ON THE ORDER ISOMORPHISM OF A PARTIALLY ORDERED LINEAR SPACE AND ITS ORDER DUAL

BY
Ralph DeMarr ${ }^{1}$

By considering various examples, the author has come to the conclusion that the following conjecture is probably true.

Conjecture. If a partially ordered linear space X is order isomorphic to its order dual X^{\prime}, then it is possible to define an inner product (\cdot, \cdot) on $X \times X$ in such a way that X becomes a real Hilbert space with this inner product. Furthermore, the inner product can be defined so that it has the following two properties:
(a) if $x \in X$ and $x \geq 0$, then (x, \cdot) is a positive linear functional; hence, $(x, \cdot) \in X^{\prime}$;
(b) if $f \in X^{\prime}$ and $f \geq 0$, then there exists $x \in X$ with $x \geq 0$ such that $(x, \cdot)=f$.

Although we are not able to prove or disprove this conjecture, we can prove it in a non-trivial special case. This is the main result of our paper, but we shall also discuss other results related to the order isomorphism of X and X^{\prime}. Finally, we shall show that every real Hilbert space can be partially ordered so that it is order isomorphic to its order dual.

For the basic definitions of a partially ordered linear space and its order dual the reader may refer to Namioka [7, pp. 3-8]. Other references on this subject can be found in Birkhoff [1], Kantorovich [4], Nakano [6], and Vulikh [8].

Definition 1. Let X be a partially ordered linear space and let X^{\prime} be its order dual. Then X and X^{\prime} are said to be order isomorphic to each other if there exist positive linear transformations $A: X \rightarrow X^{\prime}$ and $B: X^{\prime} \rightarrow X$ such that $B(A(x))=x$ for all $x \in X$ and $A(B(f))=f$ for all $f \in X^{\prime}$.

Assumption 2. In this paper we assume that X, X^{\prime}, A, and B have the meanings given in Definition 1 and that X and X^{\prime} are order isomorphic to each other. We use K and K^{\prime} to denote the positive cones in X and X^{\prime}, respectively.

Lemma 3. $\quad X=K-K$.
Proof. By definition $X^{\prime}=K^{\prime}-K^{\prime}$. Since X and X^{\prime} are order isomorphic to each other, it follows that $X=K-K$.

[^0]Since Namioka does not assume that a partial ordering is anti-symmetric (i.e., that $x \leqq y$ and $y \leqq x$ imply $x=y$), we shall prove the following lemma.

Lemma 4. The partial orderings in X and X^{\prime} are anti-symmetric.
Proof. We need only prove that if $0 \leq x$ and $x \leq 0$, where $x \in X$, then $x=0$. Define $f=A(x)$; hence, $0 \leq f$ and $f \leq 0$, where the symbol 0 here refers to the zero functional in X^{\prime}. By definition $0 \leq f(y)$ and $f(y) \leq 0$ for all $y \in K$. Since $X=K-K$, it follows that $f(z)=0$ for all $z \epsilon X$; hence, $f=0$. Therefore, $x=B(f)=0$. In the course of the preceding remarks it was shown that if $0 \leq f$ and $f \leq 0$, where $f \in X^{\prime}$, then $f=0$. Thus, the lemma is proved.

Definition 5. For each $x, y \in X$ we define $E(x, y)=A(x)(y)$, where the right-hand expression denotes the value of the functional $A(x)$ at y. It is clear that E is a bilinear functional defined on $X \times X$ such that $E(x, y) \geq 0$ for all $x, y \in K$. For each $x \in X$ we define $F(x)=E(\cdot, x)$. It is easy to verify that F is a positive linear transformation mapping X into X^{\prime}.

Lemma 6. If $x \in X$ and $x \neq 0$, then there exists $f \in K^{\prime}$ such that $f(x) \neq 0$.
Proof. Define $g=A(x)$. Since $x \neq 0$, it follows that $g \neq 0$, which means there exists $y \in K$ such that $g(y) \neq 0$. Define $f=F(y) \in K^{\prime}$. Now

$$
f(x)=F(y)(x)=E(x, y)=A(x)(y)=g(y) \neq 0 .
$$

Lemma 7. The mapping F is one-to-one.
Proof. If $x \in X$ and $x \neq 0$, then by Lemma 6 there exists $f \in K^{\prime}$ such that $f(x) \neq 0$. If we define $y=B(f)$, then $F(x)(y)=A(y)(x)=f(x) \neq 0$. Hence, $F(x) \neq 0$.

Definition 8. A non-empty subset M of any partially ordered set is said to be down-directed if for every $x, y \in M$ there exists $z \epsilon M$ such that $z \leq x$ and $z \leq y$. The term up-directed is defined by reversing the inequalities in the preceding statement. A non-empty subset M of K is said to be directed to 0 if M is down-directed and if $\inf M=0$. (More detail on these matters may be found in Definition 1 of [2] or [3].)

Lemma 9. X is Dedekind complete. This means that if M is a downdirected subset of K, then $\inf M$ exists.

Proof. Since X^{\prime} is always Dedekind complete and X and X^{\prime} are order isomorphic to each other, X must also be Dedekind complete.

The term "Dedekind complete" is due to McShane [5, pp. 9-11].
Lemma 10. The mapping A is o-continuous. This means that if M, where $M \subset K$, is directed to 0 , then $\inf \{A(x): x \in M\}=0$. The proof below can be modified to show that B is also o-continuous.

Proof. Let M be any subset of K which is directed to 0 . If we define $M^{\prime}=\{A(x): x \in M\}$, then $M^{\prime} \subset K^{\prime}$ and M^{\prime} is down-directed. Since X^{\prime} is Dedekind complete, $g=\inf M^{\prime}$ exists. It is clear that $0 \leq g$. Now for every $x \in M$ we have $g \leq A(x)$ and, hence, $B(g) \leq x$ for all $x \in M$. Therefore, $B(g) \leq 0$ and, hence, $g \leq 0$. By Lemma $4, g=0$, which proves that A is o-continuous.

Lemma 11. For each $z \in K$ the positive linear functional $F(z)$ is o-continuous.
Proof. Let M be any subset of K which is directed to 0 . Putting $f=F(z)$, we want to show that

$$
\inf \{f(x): x \in M\}=0
$$

Now for each $x \in M$ we have $f(x)=A(x)(z)$. Since inf $\{A(x): x \in M\}=0$ and M is down-directed, it follows that

$$
\inf \{A(x)(y): x \in M\}=0
$$

for all $y \in K$. Since $z \in K$, it follows that

$$
\inf \{f(x): x \in M\}=0
$$

which proves that $F(z)$ is o-continuous.
We now make a few comments in preparation for the main theorem. In the main theorem we will assume that X is a complete vector lattice (i.e., that every non-empty subset of K has an infimum). However, it is not necessary to make exactly this assumption about X. For example, we could assume that X has the decomposition property in which case X^{\prime} is a complete vector lattice [7, p. 27]. Since X and X^{\prime} are order isomorphic to each other, it follows that X is also a complete vector lattice.

If X is a vector lattice, then we write $x^{+}=x \vee 0, x^{-}=(-x)^{+},|x|=$ $x^{+}+x^{-}$. Note that $x=x^{+}-x^{-}$; this differs from Birkhoff [1, p. 219].

We now point out by means of an example that even if X is a complete vector lattice, the bilinear functional E (see Definition 5) may not be an inner product. Let X be the real linear space of all triples of real numbers which is partially ordered componentwise; hence, X is a complete vector lattice. It is easy to show that X^{\prime} is exactly the same as X in the sense that if

$$
x=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in X \quad \text { and } \quad f=\left(\beta_{1}, \beta_{2}, \beta_{3}\right) \in X^{\prime}
$$

then

$$
f(x)=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3} .
$$

Now let us define $A: X \rightarrow X^{\prime}$ and $B: X^{\prime} \rightarrow X$ as follows:

$$
\begin{aligned}
& A(x)=\left(\alpha_{3}, \alpha_{1}, \alpha_{2}\right) \text { for } x=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \\
& B(f)=\left(\beta_{2}, \beta_{3}, \beta_{1}\right) \\
& \text { for } f=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)
\end{aligned}
$$

Putting $x=(1,0,0)$ and $y=(1,0,1)$, it is easily seen that $E(x, y) \neq E(y, x)$ and $E(x, x)=0$.

Lemma 12. Let X be a complete vector lattice. For any $w \in K$ there exists a positive linear transformation $P: X \rightarrow X$ which has the property that

$$
P(x)=\sup \{(n w) \wedge x: n=1,2,3, \cdots\} \quad \text { for all } x \in K
$$

Proof. See Nakano [6, pp. 41-43].
The positive linear transformation P defined above is called a projector by Nakano. The essential properties of projectors are intuitively obvious and, therefore, we will use them without comment. Detailed proofs of these properties can be found in Nakano [6, pp. 41-54].

