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Introduction

Let L be a finite-dimensional Lie algebra over an algebraically closed field
and let T,(L) be the Grassmann variety of n-dimensional subspaces of L;
I,.(L) is a projective algebraic variety. We denote by @ the (Zariski) closed
subset of I',(1.) consisting of all n-dimensional subalgebras. The algebraic
group Aut(L) of automorphisms of the Lie algebra I acts in an obvious
manner as an algebraic transformation group on I',(L) and @ is stable under
the action of Aut(L). Let M be an n-dimensional subalgebra of L and let m
denote the point of I',( L) corresponding to M. If ¢ is a subgroup of Aut(L),
then we say that M is a rigid subalgebra of L with respect to G if the orbit
G(m) is a (Zariski) open subset of @. Intuitively, this definition says that
every small deformation of the subalgebra M is trivial. It follows from the
definition that there are only a finite number of conjugacy classes (under @)
of rigid subalgebras of I.. The following theorem gives a sufficient “infini-
tesimal” condition that a subalgebra M be rigid.

Turorems 9.3, 11.4. Lel L be a Lie algebra over an algebraically closed
Sield (resp. over the field C of complex numbers) and let G be an algebraic sub-
group (resp. complex Lie subgroup) of Aut(L) with Lie algebra g. ILet M be a
subalgebra of L such that every crossed homomorphism of M into the M-module
L/M 1s induced by a dertvation D eg of L. Then M is a riged subalgebra of L
with respect to Q.

The idea of the proof is quite simple. Roughly speaking, we show that the
tangent space of @ at m is included in the space of crossed homomorphisms.
Similarly, the tangent space to G(m) at m includes the space of crossed
homomorphisms induced by elements of g. A simple result on algebraic
transformation groups completes the proof in the algebraic case. In the com-
plex case we also need an auxiliary result concerning lincar Lie groups acting
on algebraic sets.

The most natural subgroup of Aut(l) to consider is the group of inner
automorphisms of I, (if it exists). In this case the infinitesimal condition
for rigidity can be expressed by Lie algebra cohomology.

CoroLrarY. Lel L be a complex Lie algebra (resp. the Lie algebra of a linear
algebraic group over an algebraically closed field) and let (¢ be the group of inner
automorphisms of L.
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(a) Let M be a subalgebra of L such that H(M, L/M) = 0. Then M
is rigid with respect to G.

(b) There exisis only a finite number of conjugacy classes (under G) of
subalgebras M’ of L such that H'(M', L/M') = 0.

The above results also hold for real Lie algebras, with only minor modifica-
tions.

The corollary above shows that a semi-simple subalgebra of a real or com-
plex Lic algebra L is always rigid. A Cartan subalgebra of L is also rigid.
A number of other examples of rigid subalgebras are given in 12.

The above results are easily carried over to subalgebras of associative al-
gebras. In this case, of course, Lie algebra cohomology is replaced by the
cohomology of associative algebras.

We also prove similar rigidity theorems for ideals (of a Lie or associative
algebra) and for submodules.

We would like to add that a similar rigidity theorem holds for subgroups
of Lie groups. In this case, Lie algebra cohomology is replaced by the (dif-
ferentiable) cohomology of groups.  Details will appear in a forthecoming paper
by the author.

0. Preliminaries

All vector spaces and algebras over a field k will be assumed finite dimen-
sional.  We shall use the notation V' = @;, W; for both internal and ex-
ternal direet sums of vector spaces. In particular, we shall consider W;
as a subspace of V' without further comment. 1f V and W arc vector spaces,
then Hom(V, W) denotes the vector space of all linear mappings of V into W.
This notation will be used even if V or W admit additional structures, such
as that of a Lie algebra.

Let V=W, & W, and let

H = {T eHom(V, V) | T(W:) = {0} and T(V) C Wa};

I is a vector subspace of Hom(V, V) and is canonicallyisomorphic to
Hom(W,, W;). Throughout this paper, if we are given a direct sum de-
composition V. = W, & W,, we shall identify Hom(W, , W) with the sub-
space I of Hom(V, V) by means of the canonical isomorphism.

Our basic reference for algebraic geometry will be [7].  In particular, an
algebraic variety is always considered as a topological space, with the Zariski
topology; subsets of an algebraic variety arc given the induced topology.
Algebraic groups (always over an algebraically closed ficld) are as in [6].
The closed subgroups of an algebraic group are just the algebraic subgroups.
For details concerning the Lic algebra of a linear algebraic group, we refer
to [3].

R (resp. C) denotes the field of real (resp. complex) numbers.

1. Linear coordinates on the Grassmannian variety

Let V be a vector space over a field k and let n < dim V be a positive integer.
We denote by T',(V) the Grassmannian variety of n-dimensional subspaces
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of V. If k is algebraically closed, then T',( V') has a natural structure of pro-
jective algebraic variety. (See, e.g., [6, Exposé 5, p. 5-12].) If W is a sub-
space of V of codimension n, we shall denote by I'y the subset of T',( V') con-
sisting of all n-dimensional subspaces of V which are transversal to W. If
k is algebraically closed, then T'y is an open subvariety of I',( V).

Let V. = U & W with dim U = n, let P be the projection operator on V
with kernel U and image W, and let @ be the complementary projection (i.e.,
Q =1—P). If TeHom(U, W), then let ¢(T) denote the image of the
operator Q@ + 1'; ¢(T') is an n-dimensional subspace of V which is transversal
to W, hence a point of I'y,. Moreover, a straightforward argument shows
that the map 7 — ¢(7T) is a bijection of Hom(U, W) onto I'y, .  If the base
field k is algebraically closed, it can be shown that ¢ is an isomorphism of
Hom(U, W) (considered as an algebraic variety) onto the open subvariety
Twof Tw(V). We omit the details of the proof.

