all n-dimensional subspaces of V which are transversal to W. If
]c is algebraically closed, then Fw is an open subvariety of Fn(V).

Let V U (R) W with dim U n, let P be the projection operator on V
with kernel U and image W, and let Q be the complementary projection (i.e.,
Q I P). If TeHom(U, W), then let(T) denote the image of the
operator Q -[- T; (T) is a n-dimensional subspace of V which is transversal
to W, hence a point of Fw. Moreover, a straightforward argument shows
that the map T -- (T) is a bijection of Hom(U, W) onto Fw. If the base
field /c is nlgebraically closed, it can be shown that is an isomorphism of
Horn( U, W) (considered as a algebraic variety) onto the open subvariety
Fw of Fn(V). We omit the details of the proof.

2. The action of GL(V) on F.(V).
We continue with the notation of 1. The group GL(V) of utomorphisms

of the vector space V acts in at obvious way on P,(V). Precisely, if g GL(V)
and if W e F,(V), then g. W is the n-dimensional subspace g(W) of V. If the
base field/ is algebraically closed, then F(V) is an lgebraic trasformation
space for the algebraic group GL(V) (see [6, Expos6 5, p. 5-13] for definitions).
Let geGL(V) be such that U’ g(U) is transversal to W and that
W’ g(W) is transversal to U. Let P’ gPg- and let Q’ gQg-; P’ is the
projection with kernel U’ and image W’ and Q’ is the complementary pro-
jection. It follows from the conditions imposed on g that P + Q’ and P’ + Q
are invertible operators.

LEMA2.1. LetB PQ’(P +Q’)-. Then:(i) B(V) W;(ii) B(W)
{0} and (iii) the image of Q 4- B is the subspace g(U).

Conditions (i) and (ii) imply that B is a point of Hom(U, W) (which we
have identified with a subspace of Hom( V, V) ,s described in 0). Condition
(iii) implies that B is the unique point of Hom( U, W) which correspods to
the subspace g(U), i.e., that (B) g(U).

Proof. Condition (i) follows immediately from the definition of B. Fur-
thermore, the definition of B implies that BP (P B)Q’; this implies that
BPP’ O. This gives BP(P’ + Q) O. But, since P’ -b Q is invertible,
this implies that BP O, hence that B(W) {0}.
To prove (iii), it suffices to show that P’(Q + B) 0. For this will imply

that the image of Q + B is included in U’. Since the dimension of this image
is equal to that of U’, condition (iii) will follow. But, multiplying by the in-
vertible operator P + Q’, we see that the equation P’(Q + B) 0 is equiva-
lent to

P’PQ’ + P’Q( P + Q’) O.
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But we have

P’PQ’ + P’Q(P + Q’) P’(P + Q)Q’ + P’QP P’Q’ + P’QP o.
This finishes the proof.

3. The a/lebraic set of suba[gebras o a Lie algebra
if V and W are vector spaces over a field It, we denote by Altn(-V,-W) the

vector space of all alternating multilinear maps of the n-fold Cartesian
product V V into W. We note that Alt(V, W) ttom(V, W) and
Alt( V, W) W. We set Alt( V, W) (R),,>_0 A1C( V, W).

Let L be a Lie algebra. IfS, TeAltl(V,L),wedefine

[, ’] t(Y, L)
to be the map

x, y) ---> [Sx, Ty] + Tx, Sy].

We note that IS, T] IT,S]. The map (S, T) --> IS, T] is a bilinear mapping
of AltO(V, L) X Alto(V, L) into Alt(-V, L). Although we shall not be con-
cerned with the fact here, we remark that this map can be extended to a bi-
linear map of Alt(V, L) ( Alt(V, L) into Alt(V, L) which defines on

AIr(V, L) the structure of a graded Lie algebra. For details, see [13].
Our reason for introducing the product (S, T) -- IS, T] is that it gives us a

convenient way of expressing the conditions that a subspace of a lie algebra
L over a field/c be a subalgebra. Let M be an n-dimensional subalgebra of L
ad let W be a subspace of L of codimension n which is transversal to M; thus
L M (R) W. Let P denote the projection operator on L with kernel M and
image W and let Q be the complementary projection.

LEM4A 3.1. Let characteristic ]c 2, lel T Horn(M, W), and let V be the
image of Q T. Then V is a subalgebra of L if and only if T satisfies the
following equation"

(’.) (i) T)o [( + ’, Q + ’] o.
Proof. We observe that Q - T is the projection operator with kernel W

and image V and P T is the complementtry projection.
Assume that (3.2) is satisfied and let x, y V. Then

x (Q-4- T)(x) nd y (Q-4- T)(y).

Hece2[x, y] [Q 4- /’, Q -4- T](x, y). Thus (P T)[x, y] 0, and it
follows that [x, y] V. Thus V is a subalgebra. The converse is proved
similarly.