Theorem 13. Let X be a complete vector lattice. If $E(x, y)=0$ whenever $x \wedge y=0$, then the above-stated conjecture is true with $\cdot E(\cdot, \cdot)$ as the inner product.

Proof. First let us note that if $w \in K$ and P is the projector determined by w as in Lemma 12, then

$$
E(P(x), w)=E(x, w) \quad \text { and } \quad E(w, P(x))=E(w, x)
$$

for all $x \epsilon X$. This follows from the fact that $(x-P(x)) \wedge w=0$ forall $x \in K$; hence,

$$
E(x-P(x), w)=0=E(w, x-P(x))
$$

for all $x \in K$. Since $X=K-K$, the desired equalities are obtained.
Let us now take any $w \in K$ with $w \neq 0$. Since $F: X \rightarrow X^{\prime}$ (see Definition 5) is one-to-one by Lemma $7, F(w)=f \in K^{\prime}$ and $f \neq 0$. Consequently, there exists $z \geq w$ such that $f(z)>0$. Now $f(z)=E(z, w)=E(P(z), w)=$ $f(P(z))$, where P is the projector determined by w as in Lemma 12. Defining $z_{n}=(n w) \wedge z$ for all $n=1,2,3, \cdots$, we see that $z_{1} \leq z_{2} \cdots$ and $\sup \left\{z_{n}\right\}=P(z)$ by Lemma 12. By Lemma $11 f$ is o-continuous so that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=f(P(z))=f(z)$. However, $z_{n} \leqq n w$ for all n and since $f(z)>0$, there must be an integer m such that $0<f\left(z_{m}\right) \leq m f(w)$. Hence, $f(w)=E(w, w)>0$. If we take any $x \in X$, then

$$
E(x, x)=E\left(x^{+}, x^{+}\right)+E\left(x^{-}, x^{-}\right) \geqq 0 ;
$$

if $x \neq 0$, then $x^{+} \neq 0$ or $x^{-} \neq 0$ so that $E(x, x)>0$. Note also that we have shown here that if $E(|x|,|y|)=0$, then $|x| \wedge|y|=0$.

Now take any $v \in K$ and define $u=B(F(v))$. Hence, $E(u, x)=E(x, v)$ for all $x \in X$. Now define $w=(u-v)^{+}$and let P be the projector determined by w as in Lemma 12. Since $P\left((u-v)^{-}\right)=0$, we have $w=P(w)=$ $P(u-v)=u_{1}-v_{1}$, where we put $u_{1}=P(u)$ and $v_{1}=P(v)$. Now we must have $E\left(u, u_{1}\right)=E\left(u_{1}, u_{1}\right)$ because $\left(u-u_{1}\right) \wedge u_{1}=0$ and $E\left(u_{1}, v\right)$ $=E\left(u_{1}, v_{1}\right)$ because $u_{1} \wedge\left(v-v_{1}\right)=0$. Therefore, $E\left(u_{1}, u_{1}\right)=E\left(u_{1}, v_{1}\right)$ which means that $E\left(u_{1}, u_{1}-v_{1}\right)=E\left(u_{1}, w\right)=0$; hence, $u_{1} \wedge w=0$. Since $u \geq 0$ and $v \geq 0$, it follows that $u \geq(u-v)^{+}=w$; hence, $u_{1}=P(u) \geq w$ so that $0=u_{1} \wedge w=w$. Since $w=0$, it follows that $u \leq v$. Now $E(u, v)=$ $E(v, v)$ which means that $E(v-u, v)=0$; hence, $0=(v-u) \wedge v=v-u$.

Since $u=v$, we have $E(v, x)=E(x, v)$ for all $x \epsilon X$. Since v is any element of K and $X=K-K$, it follows that $E(x, y)=E(y, x)$ for all $x, y \in X$.

Thus, we have shown that $E(\cdot, \cdot)$ is an inner product for X. It is obvious that $E(\cdot, \cdot)$ has property (a) of the conjecture. If $f \in K^{\prime}$, define $x=B(f) \in K$. Hence, $f=A(x)=E(x, \cdot)$, so that $E(\cdot, \cdot)$ has property (b).