2. The action of GL(V) on TI',(V).

We continue with the notation of 1. The group GL(V') of automorphisms
of the vector space V acts in an obvious way on T', (V). Precisely,if ge GL(V')
andif W eT',(V), then ¢g- W is the n-dimensional subspace g(W) of V. If the
base field k is algebraically closed, then T, (V') is an algebraic transformation
space for the algebraic group GL( V) (see [6, Exposé 5, p. 5-13] for definitions).
let ge GL(V) be such that U’ = ¢(U) is transversal to W and that
W' = g(W) is transversal to U. Let P’ = gPg ' and let Q' = gQg™"; P’ is the
projection with kernel U’ and image W’ and @’ is the complementary pro-
jection. It follows from the conditions imposed on g that > + Q" and P’ + @
are invertible operators.

Lemma 2.1. Let B = PQ'(P + Q)" Then:(i) B(V) C W;(ii) B(W) =
{0}; and (ii1) the image of Q -+ B is the subspace g(U).

Conditions (i) and (ii) imply that B is a point of Hom(U, W) (which we
have identified with a subspace of Hom(V, V) as described in 0). Condition
(i11) implies that B is the unique point of Hom(U, W) which corresponds to
the subspace g(U), i.e., that ¢(B) = ¢g(U).

Proof. Condition (i) follows immediately from the definition of B. Fur-
thermore, the definition of B implies that BP = (P — B)Q’; this implies that
BPP’" = 0. This gives BP(P' + Q) = 0. But, since P’ 4 @ is invertible,
this implies that BP = 0, hence that B(W) = {0}.

To prove (iii), it suffices to show that P'(@Q + B) = 0. For this will imply
that the image of Q + B isincluded in U’. Since the dimension of this image
is equal to that of U’, condition (iii) will follow. But, multiplying by the in-
vertible operator P 4+ @', we see that the equation P'(Q + B) = 0is equiva-
lent to

P'PQ + PQP+ Q) =0.
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But we have
PPQ + PP + Q) = P'(P + QQ + PP = P'Q + P'QP = 0.
This finishes the proof.

3. The algebraic set of subalgebras of a Lie algebra

If V and W are vector spaces over a field k, we denote by Alt"(V, W) the
vector space of all alternating multilinear maps of the n-fold Cartesian
product V X --- X Vinto W. We note that Alt'(V, W) = Hom(V, W) and
ARV, W) = W. Wesct Alt(V, W) = @, Alt"(V, W).

Let L be a Lie algebra. If S, T e Alt'(V, L), we define

IS, T) e Alt*(V, L)
to be the map
(z,y) =[Sz, Tyl + [Tz, Syl.

We note that [S, T'] = [T,S]. The map (S, T) — [S, 7] is a bilinear mapping
of AIt'(V, L) X Alt'(V, L) into Alt*(V, L). Although we shall not be con-
cerned with the fact here, we remark that this map can be extended to a bi-
lincar map of Alt(V, L) X Al(V, L) into Alt(V, L) which defines on
Alt(V, L) the structure of a graded Lie algebra. Ior details, see [13].

Our reason for introducing the product (S, 7') — [S, T is that it gives us a
convenient way of expressing the conditions that a subspace of a Lie algebra
L over a field k be a subalgebra. Let M be an n-dimensional subalgebra of L
and let W be a subspace of L of codimension n which is transversal to M ; thus
L =M@ W. LetP denote the projection operator on L with kernel M and
image W and let @ be the complementary projection.

LemmA 3.1, Let characteristic k % 2, let T e Hom(M, W), and let V be the
image of Q + T. Then V is a subalgebra of L if and only of T satisfies the
Jollowing equatron :

(3.2) (P—T)olQ+T,Q+ T =0.

Proof. We observe that ¢ + 7T is the projection operator with kernel W
and image V and P — 7' is the complementary projection.

Assume that (3.2) is satisfied and let «, y ¢ V. Then

= (Q+ T)(x) and y = (Q+ T)(y).
Henee 2z, y] = @ + 7, Q@ + Tl(x, y). Thus (P — T)[x, y| = 0, and it
follows that [z, y]e V. Thus V is a subalgebra. The converse is proved
similarly.

Let ¢ : Hom(M, W) — T'y be defined as in 1. Let @ denote the subset of
T, (L) consisting of all n-dimensional subalgebras of L. Then, according to
Lemma 3.1, o(T) e @ if and only if 7' satisfies equation (3.2). If the base
ficld k& is algebraically closed, then it follows easily from this observation that
A is a closed subset of the algebraic variety T'.(L).
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4. The case of characteristic 2

If characteristic k = 2 and if T e Alt'(V, L), then [T, T] = 0. In this case
it is convenient to introduce a quadratic mapping

q: Alt"(V, L) — AItY(V, L)

which corresponds to the map 17" — (3([7, T] in case the characteristic is
distinet from 2. If T e Alt'(V, L) then q(T') is the map (, y) — [T, Ty).
The map ¢ has the following properties:

(i) if Nek and if T € Alt'(V, L), then ¢q(A\T) = Nq(T); and
(ii) if S, T e Alt'(V, L), then

QS + 1) = q(S) + IS, T| + o(T).

We note that, in the case of characteristic 2, equation (3.2) should be re-
placed by
(P~=T)ogQ+1T)=0.

In order to avoid the repeated consideration of special cases, we shall hence-
forth assume that the base field of all algebras considered is of characteristic
#2. The arguments given can be immediately carried over to the case of
characteristic 2 by systematically replacing all squares (7, T] by ¢(T) and
using (i) and (ii) above. We omit further details.

5. The tangent space of an algebraic variety

Let k be algebraically closed and let Y be an algebraic variety over k. Let
yeY, let O(y) denote the local ring of ¥ on Y, and let p denote the homo-
morphism f — f(y) of ©(y) into k. A tangent vector to Y at y is a p-derivation
of 0(y) into k, that is, a linear mapping D of O(y) into k such that

D(fg) = f(y)Dg + g(y)Df.
We denote by T(Y, y) the tangent space of Y at y. It is a finite-dimensional
vector space over k. If f: Y — YV’ is a morphism of algebraic varieties, then
there is an induced linear mapping df, of T(Y, y) into T(Y’, f(y)); df, is called
the derived mapping of fat y. If f/ : Y — Y” is another morphism, then
d(f o fy = dfsa o df -

If f 1 V — W is a polynomial mapping of vector spaces, then (with the obvious
identifications) the derived mapping of [ at y is just the differential of f at y, as
defined in [3, p. 35). If Y is a subvariety of a variety Y and if f : ¥ — V'
denotes the inclusion mapping, then df, is an injection. In particular, if ¥
is a subvariety of a vector space V and if f 1 ¥ — V is the injection morphism,
then the image of df, can be identified with the linear subspace of V' consisting
of all x ¢ V which satisfy the following condition: for every polynomial func-
tion P on V which vanishes on Y, the differential dP, vanishes at z.

