ON THE ORDER ISOMORPHISM OF A PARTIALLY ORDERED LINEAR SPACE AND ITS ORDER DUAL

BY

RALPH DEMARR¹

By considering various examples, the author has come to the conclusion that the following conjecture is probably true.

CONJECTURE. If a partially ordered linear space X is order isomorphic to its order dual X', then it is possible to define an inner product (\cdot, \cdot) on $X \times X$ in such a way that X becomes a real Hilbert space with this inner product. Furthermore, the inner product can be defined so that it has the following two properties:

(a) if x ∈ X and x ≥ 0, then (x, ·) is a positive linear functional; hence,
(x, ·) ∈ X';
(b) if f ∈ X' and f ≥ 0, then there exists x ∈ X with x ≥ 0 such that
(x, ·) = f.

Although we are not able to prove or disprove this conjecture, we can prove it in a non-trivial special case. This is the main result of our paper, but we shall also discuss other results related to the order isomorphism of X and X'. Finally, we shall show that every real Hilbert space can be partially ordered so that it is order isomorphic to its order dual.

For the basic definitions of a partially ordered linear space and its order dual the reader may refer to Namioka [7, pp. 3–8]. Other references on this subject can be found in Birkhoff [1], Kantorovich [4], Nakano [6], and Vulikh [8].

DEFINITION 1. Let X be a partially ordered linear space and let X' be its order dual. Then X and X' are said to be order isomorphic to each other if there exist positive linear transformations $A: X \to X'$ and $B: X' \to X$ such that B(A(x)) = x for all $x \in X$ and A(B(f)) = f for all $f \in X'$.

Assumption 2. In this paper we assume that X, X', A, and B have the meanings given in Definition 1 and that X and X' are order isomorphic to each other. We use K and K' to denote the positive cones in X and X', respectively.

LEMMA 3. X = K - K.

Proof. By definition X' = K' - K'. Since X and X' are order isomorphic to each other, it follows that X = K - K.

Received October 25, 1965.

¹ This research was supported by a National Science Foundation grant to the University of Washington.

Since Namioka does not assume that a partial ordering is anti-symmetric (i.e., that $x \leq y$ and $y \leq x$ imply x = y), we shall prove the following lemma.

LEMMA 4. The partial orderings in X and X' are anti-symmetric.

Proof. We need only prove that if $0 \le x$ and $x \le 0$, where $x \in X$, then x = 0. Define f = A(x); hence, $0 \le f$ and $f \le 0$, where the symbol 0 here refers to the zero functional in X'. By definition $0 \le f(y)$ and $f(y) \le 0$ for all $y \in K$. Since X = K - K, it follows that f(z) = 0 for all $z \in X$; hence, f = 0. Therefore, x = B(f) = 0. In the course of the preceding remarks it was shown that if $0 \le f$ and $f \le 0$, where $f \in X'$, then f = 0. Thus, the lemma is proved.

DEFINITION 5. For each $x, y \in X$ we define E(x, y) = A(x)(y), where the right-hand expression denotes the value of the functional A(x) at y. It is clear that E is a bilinear functional defined on $X \times X$ such that $E(x, y) \ge 0$ for all $x, y \in K$. For each $x \in X$ we define $F(x) = E(\cdot, x)$. It is easy to verify that F is a positive linear transformation mapping X into X'.

LEMMA 6. If $x \in X$ and $x \neq 0$, then there exists $f \in K'$ such that $f(x) \neq 0$.

Proof. Define g = A(x). Since $x \neq 0$, it follows that $g \neq 0$, which means there exists $y \in K$ such that $g(y) \neq 0$. Define $f = F(y) \in K'$. Now

$$f(x) = F(y)(x) = E(x, y) = A(x)(y) = g(y) \neq 0.$$

LEMMA 7. The mapping F is one-to-one.

Proof. If $x \in X$ and $x \neq 0$, then by Lemma 6 there exists $f \in K'$ such that $f(x) \neq 0$. If we define y = B(f), then $F(x)(y) = A(y)(x) = f(x) \neq 0$. Hence, $F(x) \neq 0$.