We must now show that X is norm complete with respect to the norm $\|\cdot\|$ determined by the inner product $E(x, y)$. Let $\left\{x_{n}\right\}$ be a Cauchy sequence of elements from X. Using the Cauchy-Schwarz inequality, we see that $\lim _{n \rightarrow \infty} E\left(x_{n}, y\right)=f(y)$ for all $y \in X$. By Nakano's theorem [6, p. 251] it follows that $f \in X^{\prime}$. Let us define $x=B(f)$ so that $f=E(x, \cdot)$. Putting $\alpha=\sup \left\{\left\|x_{n}-x\right\|: n=1,2,3, \cdots\right\} \quad$ and $\quad \beta_{m}=\sup \left\{\left\|x_{n}-x_{m}\right\|: n \geq m\right\}$, we obtain by elementary computations that

$$
\left\|x_{n}-x\right\|^{2} \leqq \alpha \beta_{m}+\left|E\left(x_{n}-x, x_{m}-x\right)\right| \quad \text { for } n \geq m
$$

Therefore, for each fixed m we have $\lim \sup _{n \rightarrow \infty}\left\|x_{n}-x\right\|^{2} \leqq \alpha \beta_{m}$. Since $\left\{x_{n}\right\}$ is a Cauchy sequence, it follows that $\lim _{m \rightarrow \infty} \beta_{m}=0$; hence, $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$. This proves that X is norm complete and completes the proof of the theorem.

There are at least two essentially different ways of partially ordering a real Hilbert space Y so that Y and Y^{\prime} are order isomorphic to each other. We assume that $Y \neq\{0\}$.
I. If Y is a real Hilbert space, then Y is isomorphic to the space Y_{0} of all real-valued functions $x(\cdot)$ defined on some set Ω such that

$$
\sum\left\{|x(\sigma)|^{2}: \sigma \in \Omega\right\}<\infty .
$$

Taking the pointwise partial ordering of functions in Y_{0} and carrying this back to Y by the isomorphism, it is easily shown that Y is a complete vector lattice. (We are implicitly assuming that Y_{0} has the usual Hilbert space norm and that the mappings effecting the isomorphism are actually isometries). Since Y is a Banach lattice, we must have $Y^{\prime}=Y^{*}$; see [7, p. 44]. But Y is naturally isomorphic to Y^{*} with one mapping $A: Y \rightarrow Y^{*}$ effecting the isomorphism being defined as follows: $A(x)=(x, \cdot)$ for all $x \in Y$. It then follows by routine calculations that Y and Y^{\prime} are order isomorphic to each other.
II. Let Y be a real Hilbert space and take any $u \in Y$ with $\|u\|=1$. Now define $K=\{x: \sqrt{ } 2(x, u) \geq\|x\|\}$. It is easily shown that K is a closed, generating cone with u as an interior point. We may then partially order Y by defining $x \leq y$ to mean that $y-x \in K$. We will show later that $\|x\|+\|y\| \leqq 2\|x+y\|$ for all $x, y \in K$; hence, K is normal [7, p. 30]. Referring to Corollary 5.5, p. 24, and Theorem 6.7, p. 31, of [7], we see that $Y^{\prime}=Y^{*}$. As in the preceding example Y is naturally isomorphic to Y^{*} with the mapping A defined as it is there. To show that Y and Y^{\prime} are order isomorphic to each other, we need only show that $A(x) \geq 0$ if and only if $x \geq 0$.

Let us take any $x_{0}, y_{0} \in Y$ such that $x_{0}>0$ and $y_{0}>0$. Since

$$
0<\left\|x_{0}\right\| \leq \sqrt{ } 2\left(x_{0}, u\right)
$$

there must exist a real number $\alpha>0$ such that $\alpha\left(x_{0}, u\right)=1$. Similarly, there exists a real number $\beta>0$ such that $\beta\left(y_{0}, u\right)=1$. Define $x_{1}=\alpha x_{0}$ and $y_{1}=\beta y_{0}$. Since $x_{1}, y_{1} \in K$, we must have

$$
\left\|x_{1}\right\| \leq \sqrt{ } 2\left(x_{1}, u\right)=\sqrt{ } 2 \quad \text { and } \quad\left\|y_{1}\right\| \leq \sqrt{ } 2
$$

Since $\left(x_{1}-u, u\right)=\left(y_{1}-u, u\right)=0$, it follows that

$$
\|u\|^{2}+\left\|x_{1}-u\right\|^{2}=\left\|x_{1}\right\|^{2} \text { and }\|u\|^{2}+\left\|y_{1}-u\right\|^{2}=\left\|y_{1}\right\|^{2}
$$