Let Horn(M, W) --> Fw be defined as in 1. Let ( denote the subset of
I.,(L) consisting of all n-dimensional subalgebras of L. Then, according to
Lernm 3.1, (T) ( if and only if T satisfies equation (3.2). If the base
field k is algebraically closed, then it follows easily from this observation that
A , closed subset of the algebraic w-riety F,,(L).
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4. The case of characteristic 2
If characteristic/c 2 and if T e Alto(V, L), then [T, T] 0. In this case

it is convenient to introduce a quadratic mapping

q AltO( V, L) - AltO( V, L)

which corresponds to the map T - (1/2([T, T] in case the characteristic is
distbct from 2. If T e Alto(V, L) then q(T) is the map (x, y) - [Tx, Ty].
The map q has the following properties:

(i) ifXkandif TeAlt(V,L),thenq(kT) q(T);aud
(it) if S, T e Alti(v, L), then

q(S q- T) q(S) q- IS, T] + q( T).

We note that, in the case of characteristic 2, equation (3.2) should be re-
placed by

(P-- T) oq(Q-k T) O.

In order to avoid the repeated consideration of special cases, we shall hence-
forth assume that the base field of all algebras considered is of characteristic
2. The arguments given can be immediately carried over to the case of
chracteristic 2 by systematically replacing all squares [T, T] by q(T) and
using (i) and (it) above. We omit further details.

5. The tangent space of an algebraic variety
Let 1 be algebraically closed and let Y be an algebraic variety over l. Let

y Y, let O(y) denote the local ring of y on Y, and let p denote the homo-
morphism f --> f(y) of (O(y) into k. A tangent vector to Y at y is a p-derivation
of ((y) into/c, that is, a linear mapping D of (O(y) into/ such that

D(fg) f(y)Dg q- g(y)Df.

We denote by ’( Y, y) the tangent space of Y at y. It is a finite-dimelsional
vector space over ]c. If f Y-> Y’ is a morphism of algebraic varieties, then
there is an induced linear mapping df, of T( Y, y) into T( Y’, f(y) df: is called
the derived mapping of f at y. If f’ Y’ - Y" is another morphism, the

If f V -> W is polynomial mpping of vector spaces, then (with the obvious
identifications) the derived mapping of f at y is just the differential of f at y, as
defined in [3, p. 35]. If Y is a subvariety of a variety Y’ and if f Y -- Y’
denotes the inclusion mapping, the dfi, is an injection. In particular, if Y
is a subvariety of a vector space V and if f Y --> V is the injection morphism,
then the image of df. can be identified with the linear subspace of V colsisting
of ll x V which satisfy the following condition: for every polynomial func-
tio P on V which vanishes on Y, the differential alP, vanishes at x.
For a detailed discussion and proofs of the above results, we refer the reader
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to [7, Chapter VI]. We note that we have slightly rephrased the definition of
the tangent space given in [7].

6. The tangent space of a
In this section we use the following notation" L is a Lie algebr over the

algebraically closed field/c; M is a subalgebra of L of dimension n and W is a
subspace of L of codimension n which is transversal to M; P is the projection
operator with image W and kernel M and Q is the complementary projection;
the map Horn(M, W) - Pw is defined as i 1; 0 denotes the closed subset
of F(V) consisting of all n-dimensional subalgebras; in order to avoid con-
fusing notation, we shall denote by m the point of F(V) corresponding to the
subspace M.
h this section we shall compute what it is tempting to call the tangent space

to a at m; we note, however, that since ( is not in general irreducible, the
ta)gent space T((, m) is not defined according to the definition we have
chosen.
The vector space AltO(M, W) is naturally isomorphic to the linear subspace

of AltO(L, L) consisting of all S AltO(L, L) which satisfy the following con-
ditions: (i) S(L X L) c: W;and (ii) S(x,y) 0 if either x or y is in W.
Henceforth, we shall identify AltO(M, W) with the above-described subspace
of Alt(L, L) by means of the natural isomorphism.

Let k Horn(M, V) - Alt(L, L) be defined by

(T) (P- T) o[Q- T,Q- T].

The image of is included in AltO(M, W). Henceforth, wc consider as a
mapping of AltO(M, W) Horn(M, W) into AltO(M, W). Since M is a sub-
algebra, it follows from Lemma 3.1 that P [Q, Q] 0. Thus

(/’) 2P [Q, T] -k P [T, T] To[Q, Q] 2To[Q, T] To [T,T].

An elementary computation shows that the derived mpping d(0) is the mp

T’ -- 2P [Q, T’] T’ [Q, Q].

We denote by Z the kernel of dk(0)
Let (’ -1((). According to Lemm 3.1, 7’e (’ if nd only if (T) 0.

Let Y’ be n irreducible componet of a’ pssing through 0. Then, identify-
ing T( Y, 0) with subspce of Horn(M, W), we see immediately from the re-

mtrks mde in 3 that T( Y’, 0) Z.
The quotient spce L/M dmits ntural structure of M-module defined

s follows:ifxeM nd (y -k M) L/M, thenx.(y -k M) [x, y] -k- M.
The graded vector spce Alt(M, L/M) is the underlying graded vector space
of the complex C(M, L/M) (R)>_o CS(M, L/M) used to compute the co-

homology space of the Lie Mgebr M with coefficients in the M-module L/M
(see e.g. [1, p. 282]). Let r:L -- L/M denote the cunonical mpping.
Then r’, the restriction of r to W, is m isomorphism of W nd L/M. The
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map r’ induces an isomorphism 0 Alt(M, W) --> C(M, L/M) of graded vector
spaces defined as follows" if f Alt(M, W), then O(f) -’ f.