DEFINITION 8. A non-empty subset M of any partially ordered set is said to be down-directed if for every $x, y \in M$ there exists $z \in M$ such that $z \leq x$ and $z \leq y$. The term up-directed is defined by reversing the inequalities in the preceding statement. A non-empty subset M of K is said to be directed to 0 if M is down-directed and if M = 0. (More detail on these matters may be found in Definition 1 of [2] or [3].)

LEMMA 9. X is Dedekind complete. This means that if M is a downdirected subset of K, then $\inf M$ exists.

Proof. Since X' is always Dedekind complete and X and X' are order isomorphic to each other, X must also be Dedekind complete.

The term "Dedekind complete" is due to McShane [5, pp. 9-11].

LEMMA 10. The mapping A is o-continuous. This means that if M, where $M \subset K$, is directed to 0, then $\inf \{A(x) : x \in M\} = 0$. The proof below can be modified to show that B is also o-continuous.

Proof. Let M be any subset of K which is directed to 0. If we define $M' = \{A(x) : x \in M\}$, then $M' \subset K'$ and M' is down-directed. Since X' is Dedekind complete, $g = \inf M'$ exists. It is clear that $0 \leq g$. Now for every $x \in M$ we have $g \leq A(x)$ and, hence, $B(g) \leq x$ for all $x \in M$. Therefore, $B(g) \leq 0$ and, hence, $g \leq 0$. By Lemma 4, g = 0, which proves that A is o-continuous.

LEMMA 11. For each $z \in K$ the positive linear functional F(z) is o-continuous.

Proof. Let M be any subset of K which is directed to 0. Putting f = F(z), we want to show that

$$\inf \{f(x) : x \in M\} = 0.$$

Now for each $x \in M$ we have f(x) = A(x)(z). Since $\inf \{A(x) : x \in M\} = 0$ and M is down-directed, it follows that

$$\inf \{A(x)(y) : x \in M\} = 0$$

for all $y \in K$. Since $z \in K$, it follows that

$$\inf \{f(x) : x \in M\} = 0,$$

which proves that F(z) is o-continuous.

We now make a few comments in preparation for the main theorem. In the main theorem we will assume that X is a complete vector lattice (i.e., that every non-empty subset of K has an infimum). However, it is not necessary to make exactly this assumption about X. For example, we could assume that X has the decomposition property in which case X' is a complete vector lattice [7, p. 27]. Since X and X' are order isomorphic to each other, it follows that X is also a complete vector lattice.

If X is a vector lattice, then we write $x^+ = x \vee 0$, $x^- = (-x)^+$, $|x| = x^+ + x^-$. Note that $x = x^+ - x^-$; this differs from Birkhoff [1, p. 219].

We now point out by means of an example that even if X is a complete vector lattice, the bilinear functional E (see Definition 5) may not be an inner product. Let X be the real linear space of all triples of real numbers which is partially ordered componentwise; hence, X is a complete vector lattice. It is easy to show that X' is exactly the same as X in the sense that if

$$x = (\alpha_1, \alpha_2, \alpha_3) \epsilon X$$
 and $f = (\beta_1, \beta_2, \beta_3) \epsilon X'$

then

$$f(x) = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \alpha_3 \beta_3.$$

Now let us define $A : X \to X'$ and $B : X' \to X$ as follows:

$$egin{array}{lll} A(x) &= (lpha_3\,,\,lpha_1\,,\,lpha_2) & ext{for} \ x \,=\, (lpha_1\,,\,lpha_2\,,\,lpha_3) \ g \ B(f) &= (eta_2\,,\,eta_3\,,\,eta_1) & ext{for} \ f \,=\, (eta_1\,,\,eta_2\,,\,eta_3). \end{array}$$

Putting x = (1, 0, 0) and y = (1, 0, 1), it is easily seen that $E(x, y) \neq E(y, x)$ and E(x, x) = 0. **LEMMA 12.** Let X be a complete vector lattice. For any $w \in K$ there exists a positive linear transformation $P: X \to X$ which has the property that

$$P(x) = \sup\{(nw) \land x : n = 1, 2, 3, \cdots\} \quad \text{for all } x \in K.$$

Proof. See Nakano [6, pp. 41–43].