Therefore, $\left\|x_{1}-u\right\| \leq 1$ and $\left\|y_{1}-u\right\| \leq 1$. Consequently, $-1 \leq\left(x_{1}-u, y_{1}-u\right)=\left(x_{1}, y_{1}\right)-\left(x_{1}, u\right)-\left(y_{1}, u\right)+(u, u)$

$$
=\left(x_{1}, y_{1}\right)-1 ;
$$

hence, $0 \leq\left(x_{1}, y_{1}\right)=\alpha \beta\left(x_{0}, y_{0}\right)$. Since $\alpha \beta>0$, we have $0 \leq\left(x_{0}, y_{0}\right)$. Thus, we have $0 \leq(x, y)$ for all $x, y \in K$. From this it follows that if $x \geq 0$, then $A(x)=(x, \cdot) \geq 0$. For any $x, y \in K$ we have

$$
(x+y, x+y)=(x, x)+2(x, y)+(y, y) \geq(x, x)
$$

hence, $\|x+y\| \geq\|x\|$. From this it follows that

$$
\|x\|+\|y\| \leq 2\|x+y\| \quad \text { for all } x, y \in K
$$

Let us now take any $x \in X$ such that $x \neq 0$ and $(x, y) \geq 0$ for all $y \epsilon K$. We first show that $(x, u)>0$. Assume the contrary; i.e., $(x, u)=0$. Now define $\alpha=\|x\|^{-1}$ and put $x_{1}=\alpha x$. If we define $y_{1}=u-x_{1}$, then $\left\|y_{1}\right\|=\sqrt{ } 2$ and $\left(y_{1}, u\right)=1$, which means that $y_{1} \in K$. But

$$
\left(x, y_{1}\right)=(x, u)-\alpha(x, x)=-\|x\|<0
$$

which contradicts the fact that $\left(x, y_{1}\right) \geq 0$. Hence, we must have $(x, u)>0$. Now take $\beta>0$ so that $\beta(x, u)=1$ and then put $z=\beta x$. We will now show that $\|z-u\| \leq 1$. Assume the contrary; i.e., $\|z-u\|>1$. Putting

$$
\gamma=\|z-u\|^{-1} \quad \text { and } \quad w=u+\gamma(u-z)
$$

we have

$$
\|w\|^{2}=\|u\|^{2}+\gamma^{2}\|u-z\|^{2}=2
$$

and

$$
(w, u)=(1+\gamma)(u, u)-\gamma(z, u)=1
$$

which means that $w \in K$. But

$$
\begin{aligned}
\beta(x, w) & =(z, w)=(1+\gamma)(z, u)-\gamma(z, z) \\
& =1+\gamma-\gamma\left[\|u\|^{2}+\|z-u\|^{2}\right] \\
& =1+\gamma-\gamma\left(1+\gamma^{-2}\right)
\end{aligned}
$$

$$
=1-\gamma^{-1}<0
$$

which contradicts the fact that $(x, w) \geq 0$. Hence, we must have

$$
\|z-u\| \leq 1
$$

Since $\|z\|^{2}=\|u\|^{2}+\|z-u\|^{2} \leq 2$ and $(z, u)=1$, it follows that $\beta x=$ $z \geq 0$; hence, $x \geq 0$. This means that if $A(x)=(x, \cdot) \geq 0$, then $x \geq 0$.

The second example does not give a partial ordering cquivalent to that in the first example except in the case that Y is one- or two-dimensional. If Y is at least three-dimensional and is partially ordered as in the second example, then Y is not a vector lattice. We leave it to the reader to verify this.

References

1. G. Bırkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, rev. ed., vol. 25, 1948.
2. R. E. I)eMarr, Order convergence in linear topological spaces, Pacific J. Math., vol. 14 (1964), pp. 17-20.
3. - Partially ordered linear spaces and locally convex linear topological spaces, Illinois J. Math., vol. 8 (1964), pp. 601-606.
4. L. V. Kantorovich, A. G. Pinsker and B. Z. Vulikin, Functional analysis in semiordered spaces, Moscow-Leningrad, 1950 (in Russian).
5. E. J. McShane, Order-preserving maps and integration processes, Annals of Mathematics Studies, no. 31, Princeton, 1953.
6. H. Nakano, Modern spectral theory, Tokyo, 1950.
7. I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc., no. 24 (1957).
8. B. Z. Vulikh, Introduction to the theory of semi-ordered spaces, Moscow, 1961 (in Russian).

University of Washington
Seattrle, Washington

[^0]: Received October 25, 1965.
 ${ }^{1}$ This research was supported by a National Science Foundation grant to the University of Washington.