Tror a detailed discussion and proofs of the above results, we refer the reader
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to [7, Chapter VI]. We note that we have slightly rephrased the definition of
the tangent space given in [7].

6. The tangent space of @

In this section we use the following notation: L is a Lie algebra over the
algebraically closed field k; M is a subalgebra of L of dimension n and W is a
subspace of L of codimension n which is transversal to M; P is the projection
operator with image W and kernel M and @ is the complementary projection;
the map ¢ : Hom(M, W) — I'y is defined as in 1; & denotes the closed subset
of Tw(V) consisting of all n-dimensional subalgebras; in order to avoid con-
fusing notation, we shall denote by m the point of I',( V') corresponding to the
subspace M.

In this section we shall compute what it is tempting to call the tangent space
to @ at m; we note, however, that since @ is not in general irreducible, the
tangent space T'(®, m) is not defined according to the definition we have
chosen.

The vector space Alt*(M, W) is naturally isomorphic to the linear subspace
of AIt*(L, L) consisting of all S e Alt’(L, L) which satisfy the following con-
ditions: (1) S(L X L) < W; and (ii) S(z, y) = 0 if either z or y is in W.
Henceforth, we shall identify Alt*(M, W) with the above-described subspace
of Alt*(L, L) by means of the natural isomorphism.

Let ¢ : Hom(M, V) — Alt*(L, L) be defined by

YT) =P —=T)e[Q—-T,Q— Tl

The image of ¢ is included in Alt*(M, W). Henceforth, we consider ¢ as a
mapping of Alt'(M, W) = Hom(M, W) into Alt*(M, W). Since M is a sub-
algebra, it follows from Lemma 3.1 that P o [Q, @] = 0. Thus

Y1) = 2Po[Q, T + Po[T, T] — To[Q, Q] — 2T [Q, T| — Te[T,T].
An elementary computation shows that the derived mapping dy g is the map
T"—2P<[Q,T'] — 1" [Q, Ql.

We denote by Z the kernel of di, -

Let @ = ¢ '(@). According to Lemma 3.1, T ¢ @’ if and only if ¢(T') = 0.
Let Y’ be an irreducible component of @ passing through 0. Then, identify-
ing T(Y’, 0) with a subspace of Hom(M, W), we see immediately from the re-
marks made in 3 that T(Y’,0) < Z.

The quotient space L/M admits a natural structure of M-module defined
as follows:if xe M and (y + M) e L/M, then z-(y + M) = [z, y] + M.
The graded vector space Alt(M, L/M) is the underlying graded vector space
of the complex C(M, L/M) = @5 C'(M, L/M) used to compute the co-
homology space of the Lie algebra M with coefficients in the M-module L/M
(see e.g. [1, p. 282]). Let = : L — L/M denote the canonical mapping.
Then =/, the restriction of = to W, is an isomorphism of W and L/M. The
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map 7’ induces an isomorphism 6 : Alt(M, W) — C(M, L/ M) of graded vector
spaces defined as follows: if f € Alt’(M, W), then 6(f) = =’ o f.

Let § denote the coboundary operator in the complex C(M, L/M). Then,
if T'e AWM, W) and if z, y e M,

00 dpo(T):(x,y) = 2z, Ty] + #[Tx, y| — «(Tlx, y1))
= 28(m o T)-(z,y) = (2600)(T)-(x,y).

Thusbo dy = 2(606). It followsimmediately that 6 maps Z isomorphically
onto Z'(M, L/M), the space of 1-cocycles of the complex C(M, L/M).
We summarize the results of this section in the following proposition:

ProrosiTion 6.1.  Let ¢ : Hom(M, W) — Alt*(M, W) be defined by
YT) =P —=T)[Q+T,Q+ T

Then ¢ (0) = ¢ (@). Let Hom(M, W) and C'(L, L/M) be identified by
means of the tsomorphism 0. Then the kernel of the differential dy oy s precisely
ZNM,L/M). If Y'is an irreducible component of @ = ¢ ‘@) which contains
0, then T(Y',0) < Z'(M, L/M).

7. The tangent space to G(m)

We continue with the notation of 6. Let G be a closed irreducible subgroup
of the algebraic group Aut(L) of all automorphisms of the Lie algebra L and
let g be the Lie algebra of (. Then g is a subalgebra of the Lie algebra D(1)
of all derivations of L [3, p. 143]. As usual, we identify g with the tangent
space T(@, e) to G at the identity element e.

Let G’ denote the set of all g ¢ G such that g(M) is transversal to W and
such that g(W) is transversal to M. 1t is easy to see that G’ is an open sub-
variety of G which contains e; thus T(&, e) can be identified with T(G, ¢).
Let B : G/ — Hom (M, W) be the map g — PgQg (P + ¢gQg")™". We observe
that 8 is well defined because of the conditions imposed on g. It follows from
Lemma 2.1 that ¢ o 8 is the map g — g-m of G’ into T',(L). A straightforward
computation shows that dB, is the map D — PDQ of ¢ = T(G, e) into
Hom(M, W). (The basic point to remember in the computation is that
Pe@) = 0.)

By definition, a crossed homomorphism of M into the #M-module L/M is a
linear mapping f : M — L/M such that, for x, y e M,

[z, yl) = o f(y) — y-flx);

thus the set of crossed homomorphisms of M into L/M is just Z'(M, L/ M),
the space of 1-cocycles of the complex C(M, L/M). 1f D is a derivation of L,
then the map x — w(D(x)) of M into L/ M is a crossed homomorphism; hence
each derivation of . induces a crossed homomorphism of M into 1./ M.

