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By considering various examples, the author has come to the conclusion
that the following conjecture is probably true.

CONJECTURE. If a partially ordered linear space X is order isomorphic to
its order dual X’, then it is possible to define an inner product (., on X X X
in such a way that X becomes a real Hilbert space with this inner product. Fur-
thermore, the inner product can be defined so that it has the following two prop-
erties:

(a) if x X and x >_ O, then (x, is a positive linear functional; hence,
(x, .) X’;

(b) if f e X’ and f >_ O, then there exists xeX with x >_ 0 such that
(x, .) =f.
Although we are not able to prove or disprove this conjecture, we can prove

it in a non-trivial special case. This is the main result of our paper, but we
shall also discuss other results related to the order isomorphism of X and X’.
Finally, we shall show that every real Hilbert space can be partially ordered
so that it is order isomorphic to its order dual.
For the basic definitions of a partially ordered linear space and its order

dual the reader may refer to Namioka [7, pp. 3-8]. Other references on this
subject can be found in Birkhoff [1], Kantorovich [4], Nakano [6], and Vulikh

DEFINITION 1. Let X be a partially ordered linear space and let X’ be its
order dual. Then X and X’ are said’to be order isomorphic to each other if
there exist positive linear transformations A X -+ X’ and B X’ -+ X such
that B(A(x) x for all x e X and A(B(f) f for all f
ASSUMPTION 2. In this paper we assume that X, X’, A, and B have the

meanings given in Definition 1 and that X and X are order isomorphic to
each other. We use K and K’ to denote the positive cones in X and X’, re-
spectively.

LEMMA 3. X K- K.

Proof. By definition X’ K’ K’. Since X and X’ are order isomorphic
to each other, it follows that X K K.
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Since Namioka does not assume that a partial ordering is anti-symmetric
(i.e., that x -< y and y <_- x imply x y), we shall prove the following lemma.

LEMMA 4. The partial orderings in X and X’ are anti-symmetric.

Proof. We need only prove that if 0 _< x and x _< 0, where x e X, then
x 0. Define f A(x); hence, 0 _< f and f _< 0, where the symbol 0 here
refers to the zero functional in X’. By definition 0 _< f(y) and f(y) _< 0
for all y e K. Since X K K, it follows that f(z) 0 for all z e X; hence,
f 0. Therefore, x B(f) O. In the course of the preceding remarks it
was shown that if 0 _< f and f _< 0, wheref e X’, thenf 0. Thus, the lemma
is proved.

DEFINITION 5. For each x, y e X we define E(x, y) A(x)(y), where
the right-hand expression denotes the value of the functional A(x) at y.
It is clear that E is a bilinear functional defined on X X such that
E(x, y) >_ O for all x, y e K. For eachxeXwedefineF(x) E( ., x). It
is easy to verify that F is a positive linear transformation mapping X into X’.

gLEMMA 6 If X e X and x O, then there exists f e such that f(x) O.

Proof. Define g A (x). Since x 0, it follows that g 0, which means
there exists y e K such that g(y) O. Definer F(y) K’. Now

f(x) F(y)(x) E(x, y) A(x)(y) g(y) O.

LEMMA 7. The mapping F is one-to-one.

KProof. If x e X and x 0, then by Lemma 6 there exists f e such that
f(x) O. If we define y B(f), then F(x)(y) A(y)(x) f(z) O.
Hence, F(x) O.

DEFINITION 8. A non-empty subset M of any partially ordered set is
said to be down-directed if for every x, y e M there exists z e M such that
z _< x and z _< y. The term up-directed is defined by reversing the inequalities
in the preceding statement. A non-empty subset M of K is said to be directed
to 0 if M is down-directed and if inf M 0. (More detail on these matters
may be found in Definition 1 of [2] or [3].)

LEMMA 9. X is Dedelcind complete. This means that if M is a down-
directed subset of K, then inf M exists.

Proof. Since X’ is always Dedekind complete and X and X’ are order
isomorphic to each other, X must also be Dedekind complete.
The term "Dedekind complete" is due to McShane [5, pp. 9-11].

LEMMA 10. The mapping A is o-continuous. This means that if M, where
M K, isdirectedtoO, theninf {A(x) "xeM} O. The proof below can
be modified to show that B is also o-continuous.
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Proof. Let M be any subset of K which is directed to 0. If we define
M’ {A(x) x e M}, then M’ K’ and M’ is down-directed. Since X’
is Dedekind complete, g inf M’ exists. It is clear that 0 _< g. Now for
every x e M we have g <_ A (x) and, hence, B(g) <_ x for all x e M. Therefore,
B(g) <_ 0 and, hence, g _< 0. By Lemma 4, g 0, which proves that A is
o-centinuous.

LEMMA 11. For each z e K the positive linear functional F(z) is o-continuous.

Proof. Let M be any subset of K which is directed to 0. Puttingf F(z),
we want to show that

inf{f(x) "xeM} 0.

Now for ech x e M we hve ](x) A(x) (z). Since inf A(x) x e M} 0
nd M is down-directed, it follows that

inf {A(x)(y) xeM} 0

for 11 y e K. Since z e K, it follows that

inf{f(x)’xeM} 0,

which proves that F(z) is o-continuous.
We now mke few comments in preparation for the min theorem. In the

min theorem we will assume that X is complete vector lttice (i.e., that
every non-empty subset of K hs n infimum). However, it is not necessary
to mke exactly this ssumption bout X. For example, we could ssume
that X hs the decomposition property in which cse X is complete vector
lttice [7, p. 27]. Since X nd X re order isomorphic to ech other, it
follows that X is lso complete vector lttice.

If X is vector lttice, then we write x+ x Y 0, x- (-x)+, Ix]
+ + x-. Note that x x+ x-; this differs from Birkhoff [1, p. 219].
We now point out by means of n example that even if X is complete

vector lttice, the biliner functional E (see Definition 5) my not be n
inner product. Let X be the rel linear spce of 11 triples of rel numbers
which is prtilly ordered componentwise; hence, X is u complete vector
luttice. It is esy to show that X is exactly the sme s X in the sense that if

x (a,a2,a)eX and f (,2,)eX’,
then

Now let us define A X X’ nd B X’ X s follows"

A(x) (a,ai,a2) forx (ai, a2, a);
B(f) (2,B,B) for f= (,2,B).

Putting x (1, 0, 0) and y (1, 0, 1), it is easily seenthat E(x, y) E(y,x)
and E(x, x) O.
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LEMMA 12. Let X be a complete vector lattice. For any w K there exists a
positive linear transformation P X X which has the property that

P(x) sup{(nw) ^ x n 1,2,3, ...} for. all x e K.

Proof. See Nakano [6, pp. 41-43].
The positive linear transformation P defined above is called a projector by

Nakano. The essential properties of projectors are intuitively obvious and,
therefore, we will use them without comment. Detailed proofs of these
properties can be found in Nakano [6, pp. 41-54].

THEOREM 13. Let X be a complete vector lattice. If E(x, y) 0 whenever
x ^ y O, then the above-stated conjecture is true with. E(., as the inner
product.

Proof. First let us note that if w K and P is the projector determined by
w as in Lemma 12, then

E(P(x), w) E(x, w) and E(w, P(x)) E(w, x)

for all x e X. This follows from the fact that (x P(x)) h w 0 forall
x e K; hence,

E(x- P(x), w) 0 E(w, x- P(x))
for all x K. Since X K K, the desired equalities are obtained.

ZLet us now take any w e K with w 0. Since F X - (see Definition
5) is one-to-one by Lemma 7, F(w) f eK’ and f 0. Consequently,
there existsz > wsuch thatf(z) > 0. Nowf(z) E(z, w) E(P(z), w)
f(P(z) ), where P is the projector determined by w as in Lemma 12. Defining
z (nw) ^ z for all n 1, 2, 3, ..., we see that zl _< z
and sup{znl P(z) by Lemma 12. By Lemma 11 f is o-continuous so that
limnf(z) f(P(z)) f(z). However, z <= nw for all n and since
f(z) > 0, there must be an integer m such that 0 < f(z,) < mr(w). Hence,
f(w) E(w, w) > 0. If we take any x e X, then

E(x, x) E(x+, x+) + E(z-, x-) >= 0;

if x 0, then x+ 0 or x- 0 so that E(x, x) > 0. Note also that we have
shown here that if E([x I, Yl) 0, then Ix ^ Yl 0.
Now take any v e K and define u B(F(v)). Hence, E(u, x) E(x, v)

for all x X. Now define w (u v)+ and let P be the projector determined
by w as in Lemma 12. Since P((u v)-) =0, we have w P(w)=
P(u v) ul v, where we put u P(u) and v P(v). Now we must
have E(u, u) E(ul, ux) because (u u) ^ u 0 and E(u,v)

E(ul, vx) because ul ^ (v v) 0. Therefore, E(u, u) E(ul, v)
which means that E(u, u vl) E(ux, w) 0; hence, Ul ^ w 0.
Sinceu > 0andv > 0, it follows that u > (u- v)+ w;hence, u P(u) > w
sothat0 u ^ w w. Sincew 0, it follows that u < v. NowE(u,v)
E(v, v) which means that E(v u, v) 0; hence, 0 (v u) ^ v v u.
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Since u v, we have E(v, x) E(x, v) for all x e X. Since v is any element
of K and X K K, it follows that E(x, y) E(y, x) for all x, y X.