The positive linear transformation P defined above is called a projector by Nakano. The essential properties of projectors are intuitively obvious and, therefore, we will use them without comment. Detailed proofs of these properties can be found in Nakano [6, pp. 41–54].

THEOREM 13. Let X be a complete vector lattice. If E(x, y) = 0 whenever $x \land y = 0$, then the above-stated conjecture is true with $E(\cdot, \cdot)$ as the inner product.

Proof. First let us note that if $w \in K$ and P is the projector determined by w as in Lemma 12, then

$$E(P(x), w) = E(x, w)$$
 and $E(w, P(x)) = E(w, x)$

for all $x \in X$. This follows from the fact that $(x - P(x)) \wedge w = 0$ for all $x \in K$; hence,

$$E(x - P(x), w) = 0 = E(w, x - P(x))$$

for all $x \in K$. Since X = K - K, the desired equalities are obtained.

Let us now take any $w \in K$ with $w \neq 0$. Since $F: X \to X'$ (see Definition 5) is one-to-one by Lemma 7, $F(w) = f \in K'$ and $f \neq 0$. Consequently, there exists $z \geq w$ such that f(z) > 0. Now f(z) = E(z, w) = E(P(z), w) = f(P(z)), where P is the projector determined by w as in Lemma 12. Defining $z_n = (nw) \wedge z$ for all $n = 1, 2, 3, \cdots$, we see that $z_1 \leq z_2 \cdots$ and $\sup\{z_n\} = P(z)$ by Lemma 12. By Lemma 11 f is o-continuous so that $\lim_{n\to\infty} f(z_n) = f(P(z)) = f(z)$. However, $z_n \leq nw$ for all n and since f(z) > 0, there must be an integer m such that $0 < f(z_m) \leq mf(w)$. Hence, f(w) = E(w, w) > 0. If we take any $x \in X$, then

$$E(x, x) = E(x^{+}, x^{+}) + E(x^{-}, x^{-}) \ge 0;$$

if $x \neq 0$, then $x^+ \neq 0$ or $x^- \neq 0$ so that E(x, x) > 0. Note also that we have shown here that if E(|x|, |y|) = 0, then $|x| \land |y| = 0$.

Now take any $v \in K$ and define u = B(F(v)). Hence, E(u, x) = E(x, v)for all $x \in X$. Now define $w = (u - v)^+$ and let P be the projector determined by w as in Lemma 12. Since $P((u - v)^-) = 0$, we have w = P(w) = $P(u - v) = u_1 - v_1$, where we put $u_1 = P(u)$ and $v_1 = P(v)$. Now we must have $E(u, u_1) = E(u_1, u_1)$ because $(u - u_1) \wedge u_1 = 0$ and $E(u_1, v)$ $= E(u_1, v_1)$ because $u_1 \wedge (v - v_1) = 0$. Therefore, $E(u_1, u_1) = E(u_1, v_1)$ which means that $E(u_1, u_1 - v_1) = E(u_1, w) = 0$; hence, $u_1 \wedge w = 0$. Since $u \ge 0$ and $v \ge 0$, it follows that $u \ge (u - v)^+ = w$; hence, $u_1 = P(u) \ge w$ so that $0 = u_1 \wedge w = w$. Since w = 0, it follows that $u \le v$. Now E(u, v) =E(v, v) which means that E(v - u, v) = 0; hence, $0 = (v - u) \wedge v = v - u$. Since u = v, we have E(v, x) = E(x, v) for all $x \in X$. Since v is any element of K and X = K - K, it follows that E(x, y) = E(y, x) for all $x, y \in X$.

Thus, we have shown that $E(\cdot, \cdot)$ is an inner product for X. It is obvious that $E(\cdot, \cdot)$ has property (a) of the conjecture. If $f \in K'$, define $x = B(f) \in K$. Hence, $f = A(x) = E(x, \cdot)$, so that $E(\cdot, \cdot)$ has property (b).