If D is a derivation of L, then PDQ e Hom(M, W). It can be easily
checked that ( PDQ) e C'(M, L/M) is the crossed homomorphism of M into
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L/M induced by D. Thus the image of the linear map 6o dg. of g into
C'(M, L/M) is precisely the set of crossed homomorphisms of L into M in-
duced by the elements of g.

We summarize these results as follows:

PropositioN 7.1. Let Hom(M, L/M) be identified with C'(M, L/M) by
means of the isomorphism 0. Then the image of the derived mapping

dg.: g — C'(M, L/M)

is the space of crossed homomorphisms of M inlo L/M induced by the elements
of g.

8. A proposition on algebraic transformation spaces

Let the algebraic variety X be an algebraic transformation space for the
algebraic group G and let © ¢ X. Then, according to [6, Exposé 5, Lemma 4,
pp. 5-13], the orbit G(zx) is relatively open in its closure. If G is irreducible,
then G(z) is irreducible, and hence is a subvariety of X.

ProvosrrioN 8.1. Let the algebraic variety X be an algebraic transformation
space for the irreducible algebraic group G. Let x ¢ X be such that T(X, ) =
T(G(x), x). Then the orbit G(x) is an open subset of X.

Proof. Since G acts transitively on the orbit G(z), it follows that every
point of G(x) is simple. Thus

dim G(z) = dim T(G(2), ¢) = dim T(X, z) > dim X.

Hence, dim G(z) = dim X. The conclusion now follows from [7, Prop-
sition 1, p. 97].

9. The rigidity theorem

DEerintrioN 9.1. Let L be a Lie algebra over an algebraically closed field
k, let M be an n-dimensional subalgebra of L, and let m denote the point of
I'.(L) corresponding to the subspace M. Let @ be the closed subset of I'n( L)
consisting of all n-dimensional subalgebras of L. Let G be a closed subgroup
of Aut(L). Then M is a rigid subalgebra of L with respect to G if the orbit
((m) is an open subset of Q.

We say that two subalgebras M; and M, of a Lie algebra L are conjugate
under a subgroup G of Aut(L) if M1 and M, lie on the same orbit under the
action of G on T',(L).

Proposition 9.2. Let L and G be as above. Then there exists only a finite
number of conjugacy classes (under G) of rigid subalgebras of L with respect to G.

This follows from the fact that @ is a Noetherian space (or a Zariski space
in the terminology of [7]).

ToEOREM 9.3. Let L be a Lie algebra over an algebraically closed field, let G



100 R. W. RICHARDSON, JR.

be a closed subgroup of Aut(L) and let g be the Lie algebra of G. Let M be a sub-
algebra of L such that every crossed homomorphism of M into L/M s induced by
a derwation D eg of L. Then M <s a rigid subalgebra of L with respect to G.

Proof. We may assume that G is irreducible. Thus the orbit G(m) is ir-
reducible. Let Y be an irreducible component of @ which contains G(m).
Let ¢ : Hom(M, W) — TI',(L) be defined as in 1, and let ¥’/ = ¢ %(¥); Y’ is
an irreducible component of Hom(M, W) passing through 0. To simplify
notation, we identify Hom(M, W) with C'(M, L/M) by means of the iso-
morphism 6. By Proposition 6.1, T(Y”, 0) is contained in Z'(M, L/M). Let
B: G’ — C'(M, L/M) be defined as in 7; by 7.1, the image of dg, is precisely
the vector space B of crossed homomorphisms of M into L/M induced by
derivations D eg. The hypothesis states that B = Z'(M, L/M). The de-
rived mapping dpy maps T(Y’, 0) isomorphically onto T(Y, m). Further-
more, since ¢ o 38 is the map g — g-m of ¢ into I',( L), it follows that dp«y maps
B into a subspace of T(G(m), m). Let

Z' = dew(Z'(M, L/M)) = dew(B).
Then
Z'DT(Y,m) D T(Gm), m) DZ.

Hence T(Y, m) = T(G(m), m). It follows from Proposition 8.1 that G(m)
is an open subset of Y. It follows easily that Y is the only irreducible compo-
nent of @ which meets G(m); thus G(m) is an open subset of @. This proves
9.3.

Let L be the Lie algebra of a connected linear algebraic group G and let
Ad : G — Aut(L) be the adjoint representation of G (defined as in [3, defi-
nition 2, p. 141]). Then Ad(®) is a closed subgroup of Aut(L) [6, Exposé 3,
Théoreme 4, p. 3-04]; it is called the group of inner automorphisms of L. If
@ is a linear algebraic group with identity component Gy, and if L is the Lie
algebra of G (and hence of Gy), then Ad(G,) is defined to be the group of inner
automorphisms of L. We note that the group of inner automorphisms of L
is not determined by the Lie algebra structure of L alone, but depends on the
representation of L as the Lie algebra of a linear algebraic group.

Let L be a Lie algebra. If xzeL, we denote by ad(z) the linear map
y—> [z, y]. The map x — ad(x) is a homomorphism of L into the Lie algebra
D(L) of derivations of L. The image ad(L) is the Lie algebra of inner deria-
tions of L. If L is the Lie algebra of a connected linear algebraic group G,
then ad is the differential of the adjoint representation of G [3, Proposition 7,
p. 142]. It follows that the Lie algebra of the group Ad(@) of inner auto-
morphisms of L contains the Lie algebra ad(L) of inner derivations of L. If
the base field is of characteristic 0, it follows from [3, Théoréme 12, p. 172] that
ad(L) is the Lie algebra of Ad(G). In this case it follows further from [3,
Corollaire 1, p. 156] that the group of inner automorphisms of L depends on L
alone, and is independent of the choice of G.
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If M is a subalgebra of the Lie algebra L, then the space of crossed homo-
morphisms of M into L/M induced by the elements of ad(L) is precisely
B'(M, L/M), the space of 1-coboundaries of C'(M, L/M). Thus we obtain
the following corollary of 9.3:

CoroLLARY 9.4. Let L be the Lie algebra of a linear algebraic group (over an
algebraically closed field) and let G be the group of inner automorphisms of L.

(a) Let M be a subalgebra of L such that H' (M, L/M) = 0. Then M is a
rigid subalgebra of L with respect to G.

(b) There exists only a finite number of conjugacy classes (under G) of sub-
algebras M’ of L such that H'(M', L/M') = 0.

10. Linear Lie groups acting on algebraic sets

In 10 and 11 we shall consider algebraic sets X in R”, C", P,(R), and P,(C).
We shall have occasion to consider two distinet topologies on X, the topology
induced on X by the usual (Hausdorff) topology of the ambient space, and the
Zariski topology of X induced by the Zariski topology of the ambient space.
In order to avoid confusion, references to topological concepts in the Zariski
topology will be given the prefix “Zariski” (in Sections 10 and 11 only), e.g.,
open subsets in the Zariski topology are Zariski-open.

The following result is proved in [12]:

10.1. Let X be an irreducible algebraic set in C* (resp. R") and let G be a
complex Lie subgroup (resp. Lie subgroup) of GL.(n, C) (resp. GL(n, R)) such
that X 1s stable under the action of G. Let x ¢ X be such that the orbit G(x) is an
open subset of X. Then G(x) 1s a Zariski-open subset of X (resp. is one compo-
nent of a Zariski-open subset of X).

For completeness, we give the proof. We consider the case X < C". Let
a denote the Lie algebra of G and let q be the dimension of X as an algebraic
variety. Then the hypothesis implies that the dimension of G(z), as a com-
plex submanifold of C”, is equal to ¢. The (complex) tangent space of G(x)
at x is g(z) = {T(x)| T eg}; thus dimg(z) = ¢. But (and this is the key
point of the proof), an elementary argument shows that the set

U= {yeX|dimg(y) > ¢}

is a Zariski-open subset of X. It follows easily that the orbits of G on U
partition U into disjoint open sets. Since U is connected [14, p. 163], the
conclusion follows. If X < R", U is not necessarily connected, although it has
only a finite number of components [16]; otherwise, the argument is the same.

The action of GL(n, C) on C” induces an action of GL(n, C) on P,_4(C).
Similarly for GL(n, R). As an elementary corollary of 10.1, we obtain:

10.2.  The result of 10.1 s equally valid when X is an irreducible algebraic set
in Pn_1(C) (resp. Pn_1(R)).

Proof. We consider the case X € P,1(C). Let
p:(C" — {0}) = Pra(C)
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be the canonical projection. Let
Gh = {NMeGL(n,C)lgeG@ and NeC,\ 5= 0}.

Then the proof of 10.2 follows easily by considering the action of Gy onp™(X)
and applying 10.1.

11. The rigidity theorem for real and complex Lie algebras

The results of 10 allow us to extend Theorem 9.3 for the case of Lie algebras
over cither C or R.

Derintrion 11.1. Let L be a Lie algebra over C (resp. R), let G be a
complex Lie subgroup (resp. Lie subgroup) of Aut(L), and let @ denote the
closed subset of I',(L) consisting of all n-dimensional subalgebras of L. Let
M be an n-dimensional subalgebra of L and let m ¢ @ denote the corresponding
point of I',(L). Then M is a rigid subalgebra of L with respect to G if the
orbit G((m) is an open subsct of @ (in the usual (Hausdorff) topology of @).

The following proposition shows that if L is a complex Lie algebra and if the
complex lie subgroup ¢ of Aut(L) is an algebraic subgroup, then the defi-
nition of rigidity given above coincides with that of 9.1.

ProrositioN 11.2. Let L be a Lie algebra over C (resp. R), and let G and @
be as in 11.1.  Let M be a rigid subalgebra of L and let m € @ correspond to M.
Then the ortbit G(m) is a Zariski-open subset (resp. one component of a Zariski-
open subset) of Q.

The proof of 11.2 follows easily from 10.2. We use the fact that the action
of G on I',(L) is induced by a linear action of G on the ambient projective
space for T, ().

COROLLARY 11.3. Let L and G be as vn 11.1.  Then there exists only a finite
number of conjugacy classes (under G) of rigid subalgebras of L.

The proof is similar to that of 9.2. If L is a real Lie algebra, we must also
use the fact that a real algebraic set has only a finite number of components
[16].

TureoreM 11.4. Let L be a Lie algebra over C (resp. R), let G be a complex
Lie subgroup (resp. Lie subgroup) of Aut(L), and let g be the Lie algebra of (.
Let M be a subalgebra of L such that every crossed homomorphism of M into L/ M
28 induced by a dertvation D eq. Then M s a rigid subalgebra of L with respect
to G.

Proof. Letn = dim M and let m ¢ @ correspond to M. Let W be a linear
subspace of L which is transversal to M. Let ¢ : Hom(M, W) — T'.,(L) be
defined as in 1; ¢ is a diffeomorphism of Hom (M, W) onto the open submani-
fold 'y of Tw(L). Let ¢ : Hom(M, W) — Alt"(M, W) be defined as in 6.
Let @ = ¢ '(@). Then, by 6.1, @ = ¢ '(0). Let the open subset G’ of
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and the map 8 : ' — Hom (M, W) be defined as in 7; then ¢(8(g)) = g-m
for g e @'. We identify Hom(M, W) with C'(M, L/M) by means of the iso-
morphism 6. By 6.1, the kernel of the differential dy g is precisely the set
Z'(M, L/M) of crossed homomorphisms of M into L/M (since ¢ is a poly-
nomial mapping, its (algebraic) differential is identical to its differential as a
differentiable map). It is shown in 7 that the image B of the differential dB, is
the set of crossed homomorphisms induced by derivations D eg. The hy-
pothesis of 11.4 states that B = Z'(M, L/M). Then [15, Lemma 1, p. 149]
implies that there exists a neighborhood N of 0 in Hom(M, W) such that
N N @& isincluded in B(G’). This implies that G(m) is an open subset of @,
hence that M is a rigid subalgebra of I.. This proves 11.4.