Thus, we have shown that E(-, is an inner product for X. It is obvious
that E(., has property (a) of the conjecture. Iff K’, define x B(f) K.
Hence, f A(x) E(x, ), so that E(., has property (b).
We must now show that X is norm complete with respect to the norm

II" determined by the inner product E(x, y). Let Ixl be a Cauchy se-
quence of elements from X. Using the Cuchy-Schwrz inequality, we
that limn_ E(x, y) f(y) for 11 y X. By Nakano’s theorem [6, p. 251]
it follows that f X’. Let us define x B(f) so that f E(x, ). Puttin
a=sup{]lx,--zll’n= 1,2,3,...} and 5= sup{llx,-x,ll’n>_m},
we obtain by elementary computations that

Therefore, for each fixed rn we have lim sup x x =< aS. Since
{x} is a Cauehy sequence, it follows that lim 5 0; hence,
lim x x 0. This proves that X is norm complete nd ,omplt
the proof of the theorem.
There are at least two essentially different ways of partially ordering a

real Hilbert space Y so that Y and Y’ are order isomorphic to each other. We
assume that Y # {0}.

I. If Y is a real Hilbert space, then Y is isomorphic to the space Y0 of
all real-valued functions x(-) defined on. some set ft such that

Taking the pointwise partial ordering of functions in Y0 and carrying this
back to Y by the isomorphism, it is easily shown that Y is a complete vector
lattice. (We are implicitly assuming that Y0 has the usual Hilbert space norm
and that the mappings effecting the isomorphism are actually isometrics).
Since Y is a Banach lattice, we must have Y’ Y*; see [7, p. 44]. But Y is
naturally isomorphic to Y* with one mapping A Y - Y* effecting the iso-
morphism being defined as follows: A (x) (x, for all x e Y. It then fol-
lows by routine calculations that Y and Y’ are order isomorphic to each other.

II. Let Y be a real Hilbert space and take any u e Y with u 1.
Now define K {x x/2 (x, u) >_ z II}. It is easily shown that K is a

closed, generating cone with u as an interior point. We may then partially
order Y by defining x _< y to mean that y x e K. We will show later that

11. + v --< etl + for K; K is [7, p. 301.
Referring to Corollary 5.5, p. 24, and Theorem 6.7, p. 31, of [7], we see that
Y’ Y*. As in the preceding example Y is naturally isomorphic to Y* with
the mapping A defined as it is there. To show that Y and Y’ are order
isomorphic to each other, we need only show that A (x) >_ 0 if and only if
x>0.
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let us take any Xo, yo Y such that x0 > 0 and yo > 0. Since

o < x0 < x/2 <xo,
there must exist real number a > 0 such that a(x0, u) 1. Similarly,
there exists real number > 0 such that (y0, u) 1. Define x aXo
and y y0. Since x, yeK, we must have

Throfoe, x, u 1 ,,d S, u . Consequently,

--1 (x-- u,y-- u) (x,y) (x,u) (y,u) + (u,u)

(x,, y) 1;

hence, 0 (x, yl) a(Xo, yo). Since a > 0, we have 0 (x0, y0). Thus,
wc have 0 (x, y) for ll x, y K. From this it follows that if x 0, then
A(x) (x, .) O. For guyx, yeKwehve

(z + y, x + y) (x, x) + 2(x, y) + (y, y) (x,

hence, lx+y Ilxl]. From this it follows tht

lll+ Ilse[+sl forU

LetusnowtgkenyxeXsuch thtx 0 and (x,y) 0forlly
We first show that (x, u) > 0. Assume the contrary; i.e., (x, u) 0. Now
define a x [- nd put x ax. If we define y u- x, then y, 2
and (y, u) 1, which means that y K. But

(z, s,) (, ) (x, x) - < o,
which contradicts the fact that (x, y) 0. Hence, we must hve (x, u) > 0.
Now tke > 0 so that (x, u) 1 nd then put z fix. We will now show
that z ul 1. Assume the contrary; i.e., llz u > 1. Putting

= z-u --1 nd w=u+(u-z),
we have
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-1=1--3’ <0,

which contradicts the fact that (z, w) >_ 0. Hence, we must have

 -ull_<l.

Since llz[ [In ]z + ]z u[[2 2and (z,u) 1, it follows that x=
z k 0;hence, x k 0. This means thatifA(x) (x, .) k O, thenx k 0.
The second example does not give a partial ordering equivalent to that in

the first example except in the ease that Y is one- or two-dimensional. If Y
is at least three-dimensional and is partially ordered as in the second example,
then Y is not a vector lattice. We leave it to the rea.der to verify this.
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