Let t denote the coboundary operator in the complex C(M, L/M). Then,
if T AltO(M, W) and if x, y M,

O od(o)(T).(x, y) 2([x, Ty]-6 [Tx, y]- (T[x, y]))

2ti(r T).(x, y) (21toO)(T).(x, y).

Thus 0 d(0) 2(ti 0). It follows immediately that 0 maps Z isomorphically
onto Z(M, L/M), the space of 1-cocycles of the complex C(M, L/M).
We summarize the results of this section in the following proposition"

PROPOSlTIO 6.1. Let Ham(M, W) -+ AltO(M, W) be defined by

(7’) (P-- T) o[Q+ T,Q+ T].

Then 6-(0) -1((). Let Ham(M, W) and C(L, L/M) be identified by
means of the isomorphism O. Then the kernel oj’ the differential de(o) is precisely
ZI(M, L/M). If Y’ is an irreducible component of (’ -a) which contains
o, ten T( Y’, O) Z( M, L/M).

7. The tangent space to G(m)
We continue with the notation of 6. Let G be a closed irreducible subgroup

of the algebraic group Ant(L) of all automorphisms of the Lie algebra L and
let g be the Lie algebra of G. Then g is a subalgebra of the Lie algebra (L)
of all derivations of L [3, p. 143]. As usual, we identify g with the tangent
space T(G, e) to G at the identity element e.

Let G’ denote the set of all g G such that g(M) is transversal to W and
such that g(W) is transversal to M. It is easy to see that G’ is an open sub-
variety of G which contains e; thus T(G’, e) (:an be identified with T(G, e).

--i --i)--i.Let fl G’ - Ham(M, W) be the map g -- PgQg (P -t-- gQg We observe
that fl is well defined because of the conditions imposed on g. It follows from
Lemma 2.1 that fl is the map g --> g.m of G’ into P(L). A straightforward
computation shows that dfl is the map D --> PDQ of g T(G, e) into
Ham(M, W). (The basic point to remember in the computation is that
PeQ o.)
By definition, a crossed homomorphism of M into the M-module L/M is a

linear mapping f M - L/M such that, for z, y M,

f( Ix, y]) x.f(y) y.f(x)

thus the set of crossed homomorphisms of M into L/M is just Z(M, L/M),
the space of 1-cocycles of the complex C(M, L/M). If D is a derivation of L,
then the map x -> r(D(x) of M intv L/M is t crossed homomorphism; hence
each derivation of L induces a crossed homomorphism of M into L/M.

If D is a derivation of L, then PDQ cHore(M, W). It can be easily
checked that 0(PDQ) CI(M, L/M) is the crossed homomorphism of M into
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L/M induced by D. Thus the image of the linear map 0 dfle of g into
CI(M, L/M) is precisely the set of crossed homomorphisms of L into M in-
duced by the elements of g.
We summarize these results as follows:

PROPOSITION 7.1. Let Horn(M, L/M) be identified with CI(M, L/M) by
means of the isomorphism O. Then the image of the derived mapping

de: -- Cl( M, L/M)

is the space of crossed homomorphisms of M into L/M induced by the elements
ofg.

8. A proposition on algebraic transformation spaces
Let the algebraic variety X be ai algebraic transformation space for the

algebraic group G and let x X. Then, according to [6, Expos 5, Lemma 4,
pp. 5-13], the orbit G(x) is relatively open in its closure. If G is irreducible,
then G(x) is irreducible, and hence is a subvariety of X.

DRoPOSITION 8.1. Let the algebraic variety X be an algebraic transformation
space for the irreducible algebraic group G. Let x e X be such that T(X, x)
T( G(x), x). Then the orbit G(x) is an open subset of X.

Proof. Since G acts transitively on the orbit G(x), it follows that every
point of G(x) is simple. Thus

dim G(x) dim T(G(x), x) dim T(X, x) >_ dimX.

Hence, dim G(x) dim X. The conclusion now follows from [7, Prop-
sitiol 1, p. 97].

9. The rigidity theorem

DEFINITION 9.1. Let L be a I,ie algebra over an algebraically closed field
It, let M be an n-dimensional subalgebra of L, and let m denote the point of
F(L) corresponding to the subspace M. Let a be the closed subset of F(L)
consisting of all n-dimensional subalgebras of L. Let G be a closed subgroup
of Aut(L). Then M is a rigid subalgebra of L with respect to G if the orbit
G(rn) is an open subset of
We say that two subalgebras M1 and M of a Lie algebra L are conjugate

under a subgroup G of Aut(L) if 2V/1 and M lie on the same orbit under the
action of G on F(L).

PROPOSITION 9.2. Let L and G be as above. Then there exists only a finite
number of conjugacy classes (under G) of rigid subalgebras of L with respect to G.

This follows from the fact that a is a Noetherian space (or a Zariski space
in the terminology of [7]).

THEOREM 9.3. Let L be a Lie algebra over an algebraically closed field, let G
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be a closed subgroup of Aut(L) and let be the Lie algebra of G. Let M be a sub-
algebra of L such that every crossed homomorphism of M into L/M is induced by
a derivation D of L. Then M is a rigid subalgebra of L with respect to G.

Proof. We may assume that G is irreducible. Thus the orbit G(m) is ir-
reducible. Let Y be an irreducible component of ( which contains G(m).
Let Horn(M, W) - r(L) be defined as in 1, and let Y’ -l(y); y, is
an irreducible component of Hom(M, W) passing through 0. To simplify
notation, we identify Hom(M, W) with CI(M, L/M) by means of the iso-
morphism0. By Proposition 6.1, T(Y’,O) is contained in Z(M, L/M): Let

G’ - CI(M, L/M) be defined as in 7; by 7.1, the image of dte is precisely
the vector space B of crossed homomorphisms of M into L/M induced by
derivations D e 6. The hypothesis states that B ZI(M, L/M). The de-
rived mapping d(0) maps T(Y’, 0) isomorphically onto T(Y, m). Further-
more, since o is the map g - g.m of G’ into r(L), it follows that d(0) maps
B into a subspace of T(G(m), m). Let

Then
Z’ d(o)(Z(M, L/M) d(o)(B).

Z’D T(Y, m) T(G(m), m) Z’.

Hence T(Y, m) T(G(m), m). It follows from Proposition 8.1 that G(m)
is an open subset of Y. It follows easily that Y is the only irreducible compo-
nent of a which meets G(m); thus G(m) is an open subset of a. This proves
9.3.

Let L be the Lie algebra of a connected linear algebraic group G and let
Ad" G -- Aut(L) be the adioint representation of G (defined as in [3, defi-
nition 2, p. 141]). Then Ad(G) is a closed subgroup of Aut(L) [6, Expos 3,
Thorme 4, p. 3-04]; it is called the group of inner automorphisms of L. If
G is a linear algebraic group with identity component Go, and if L is the Lie
algebra of G (and hence of Go), then Ad(G0) is defined to be the group of inner
automorphisms of L. We note that the group of inner automorphisms of L
is not determined by the Lie algebra structure of L alone, but depends on the
representation of L as the Lie algebra of a linear algebraic group.

Let L be a Lie algebra. If x e L, we denote by ad(x) the linear map
y - [x, y]. The map x - ad(x) is a homomorphism of L into the Lie algebra
(L) of derivations of L. The image ad(L) is the Lie algebra of inner deriva-
tions of L. If L is the Lie algebra of a connected linear algebraic group G,
then ad is the differential of the adioint representation of G [3, Proposition 7,
p. 142]. It follows that the Lie algebra of the group Ad(G) of inner auto-
morphisms of L contains the Lie algebra ad(L) of inner derivations of L. If
the base field is of characteristic 0, it follows from [3, Thorme 12, p. 172] that
ad(L) is the Lie lgebra of Ad(G). In this case it follows further from [3,
Corollaire 1, p. 156] that the group of inner automorphisms of L depends on L
alone, and is independent of the choice of G.
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If M is a subalgebra of the Lie algebra L, then the space of crossed homo-
morphisms of M into L/M induced by the elements of ad(L) is precisely
BI(M, L/M), the space of 1-eoboundaries of CI(M, L/M). Thus we obtain
the following corollary of 9.3:

COROLLARY 9.4. Let L be the Lie algebra of a linear algebraic group (over an
algebraically closed field) and let G be the group of inner automorphisms of L.

(a) Let M be a subalgebra of L such that Hi(M, L/M) O. Then M is a
rigid subalgebra of L with respect to G.

(b) There exists only a finite number of conjugacy classes (under G) of sub-
algebras M’ of L such that H(M’, L/M’) O.

10. Linear Lie groups acting on algebraic sets

In 10 and 11 we shall consider algebraic sets X in Rn, Cn, P(R), and Pn(C).
We shall have occasion to consider two distinct topologies on X, the topology
induced on X by the usual (Hausdorff) topology of the ambient space, and the
Zariski topology of X induced by the Zariski topology of the ambient space.
In order to avoid confusion, references to topological concepts in the Zariski
topology will be given the prefix "Zariski" (in Sections 10 and 11 only), e.g.,
open subsets in the Zariski topology are Zariski-open.
The following result is proved in [12]:
10.1. Let X be an irreducible algebraic set in C (resp. Rn) and let G be a

complex Lie subgroup resp. .Lie subgroup) of GL(n, C) resp. GL(n, R) such
that X is stable under the action of G. Let x e X be such that the orbit G( z is an
open subset of X. Then G( x) is a Zariski-open subset of X resp. is one compo-
neat of a Zarislci-open subset of X).

For completeness, we give the proof. We consider the case X C. Let
g denote the Lie algebra of G and let q be the dimension of X as an algebraic
variety. Then the hypothesis implies that the dimension of G(x), as a com-
plex submanifold of Cn, is equal to q. The (complex) tangent space of G(z)
atxisg(x) {T(x)[Teg};thusdimg(x) q. But and this is the key
point of the proof), an elementary argument shows that the set

U {yeX[ dimg(y) _> q}

is a Zariski-open subset of X. It follows easily that the orbits of G on U
partition U into disjoint open sets. Since U is connected [14, p. 163], the
conclusion follows. If X c Rn, U is not necessarily connected, although it has
only a finite number of components [16]; otherwise, the argument is the same.
The action of GL(n, C) on C induces an action of GL(n, C) on P_(C).

Similarly for GL(n, R). As an elementary corollary of 10.1, we obtain:
10.2. The result of 10.1 is equally valid when X is an #reducible algebraic set

i Pn_(C) (resp. Pn_(R)).

Proof. We consider the case X c P_(C). Let

p: (0n- {0l) --gn-l(0)
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be the canonical projection. Let

(]1 {geGL(n,C)IgeG and XeC, X 0}.

Then the proof of 10.2 follows esily by considering the action of G1 on p--l(X)
nd pplying 10.1.

1. The rigidity theorem for real and complex Lie algebras
The results of 10 allow us to extend Theorem 9.3 for the cse of ]Lie algebras

over either C or R.

I)EFNON 11.1. Let L be Lie Mgebm over C (resp. R), let G be
complex Lie subgroup (resp. Lie subgroup) of Aut(L), and let ( denote the
closed subset of F,(L) consisting of all n-dimensional sublgebrs of L. Let
M be a n-dimensional subalgebra of L nd let m ( denote the corresponding
point of F(L). Then M is a rigid subalgebra of L with respect to G if the
orbit G(m) is an oper subset of ( (in the usual (Hausdorff) topology of a).

The following proposition shows that if L is a complex Lie lgebra and if the
complex Lie subgroup G of Aut(L) is an algebraic subgroup, then the deft-
nitio of rigidity given above coincides with that of 9.1.

lhO’OSTrON 11.2. Let L be a Lie algebra over C (resp. R), and let G and a
be as in 11.1. Let M be a rigid subalgebra of L and let m ( correspond to M.
Then the oribit G(m is a Zariski-open subset resp. one component of a Zariski-
open subset) of a.

The proof of 11.2 follows esily from 10.2. We use the fact that the action
of G on F(L) is induced by , linear action of G on the ambient projective
space for F(L).

COnOLLAIY 11.3. Let L and G be as in ll.1. Then lhere exists only a finite
number of conjugacy classes (under G) of rigid subalgebras of L.

The proof is similar to that of 9.2. If L is a real Lie algebra, we must also
use the fact that a real algebraic set has only a finite number of components

THEOREM 11.4. Let L be a Lie algebra over C resp. R ), let G be a complex
Lie subgroup resp. Lie subgroup) of Aut(L), and let g be the Lie algebra of G.
Let M be a subalgebra of L such that every crossed homomorphism of M into L/M
is induced by a derivation D . Then M is a rigid subalgebra of L with respect
to G.

Proof. Let n dim M and let m a correspond to M. Let W be a linear
subspce of L which is transversal to M. Let Horn(M, W) -- F(L) be
defined as in 1; is diffeomorphism of Horn(M, W) onto the ope submani-
fold r of In(L). Let Horn(M, W) -- AltO(M, W) be defined as in 6.
Let (’ -((). Then, by 6.1, (’ -1(0). Let the open subset G’ of G
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and the map G’ -- Hom(M, W) be defined as in 7; then ((g)) g.m
for g G’. We identify Horn(M, W) with CI(M, L/M) by means of the iso-
morphism 0. By 6.1, the kernel of the differential dr(0) is precisely the set
ZI(M, L/M) of crossed homomorphisms of M into L/M (since f is a poly-
nomial mapping, its (algebraic) differential is identical to its differential as a
differentiable map). It is shown in 7 that the image B of the differential d5e is
the set of crossed homomorphisms induced by derivations D g. The hy-
pothesis of 11.4 states that B ZI(M, L/M). Then [15, Lemma 1, p. 149]
implies that there exists a neighborhood N of 0 in Horn(M, W) such that
N et’ is included in 5(G’). This implies that G(m) is an open subset of a,
hence that M is a rigid subalgebra of L. This proves 11.4.

Let L be a Lie algebra over either R or C. Then the Lie algebra of the Lie
group Aut(L) is the Lie algebra 0(L) of all derivations of L [2]. If g is a
subalgebra of (L), then there exists a unique analytic subgroup G of Aut(L)
with Lie algebra g; in the complex case, G is a complex Iie subgroup. If .q is
the subalgebra of all inner derivations of L, then the corresponding analytic
group G is called the group of inner automorphisms of L; the group of inner
automorphisms of L is not, in general, an algebraic subgroup of Aut(L). If
L is the Lie algebra of a connected Lie group H, then the group G of inner auto-
morphisms of L is the group of automorphisms of L induced by inner auto-
morphisms of H.

COROARY 11.5. Let L be a Lie algebra over C or R and let G be the Lie group
of inner automorphisms of L.

(a) Let M be a subalgebra of L such that H(M, L/M) O. Then M is
rigid with respect to G.

(b) There exists only a finite number of conjugacy classes (under G) of sub-
algebras M’ of L such that HX( M’, L/M’) O.

2. Applications

(a) Semi-simple and reductive subalgebras. If L is semi-simple Lie
algebra over field of characteristic 0, then it is known that H(L, V) 0
for every L-module V (see [8]). Thus we obtain:

PROPOSITION 12.1. Let L be a Lie algebra over either R or C and let M be a

semi-simple subalgebra of L. Then M is a rigid subalgebra of L with respect to
the group G of inner automorphisms of L.

We observe that Proposition 12.1 gives relatively elementary proof of the
known fact that a given Lie algebra L over either R or C admits only a finite
number of conjugacy classes of semi-simple subalgebras. The usual proof of
this result depends upon the classification of semi-simple Lie algebras and the
Levi-Whitehead theorem.

If L is a Lie algebra and if V is an L-module, then v V is an invariant if
x-v 0 for every x L. If L is a reductive Lie algebra over a field of charac-
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teristic 0 and if V is a semi-simple L-module such that the space of invariants
of V reduces to {0}, then HI(L, V) 0. (See [11, Theormn 10, p. 599].) If
M is a subalgebra of a Lie algebra L, then a necessary and sufficient condition
that the space of invariants of the M-module L/M reduce to {0/ is that M be
equal to its own normalizer in L. Thus we obtain:

PROPOSITION 12.2. Let L bca Lie algebra over either R or C and let M be a
reductive subalgebra of L which is equal to its own norrnalizer in L. Assume
further that L/M is a semi-simple M-module. Then M. is a rigid subalgebra of
L with respect to the group G of inner automorphisms of L.

(b) Further examples of rigid subalgebras. Let L be a Lie algebra and
let V be an L-module. The cochain complex C(L, V) admits a natural struc-
ture of L-module. If x L, then we denote by o the corresponding operator
on C(L, V). Corresponding to each x e L, there is also a homogeneous linear
mapping i of degree -1 of C(L, V) into itself defined as follows: if

f C’+1(L, V), then i. f is the map

(x ,"" x) --> f(x, Xl ,’’" Xn).

Let a be the coboundary operator on C(L, V).
are related by the formula

Then the operators o and i

(2.3) ixo / oi p.

Fora more detailed discussion of the above material, see [11].
The following (known) result gives a convenient criterion for the vanishing

of certain cohomology spaces.

12.4. Let x L be such that the restriction of px to C( L, V) is non-singular.
Then Hn(L, V) O.

Proof. It follows from 12.3 that Z(L, V) is stable under px thus Ox maps
Z’(L, V) isomorphically onto itself. But 12.3 implies further that the re-
striction of o to Z(L, V) agrees with i ix. Thus Zn(L, V) is included in
the image of and Hn(L, V) O.

let V be a vector space over a field tc and let T Hom(V, V). For each
X h, let

V(T,X) {zeVl(7’- XI)(z) 0 for some n}

(Here, I V -- V denotes the identity map.) If lc is algebraically closed, it is
known that V (R)x -V( 7’, X). We remark that V(T,X) {0} ifXisnot
an eigenvalue of T.

Let L be a Lie algebra and let x e L. For simplicity, we shall denote
L(ad(x), X) by L(x, X). It is known that [L(x, X), L(x, u)] L(x, X + )
(see e.g. [9, Lemma 3.2, p. 138]). In particular, L(x, 0) is a subMgebra.

PROPOSITION 12.5. Let L be a Lie algebra over a .field to, let x L, and let A
be the set of eigenvalues of ad(x). Let M be a subalgebra of L which is of the
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form M Oxen, L(x, k), where A’ is a subset of A which contains O.
Hi(M, L/M) O.

Then

Proof. It suffices to prove the proposition for ]c algebraically closed; the
proof for the general case follows by extension of the base field of L to an
algebraically closed field. Let A" denote the complement of A’ in A and let
W (R)x,, L(x, k). Then L M (R) W (direct sum of vector spaces), and
thus CI(M, L/M) Horn(M, L/M) is canonically isomorphic to
Horn(M, W); we shall identify CI(M, L/M) with Horn(M, W). With re-
spect to this identification, the action of p. on Horn(M, W) can be described
as follows: if f e Horn(M, W), then

px’f ad(x) f f ad(x).

(Here we have used the fact that M and W are both stable under ad(x) we
have also identified Itom(M, W) with a subspaee of Hom(L, L), as described
in 0.)
The direct sum decompositions M @xa, L(z, X) and W @x,, L(x, X)

determine a canonical isomorphism of Hom(M, W) (and, hence of
CI(M, L/M) with the vector space

H @ (x,,)a, a,, Hom(L, (x, k), L(x, p,) ).

We shall identify Hom(M, W) with H by means of this isomorphism. Each
direct summand in the above decomposition of Hom(M, W) is stable under px

There exists an integer n such that (ad(z) XI) annihilates L(x, X) and
(ad(x) I) annihilates L(z, t*). It follows from the formula

o’f ad(x) f f o ad(x)
that

(p- (/- X)I).f (ad(z) -I)of-fo (ad(x) XI).

An easy argument now shows that (p ( X)I)" annihilates
Hom(L(x, X), L(x, t*) ). Since X , this implies that the restriction of px to
Hom(L(x, X), L(x, )) is non-singular. Hence p itself is non-singular. The
conclusion of 12.5 now follows from 12.4.

COROLLARY 12.6. Let L be (i) a real or complex Lie algebra or ii) the Lie
algebra of a linear algebraic group over an algebraically closed field. Let x L
and let M be as in 12.5. Then M is rigid with respect to the group G of inner
autornorphisms of L.

Let L and M be as in 12.6. Let N be a subalgebra of L such that
M + N L (not necessarily a direct sum). If x L, then it follows easily
that there exists y e N such that ad(x) and ad(y) induce the same crossed
homomorphism of M into L/M. In particular, if ad(N) is the Lie algebra of
an algebraic subgroup (or Lie subgroup) G of Aut(L), then M is rigid with
respect to G.
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l,et the base field of L be algebraically closed and of characteristic 0. Then
it follows from a result of Chevalley [3, Thorme 15. p. 177] that the Lie
Mgebra

ad([L, L]) lad(L),

is the Lie algebra of an algebraic group, which we denote by exp(ad( [L, L]) );
the group exp(ad([L, L])) is a algebraic subgroup of Aut(L). Corollary
12.6 can be strengthened as follows:

COnOLL 12.7. Let L be a Lie algebra oer an algebraically closed field of
characteristic O, let x L, and let A denote the set of eigenvalues of ad(x). Let M
be a subalgebra of L of the form @xa, L( x, )), where A’ is a subset of A and 0 A’.
Then M is rigid ,vith respect to the group exp(ad([L, L])).

Proof. Let A" A A’ and set W (R)x,, L(z, X). Then it is obvious
that W [L, L]. Thus M + [L, L] L. The conclusion now follows from
the remarks above.
An elenent x of a Lie algebra L is regular if dim L(x, 0)=

Min (dim L(y, 0)). If z is a regular element of L, then the subalgebra
L(x, 0) is called a regular subalgebra of L. If the base field of L is of character-
istic 0, then the regular subalgebras of L are precisely the Cartan subalgebras
of L [4, Proposition 9, p. 207 and Proposition 16, p. 216].

COaOLLaV 12.8. Let L be a Lie algebra over an algebraically closed field of
characteristic 0 resp. the Lie algebra q[ a linear algebraic group over an alge-
b raically closed field) and let M be a regular subalgebra of L. Then M is rigid
with respect to exp(ad([L, L])) (resp. with respect to the group of inner auto-
morphisms of L ).
COROLLARY 12.9. Let S be a semi-simple Lie algebra over an algebraically

closed field of characteristic 0, let G denote the group of inner automorphisms of S,
and let H be a Caftan subalgebra of S. Let M be a subalgebra of S which contains
H. Then M is rigid with respect to G.

Proof. Since IS, S] S, it follows that S admits a natural (lgebmic)
group of inner automorphisms. Let H S(x, 0). Since M is a subalgebra,
it is stable under ad(x). Furthermore, if k 0 is an eigenvalue of ad(x),
then it is known that S(x, k) is 1-dimensional. It follows that M is of the
form described in 12.5. The conclusion follows from 12.5.

(c) Ideals which are rigid subalgebras. Let M be an ideal of a Lie alge-
bra L. Then it follows from the definition of an ideal that L/M is a trivial
M-module. An elementary computation shows that a necessary and sutfi-
cient condition that H(M, L/M) 0 is that M [M, M]. In fact, this
condition implies that Z(M, L/M) 0. Thus we obtain:

PROPOSITION 12.10. Let L be a Lie algebra over an algebraically closed field
and let ( F(L) denote the set of n-dimensional subalgebras of L. Let M be
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an n-dimensional i4eal in L such that [M, M] M and let m be the point of
F(L) corresponding to M. Then m is an isolated point of (. Thus, there exists
only a finite number of ideals M’ of L such that [M’, M’] M’.

We remark that the last conclusion of 12.10 is valid for Lie ulgebrs over an
arbitrary field, us follows immediately.

3. The case of associative algebras
The results of the previous sections can be carried over with only minor

changes to obtain rigidity theorems for subalgebras of an associative algebra.
(We do not require that an associative algebra have an identity element.)
We sketch the details.

If V and W are vector spaces, we define Linn( V, W) to be the vector space
of all multilinear maps of the n-fold Cartesian product V X X V into W;
we set

Lin(V, W) (n>__0 Lin(V, W).

If A is an associative algebra and if S, T Linl( V, A ), we let [S, T] e Lin2( V, A
be the map

(x, y) (Sx)( Ty) -k Tx)(Sy).

Let B be an n-dimensional subMgebra of an associative algebra A, let W be a

subspace of A of codimension n which is transversal to B, let P be the pro-
jection operator with kernel B and image W, and let Q be the complementary
projection. Then, if T e LinX(B, W), a necessary and sufficient condition that
the image of Q + T be a subalgebra of A is that (P T) [Q+ T, Q + T] 0.
The graded vector space Lin(B, A/B) is the underlying vector spce of the
complex C(B, A,/B) defined by Hochschild to compute the cohomology space
of the associative algebra B with coefficients in the B-module A/B [10].
The definition of rigid subalgebra of an associutive algebra is essentially

the same as that given for Lie Mgebras in 9.1. All the computations involved
in the proof of Theorem 9.3 carry over for the case of associative algebras
except that, in this case, ZI(B, A/B) is the spce of 1-cocycles in the Hoch-
schild complex. Thus, we obtain"

THEOREM 13.1. Let A be an associative algebra over an algebraically closed
field, let G be a closed subgroup of Aut(A) and let be the Lie algebra of G. Let
B be a subalgebra of A such that every crossed homomorphism of B into A/B is
induced by a derivation D e . Then B is a rigid subalgebra of A with respect
to G.

In contrast to the case of Lie algebras, an associative algebra A admits a
natural group G of inkier utomorphisms. If A has aa identity element, then
G can be described as follows. Let H denote the group of units of A. If
h e H, let p(h) be the automorphism

x -- hxh-
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of A. Then p H -- Aut(A) is a representation and the image o(H) G is
the group of inner automorphisms of A. If A does not have an identity, then
the description of G is slightly more complicated and will be omitted. If the
base field is algebraically closed, then the group G of inner automorphisms of A
is an algebraic subgroup of Aut(A); the Lie algebra is the Lie algebra of all
inner derivations of A. Thus we obtain the following corollary of 13.1:

COROLLARY 13.2. Let A be an associative algebra over an algebraically closed
field and let G be the algebraic group of inner automorphisms of A.
() Let B be a subalgebra of A such that Hi(B, A/B) O. Then B is a

rigid subalgebra of A with respect to G.
(b) There exists only a finite number of conjugacy classes (under G) of

subalgebras B’ of A such that Hi(B’, A/B’) O.

The cohomology spaces which occur in the statement of 13.2 are the
Hochschild cohomology spaces.
As an application of 13.2, a semi-simple subalgebra of an associative algebra

A over an algebraically closed field is rigid with respect to the group of inner
autoInorphisms of A.
We can obtain similar results for.subalgebras of associative algebras with

identity. In this case a subalgebra, by definition, contains the identity
element. Moreover, the Hochschild complex is replaced by the "normalized
standard complex" of Cartan-Eilenberg [1, p. 176]. Otherwise the results are
identical with those of 13.1 and 13.2. We omit the details.

14. Subalgebras of arbitrary algebras
The reader may have observed that in our proof of the rigidity theorems,

we have not used either the Jacobi identity for Lie algebras or the associativity
condition for associative algebras. Thus Theorems 9.3 and 11.4 can be carried
over without change to subalgebras of any finite-dimensional algebra over an
algebraically closed field. (We refer the reader to [5, Chapter IV] for the
appropriate definitions.) We note that there is no natural concept of inner
automorphism for an algebra. Thus we do not have any natural analogues
of 9.4 or 11.6 in this case.

15. A rigidity theorem for ideals and submodules

Let L be a Lie algebra over an algebraically closed field and let I denote
the subset of Fn(L) consisting of all n-dimensional ideals. Let G be a closed
subgroup of the algebraic group Aut(L), let M be an. n-dimensional ideal of
L, and let m be the point of F,(L) corresponding to M. Then the ideal M is
rigid if the orbit G(n) is an open subset of I.

Let L and L. be supplementary subspaces of L, let I) be the projection
operator o L with image L and kernel L., and let P be the complementary
projection operator. A necessary and sufficient condition that L be an ideal
of L is that P ad(x) P 0 for every x e L.
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In particular, let M be an n-dimensional ideal of L and let W be a subspace
of L supplementary to M. Let P be the projection operator on L with image
W and kernel M and let Q be the complementary proieetion. If
T Hom(M, W), then Q + T and P T are complementary projection
operators. A necessary and sufficient condition that the image of Q - T
be an ideal is that

(P-- T) oad(z)o(Q-t- T) 0

for every x L. For each x e X, let (x) denote the polynomial mapping

T-(P-- T) oad(x)o(Q- 7’)

of Hom(M, W) into Hom(M, W). Let Zx denote the kernel of the dif-
ferential

d(x)(o Hom(M, W) --+ Horn(M, W)

and let Z l xL Zx. Let Z denote the image of Z under the isomorphism

0 Hom(M, W) - Hom(M, L/M).

A trivial calculation shows that Z is precisely the set of all L-module homo-
morphisms of M into L/M. If D is a derivation of L and if r L -- L/Mdenotes the canonical mapping, then the map x -- r(Dx) of M into L/M
is a homomorphism of L-modules. Thus, each derivation of L induces a

homomorphism of the L-module M into the L-module L/M. An argument
similar to that used in the proof of Theorem 9.3 gives the following theorem:

THEOREM 15.1. Let L be a Lie algebra over an algebraically closed field and
let G be a closed subgroup of Aut(L) with Lie algebra . Let M be an ideal of L
such that every homomorphism of the L-module M into the L-module L/M is
induced by a derivation D e . Then M is a rigid ideal of L with respect to G.

We note that every inner derivation of L induces the 0-homomorphism of
M --> L/M. Thus if g is included in the Lie algebra of inner derivations of
L, then the hypothesis of Theorem 12.1 implies that m (the point of F(L)
corresponding to M) is an isolated point of I.

Rigidity for (two-sided) ideals of an associative algebra is defined similarly.
In this case the analogue of Theorem 15.1 is the following:

PROPOSITION 15.2. Let A be an associative algebra over an algebraically
closed field and let G be an algebraic subgroup of Aut(A) with Lie algebra .
Let I be an ideal in A such that every homomorphism of the A-bimodule I into
he A-bimodule A/I is induced by a derivation D of A. Then I is a rigid
ideal of A.

Let A be an associative algebra over an algebraically closed field and let
V be a (finite-dimensional) A-module. Then one (’an define in a manner

similar to 9.i the rigidity of submodules of V. We let Auto(V) denote the
algebraic group of all automorphisms of the A-module V. The Lie algebra of
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AurA(V) is just the vector space HomA(V, V) of all homomorphisms of the
A-module V, with its natural structure of Lie algebra. In this case we obtain
the following analogue of Theorerl 15.1.

PROPOSITION 15.3. Let A be an associative algebra over an algebraically
closed field, let V be an A-module, and let G be a closed subgroup of Auto(V)
with Lie algebra . Let M be a submodule of the A-module V such that every
homomorphism of the A-module M into the A-module VIM is induced by an
element q[ . Then M is a rigid submodule of V.
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