Let L be a Lie algebra over either R or C. Then the Lie algebra of the Lie
group Aut(L) is the Lie algebra (L) of all derivations of L [2]. If g is a
subalgebra of D(L), then there exists a unique analytic subgroup G of Aut(L)
with Lie algebra g; in the complex case, ¢ is a complex Lie subgroup. If gis
the subalgebra of all inner derivations of L, then the corresponding analytic
group @ 1s called the group of inner automorphisms of L; the group of inner
automorphisms of L is not, in general, an algebraic subgroup of Aut(L). If
L is the Lie algebra of a connected Lie group H, then the group @ of inner auto-
morphisms of I is the group of automorphisms of I induced by inner auto-
morphisms of H.

CoRrOLLARY 11.5.  Let L be a Lie algebra over C or R and let G be the Lie group
of inner automorphisms of L.

(a) Let M be a subalgebra of L such that H' (M, L/M) = 0. Then M is
rigid with respect to Q.

(b) There exists only a finite number of conjugacy classes (under G) of sub-
algebras M' of L such that H(M', L/M’) = 0.

12. Applications

(a) Semi-simple and reductive subalgebras. If L is a semi-simple Lie
algebra over a field of characteristic 0, then it is known that H'(L, V) = 0
for every L-module V (see [8]). Thus we obtain:

Prorosirion 12.1. Let L be a Lie algebra over either R or C and let M be a
semi-simple subalgebra of L. Then M is a rigid subalgebra of L with respect to
the group G of inner automorphisms of L.

We observe that Proposition 12.1 gives a relatively elementary proof of the
known fact that a given Lie algebra I over either R or C admits only a finite
number of conjugacy classes of semi-simple subalgebras. The usual proof of
this result depends upon the classification of semi-simple Lie algebras and the
Levi-Whitehead theorem.

If I is a Lie algebra and if V is an L-module, then v € V is an tnvariant if
z-v = 0forevery x e .. If ILis a reductive Lie algebra over a field of charac-
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teristic 0 and if V is a semi-simple L-module such that the space of invariants
of V reduces to {0}, then H'(L, V) = 0. (See [11, Theorem 10, p. 599].) If
M is a subalgebra of a Lie algebra L, then a necessary and sufficient condition
that the space of invariants of the M-module L/M reduce to {0} is that M be
cqual to 1ts own normalizer in L. Thus we obtain:

Prorosition 12.2.  Let L be a Lie algebra over either R or C and let M be a
reductive subalgebra of L which is equal to its own normalizer in L. Assume
Jurther that L/ M is a semi-simple M-module. Then M s a rigid subalgebra of
L with respect to the group G of inner automorphisms of L.

(b) Further examples of rigid subalgebras. ILet L be a Lie algebra and
let V be an L-module. The cochain complex C( 1, V) admits a natural strue-
ture of L-module. If z ¢ I, then we denote by p, the corresponding operator
on C(L, V). Corresponding to each x € I, there is also a homogeneous linear
mapping 2, of degree —1 of C(L, V) into itself defined as follows: if
SeC™M (L, V), then ,- fis the map

(@1, o, @) = fla, 21, o0, Tn).

Let 6 be the coboundary operator on C(L, V). Then the operators p, and 2,
are related by the formula

(]2.3) 1:1,05+80’ix=px‘

For a more detailed discussion of the above material, sce [11].
The following (known) result gives a convenient criterion for the vanishing
of certain cohomology spaces.

12.4.  Lel x € L be such that the restriction of p, to C"(L, V') 1s non-singular.
Then H*(L, V) = 0.

Proof. Tt follows from 12.3 that Z*(L, V) is stable under p, ; thus p, maps
Z"(L, V) isomorphically onto itself. But 12.3 implies further that the re-
striction of p, to Z"(L, V) agrees with 6§07, . Thus Z"(L, V) is included in
the image of 6 and H"(L, V) = 0.

Let V be a vector space over a field k£ and let T'e Hom(V, V). For each
Nek,let

V(T,\) ={zeV|(T — N)"(z) =0 forsome n}

(Here, I : V — V denotes the identity map.) 1f k is algebraically closed, it is
known that V. = @ V(7T, N\). We remark that V(7T, N\) = {0} if X is not
an eigenvalue of 7'.

Let L be a Lie algebra and let xe .. IFor simplicity, we shall denote
L{ad(z), N) by L(z, \). It is known that [L(x, N\), L(z, p)] © L(z, N + u)
(see c.g. [9, Lemma 3.2, p. 138]). In particular, L(z, 0) is a subalgebra.

Prorosirion 12.5. Let L be a Lie algebra over a field k, lel x € L, and lel A
be the set of eigenvalues of ad(x). Let M be a subalgebra of L which is of the
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form M = @rear L(x, N), where A’ is a subset of A which contains 0. Then
H\(M,L/M) = 0.

Proof. It suffices to prove the proposition for k& algebraically closed; the
proof for the general case follows by extension of the base field of L to an
algebraically closed field. Let A” denote the complement of A" in A and let
W = @xear L(z, ). Then L = M @& W (direct sum of vector spaces), and
thus C'(M, L/M) = Hom(M, L/M) is canonically isomorphic to
Hom(M, W); we shall identify C'(M, L/M) with Hom(M, W). With re-
spect to this identification, the action of p, on Hom(M, W) can be described
as follows: if f e Hom (M, W), then

pe-f = ad(z) o f — foad(z).

(Here we have used the fact that M and W are both stable under ad(x); we
have also identified Hom (M, W) with a subspace of Hom(L, L), as described
in0.)

The direct sum decompositions M = @iear L(z, \) and W = Drear L, N)
determine a canonical isomorphism of Hom(M, W) (and, hence of
C'(M, I./ M) with the vector space

H = @ ower xar Hom(L, (x, \), L(z, u)).

We shall identify Hom(M, W) with H by means of this isomorphism. Each
direct summand in the above decomposition of Hom(M, W) is stable under p, .

There exists an integer n such that (ad(x) — A )™ annihilates L(z, ) and
(ad(z) — wpI)" annihilates L(z, p). It follows from the formula

paf = ad(x) o f — foad(x)
that
(pz — (0 — NI)-f = (ad(x) — pl) of — fo(ad(z) — N).

An easy argument now shows that (p, — (u — N)I)™ annihilates
Hom(L(z, \), L(x,n)). Since N # u, this implies that the restriction of p, to
Hom(L(z, \), L(x, u)) is non-singular. Hence p, itself is non-singular. The
conclusion of 12.5 now follows from 12.4.

CoROLLARY 12.6. Let L be (i) a real or complex Lie algebra or (ii) the Lie
algebra of a linear algebraic group over an algebraically closed field. Let x e L
and let M be as in 12.5. Then M is rigid with respect to the group G of inner
automorphisms of L.

Tet L and M be as in 12.6. Let N be a subalgebra of L such that
M 4+ N = L (not necessarily a direct sum). If z e L, then it follows easily
that there exists y e N such that ad(z) and ad(y) induce the same crossed
homomorphism of M into L/M. In particular,if ad(N) is the Lie algebra of
an algebraic subgroup (or Lie subgroup) G of Aut(L), then M is rigid with
respect to G.
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Let the base field of L be algebraically closed and of characteristic 0. Then
it follows from a result of Chevalley [3, Théoreme 15. p. 177] that the Lie
algebra

ad([L, L]) = [ad(L), ad(L)]

is the Lie algebra of an algebraic group, which we denote by exp(ad([L, L]));
the group exp(ad([L, L])) is an algebraic subgroup of Aut(L). Corollary
12.6 can be strengthened as follows:

CoroLLARY 12.7. Let L be a Lie algebra over an algebraically closed field of
characteristic 0, let x € L, and let A denote the set of eigenvalues of ad(x). Let M
be a subalgebra of L of the form @xear L(x, N), where A’ is a subset of A and 0 € A'.
Then M 1s rigid with respect to the group exp(ad([L, L.])).

Proof. Let A” = A — A" and set W = @near L(x, \). Then it is obvious
that W < [L, ]. Thus M + [, L] = L. The conclusion now follows from
the remarks above.

An element x of a Lie algebra L is regular if dim L(z,0) =
Miny.,, (dim L(y, 0)). If z is a regular element of L, then the subalgebra
L(z,0) is called a regular subalgebra of L. If the base field of L is of character-
istic 0, then the regular subalgebras of I are precisely the Cartan subalgebras
of L [4, Proposition 9, p. 207 and Proposition 16, p. 216].

CoroLLARY 12.8. Let L be a Lie algebra over an algebrazically closed field of
characteristic 0 (resp. the Lie algebra of a linear algebraic group over an alge-
braically closed field) and let M be a regular subalgebra of L. Then M is rigid
with respect to exp(ad([L, L])) (resp. with respect lo the group of inner auto-
morphisms of L).

COROLLARY 12.9. Let S be a semi-simple Lie algebra over an algebraically
closed field of characteristic 0, let G denole the group of inner automorphisms of S,
and let H be a Cartan subalgebra of S.  Let M be a subalgebra of S which contains
H. Then M is rigid with respect lo G.

Proof. Since [S, 8] = S, it follows that S admits a natural (algebraic)
group of inner automorphisms. Let H = S(z,0). Since M is a subalgebra,
it is stable under ad(x). I'urthermore, if A 5 0 is an eigenvalue of ad(zx),
then it is known that S(z, N) is 1-dimensional. 1t follows that M is of the
form deseribed in 12.5.  The conclusion follows from 12.5.

(c) Ideals which are rigid subalgebras. Let M be an ideal of a Lie alge-
bra .. Then it follows from the definition of an ideal that L/M is a trivial
M-module. An elementary computation shows that a necessary and suffi-
cient condition that H'(M, L/M) = 0 is that M = [M, M]. In fact, this
condition implies that Z'(M, L/M) = 0. Thus we obtain:

Prorosirron 12.10.  Let L. be a Lie algebra over an algebraically closed field
and let @ C I',(L) denote the set of n-dimensional subalgebras of L. Let M be
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an n-dimensional ideal tn L such that [M, M] = M and let m be the point of
T.(L) corresponding to M. Then m is an isolaled point of @. Thus, there exists
only a finite number of ideals M’ of L such that [M', M'] = M’.

We remark that the last conclusion of 12.10 is valid for Lie algebras over an
arbitrary field, as follows immediately.

13. The case of associative algebras

The results of the previous sections can be carried over with only minor
changes to obtain rigidity theorems for subalgebras of an associative algebra.
(We do not require that an associative algebra have an identity element.)
We sketch the details.

If V and W are vector spaces, we define Lin™(V, W) to be the vector space
of all multilinear maps of the n-fold Cartesian product VX --- X Vinto W;
we set

Lin(V, W) = @0 Lin®(V, W).

If A is an associative algebra and if S, T e Lin'(V, 4), welet [S, T] € Lin*(V, A)
be the map

(z,y) = (8x)(Ty) + (Tz)(Sy).

Let B be an n-dimensional subalgebra of an associative algebra A, let W be a
subspace of A of codimension # which is transversal to B, let P be the pro-
jection operator with kernel B and image W, and let @ be the complementary
projection. Then, if T e Lin'(B, W), a necessary and sufficient condition that
the image of @ + T be a subalgebra of A is that (P — T') o [Q+ T,Q + T] = 0.
The graded vector space Lin(B, A/B) is the underlying vector space of the
complex C(B, A/B) defined by Hochschild to compute the cohomology space
of the associative algebra B with coefficients in the B-module A/B [10].

The definition of a rigid subalgebra of an associative algebra is essentially
the same as that given for Lie algebras in 9.1.  All the computations involved
in the proof of Theorem 9.3 carry over for the case of associative algebras
except that, in this case, Z'(B, A/B) is the space of 1-cocycles in the Hoch-
schild complex. Thus, we obtain:

TuvoreEm 13.1. Let A be an associative algebra over an algebraically closed
field, let G be a closed subgroup of Aut(A) and let g be the Lie algebra of G. Let
B be a subalgebra of A such that every crossed homomorphism of B into A/B is
induced by a deriwation D eq. Then B is a rigid subalgebra of A with respect
o Q.

In contrast to the case of Lie algebras, an associative algebra 4 admits a
natural group G of inner automorphisms. If A has an identity element, then
@ can be described as follows. Let H denote the group of units of A. If
h e H,let p(h) be the automorphism

z — hah™*
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of A. Then p: H — Aut(4) is a representation and the image p(H) = G is
the group of inner automorphisms of A. If A does not have an identity, then
the description of @ is slightly more complicated and will be omitted. If the
base field is algebraically closed, then the group @ of inner automorphisms of A
is an algebraic subgroup of Aut(A4); the Lie algebra is the Lie algebra of all
inner derivations of A. Thus we obtain the following corollary of 13.1:

CoroLLARY 13.2. Let A be an associative algebra over an algebraically closed
Jield and let G be the algebraic group of inner automorphisms of A.

(a) Let B be a subalgebra of A such that H(B, A/B) = 0. Then B is a
rigid subalgebra of A with respect to G.

(b) There exists only a finite number of conjugacy classes (under G) of
subalgebras B’ of A such that H\(B', A/B") = 0.

The cohomology spaces which occur in the statement of 13.2 are the
Hochschild cohomology spaces.

As an application of 13.2, a semi-simple subalgebra of an associative algebra
A over an algebraically closed field is rigid with respect to the group of inner
automorphisms of 4.

We can obtain similar results for subalgebras of associative algebras with
identity. In this case a subalgebra, by definition, contains the identity
element. Moreover, the Hochschild complex is replaced by the “normalized
standard complex” of Cartan-Eilenberg {1, p. 176]. Otherwise the results are
identical with those of 13.1 and 13.2. We omit the details.

14. Subalgebras of arbitrary algebras

The reader may have observed that in our proof of the rigidity theorems,
we have not used either the Jacobi identity for Lie algebras or the associativity
condition for associative algebras. Thus Theorems 9.3 and 11.4 can be carried
over without change to subalgebras of any finite-dimensional algebra over an
algebraically closed field. (We refer the reader to [5, Chapter IV] for the
appropriate definitions.) We note that there is no natural concept of inner
automorphism for an algebra. Thus we do not have any natural analogues
of 9.4 or 11.6 in this case.

15. A rigidity theorem for ideals and submodules

Let L be a Lie algebra over an algebraically closed field and let ¢ denote
the subset of T',(L) consisting of all n-dimensional ideals. Let G be a closed
subgroup of the algebraic group Aut(L), let M be an n-dimensional ideal of
L, and let m be the point of I',( L) corresponding to M. Then the ideal M is
rigid if the orbit G(m) is an open subset of 1.

Let Ly and L, be supplementary subspaces of L, let I’y be the projection
opcrator on L with image I, and kernel Ly , and let P, be the complementary
projection operator. A necessary and sufficient condition that Ly be an ideal
of L is that Pyo ad(z) o Py = 0 for every « e L.
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In particular, let M be an n-dimensional ideal of L and let W be a subspace
of L supplementary to M. Let P be the projection operator on L with image
W and kernel M and let @ be the complementary projection. If
T e Hom(M, W), then Q@ + 7 and P — T are complementary projection
operators. A necessary and sufficient condition that the image of @ + T
be an ideal is that

(P—=T)ead(z)e (@ +71) =0
for every zel. For each xeX, let ¢(x) denote the polynomial mapping
T-— (P —T)oad(z)o(Q — 1)

of Hom(M, W) into Hom(M, W). Let Z, denote the kernel of the dif-
ferential

dy(x) @ : Hom(M, W) — Hom(M, W)
and let Z = N, Z,. Let Z' denote the image of Z under the isomorphism
6 : Hom(M, W) — Hom(M, L/M).

A trivial calculation shows that Z' is precisely the set of all L-module homo-
morphisms of M into L/M. If D is a derivation of L and if m# : L — L/M
denotes the canonical mapping, then the map @ — #(Dx) of M into L/M
is a homomorphism of L-modules. Thus, each derivation of L induces a
homomorphism of the L-module M into the L-module L/M. An argument
similar to that used in the proof of Theorem 9.3 gives the following theorem:

TrarorEM 15.1. Let L be a Lie algebra over an algebraically closed field and
let G be a closed subgroup of Aut(L) with Lie algebra g. Let M be an ideal of L
such that every homomorphism of the L-module M inlo the L-module L/M s
induced by o derivation D eg. Then M s a rigid ideal of L with respect to G.

We note that every inner derivation of L induces the 0-homomorphism of
M — L/M. Thus if g is included in the Lie algebra of inner derivations of
L, then the hypothesis of Theorem 12.1 implies that m (the point of T'n(L)
corresponding to M) is an isolated point of I.

Rigidity for (two-sided) ideals of an associative algebra is defined similarly.
In this case the analogue of Theorem 15.1 is the following:

ProrosiTioN 15.2. Lel A be an associative algebra over an algebraically
closed field and let G be an algebraic subgroup of Aut(A) with Lie algebra g.
Let I be an ideal in A such thal every homomorphism of the A-bimodule I into
the A-bimodule A/I s induced by a derivation D eg of A. Then I s a rigid
ideal of A.

Let A be an associative algebra over an algebraically closed field and let
V be a (finite-dimensional) A-module. Then one can define in a manner
similar to 9.1 the rigidity of submodules of V. We let Aut (V) denote the
algebraic group of all automorphisms of the A-module V. The Lie algebra of
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Aut, (V) is just the vector space Hom,(V, V) of all homomorphisms of the
A-module V, with its natural structure of Lie algebra. In this case we obtain
the following analogue of Theorem 15.1.

Proposirion 15.3. Let A be an assoctative algebra over an algebraically
closed field, let V be an A-module, and let G be a closed subgroup of Aut (V)
with Lie algebra g. Let M be a submodule of the A-module V such that every
homomorphism of the A-module M into the A-module V/M 1is induced by an
element of g. Then M 1s a rigid submodule of V.
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