We must now show that X is norm complete with respect to the norm $\|\cdot\|$ determined by the inner product E(x, y). Let $\{x_n\}$ be a Cauchy sequence of elements from X. Using the Cauchy-Schwarz inequality, we see that $\lim_{n\to\infty} E(x_n, y) = f(y)$ for all $y \in X$. By Nakano's theorem [6, p. 251] it follows that $f \in X'$. Let us define x = B(f) so that $f = E(x, \cdot)$. Putting $\alpha = \sup\{\|x_n - x\| : n = 1, 2, 3, \cdots\}$ and $\beta_m = \sup\{\|x_n - x_m\| : n \ge m\}$, we obtain by elementary computations that

$$||x_n - x||^2 \leq \alpha \beta_m + |E(x_n - x, x_m - x)| \quad \text{for } n \geq m.$$

Therefore, for each fixed *m* we have $\limsup_{n\to\infty} ||x_n - x||^2 \leq \alpha \beta_m$. Since $\{x_n\}$ is a Cauchy sequence, it follows that $\lim_{m\to\infty} \beta_m = 0$; hence, $\lim_{n\to\infty} ||x_n - x|| = 0$. This proves that *X* is norm complete and completes the proof of the theorem.

There are at least two essentially different ways of partially ordering a real Hilbert space Y so that Y and Y' are order isomorphic to each other. We assume that $Y \neq \{0\}$.

I. If Y is a real Hilbert space, then Y is isomorphic to the space Y_0 of all real-valued functions $x(\cdot)$ defined on some set Ω such that

$$\sum \left\{ \mid x(\sigma) \mid^2 : \sigma \in \Omega \right\} < \infty.$$

Taking the pointwise partial ordering of functions in Y_0 and carrying this back to Y by the isomorphism, it is easily shown that Y is a complete vector lattice. (We are implicitly assuming that Y_0 has the usual Hilbert space norm and that the mappings effecting the isomorphism are actually isometries). Since Y is a Banach lattice, we must have $Y' = Y^*$; see [7, p. 44]. But Y is naturally isomorphic to Y^* with one mapping $A : Y \to Y^*$ effecting the isomorphism being defined as follows: $A(x) = (x, \cdot)$ for all $x \in Y$. It then follows by routine calculations that Y and Y' are order isomorphic to each other.

II. Let Y be a real Hilbert space and take any $u \in Y$ with ||u|| = 1. Now define $K = \{x : \sqrt{2} (x, u) \ge ||x||\}$. It is easily shown that K is a closed, generating cone with u as an interior point. We may then partially order Y by defining $x \le y$ to mean that $y - x \in K$. We will show later that $||x|| + ||y|| \le 2||x + y||$ for all $x, y \in K$; hence, K is normal [7, p. 30]. Referring to Corollary 5.5, p. 24, and Theorem 6.7, p. 31, of [7], we see that $Y' = Y^*$. As in the preceding example Y is naturally isomorphic to Y^* with the mapping A defined as it is there. To show that Y and Y' are order isomorphic to each other, we need only show that $A(x) \ge 0$ if and only if $x \ge 0$. Let us take any x_0 , $y_0 \in Y$ such that $x_0 > 0$ and $y_0 > 0$. Since

$$0 < ||x_0|| \le \sqrt{2} (x_0, u),$$

there must exist a real number $\alpha > 0$ such that $\alpha(x_0, u) = 1$. Similarly, there exists a real number $\beta > 0$ such that $\beta(y_0, u) = 1$. Define $x_1 = \alpha x_0$ and $y_1 = \beta y_0$. Since $x_1, y_1 \in K$, we must have

$$||x_1|| \le \sqrt{2} (x_1, u) = \sqrt{2}$$
 and $||y_1|| \le \sqrt{2}$.

Since $(x_1 - u, u) = (y_1 - u, u) = 0$, it follows that

 $||u||^2 + ||x_1 - u||^2 = ||x_1||^2$ and $||u||^2 + ||y_1 - u||^2 = ||y_1||^2$. Therefore, $||x_1 - u|| \le 1$ and $||y_1 - u|| \le 1$. Consequently,

$$-1 \leq (x_1 - u, y_1 - u) = (x_1, y_1) - (x_1, u) - (y_1, u) + (u, u)$$
$$= (x_1, y_1) - 1;$$

hence, $0 \leq (x_1, y_1) = \alpha \beta(x_0, y_0)$. Since $\alpha \beta > 0$, we have $0 \leq (x_0, y_0)$. Thus, we have $0 \leq (x, y)$ for all $x, y \in K$. From this it follows that if $x \geq 0$, then $A(x) = (x, \cdot) \geq 0$. For any $x, y \in K$ we have

$$(x + y, x + y) = (x, x) + 2(x, y) + (y, y) \ge (x, x);$$

hence, $||x + y|| \ge ||x||$. From this it follows that

$$||x|| + ||y|| \le 2||x + y||$$
 for all $x, y \in K$.

Let us now take any $x \in X$ such that $x \neq 0$ and $(x, y) \geq 0$ for all $y \in K$. We first show that (x, u) > 0. Assume the contrary; i.e., (x, u) = 0. Now define $\alpha = ||x||^{-1}$ and put $x_1 = \alpha x$. If we define $y_1 = u - x_1$, then $||y_1|| = \sqrt{2}$ and $(y_1, u) = 1$, which means that $y_1 \in K$. But

$$(x, y_1) = (x, u) - \alpha(x, x) = - ||x|| < 0,$$

which contradicts the fact that $(x, y_1) \ge 0$. Hence, we must have (x, u) > 0. Now take $\beta > 0$ so that $\beta(x, u) = 1$ and then put $z = \beta x$. We will now show that $||z - u|| \le 1$. Assume the contrary; i.e., ||z - u|| > 1. Putting

$$\gamma = \|z - u\|^{-1}$$
 and $w = u + \gamma(u - z)$,

we have

$$|| w ||^{2} = || u ||^{2} + \gamma^{2} || u - z ||^{2} = 2$$

and

$$(w, u) = (1 + \gamma)(u, u) - \gamma(z, u) = 1,$$

which means that $w \in K$. But

$$\begin{split} \beta(x, w) &= (z, w) = (1 + \gamma)(z, u) - \gamma(z, z) \\ &= 1 + \gamma - \gamma[\| u \|^2 + \| z - u \|^2] \\ &= 1 + \gamma - \gamma(1 + \gamma^{-2}) \end{split}$$

$$=1-\gamma^{-1}<0,$$

which contradicts the fact that $(x, w) \ge 0$. Hence, we must have

 $\|z-u\| \le 1.$

Since $||z||^2 = ||u||^2 + ||z - u||^2 \le 2$ and (z, u) = 1, it follows that $\beta x = z \ge 0$; hence, $x \ge 0$. This means that if $A(x) = (x, \cdot) \ge 0$, then $x \ge 0$.

The second example does not give a partial ordering equivalent to that in the first example except in the case that Y is one- or two-dimensional. If Yis at least three-dimensional and is partially ordered as in the second example, then Y is not a vector lattice. We leave it to the reader to verify this.

References

- G. BIRKHOFF, Lattice theory, Amer. Math. Soc. Colloquium Publications, rev. ed., vol. 25, 1948.
- R. E. DEMARR, Order convergence in linear topological spaces, Pacific J. Math., vol. 14 (1964), pp. 17-20.
- 3. ——, Partially ordered linear spaces and locally convex linear topological spaces, Illinois J. Math., vol. 8 (1964), pp. 601–606.
- 4. L. V. KANTOROVICH, A. G. PINSKER AND B. Z. VULIKII, Functional analysis in semiordered spaces, Moscow-Leningrad, 1950 (in Russian).
- 5. E. J. MCSHANE, Order-preserving maps and integration processes, Annals of Mathematics Studies, no. 31, Princeton, 1953.
- 6. H. NAKANO, Modern spectral theory, Tokyo, 1950.
- 7. I. NAMIOKA, Partially ordered linear topological spaces, Mem. Amer. Math. Soc., no. 24 (1957).
- 8. B. Z. VULIKH, Introduction to the theory of semi-ordered spaces, Moscow, 1961 (in Russian).

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON