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In [3] M-E. Hamstrom and E. Dyer showed that the identity component
of the space of homeomorphisms of an annulus onto itself, keeping the bound-
ary pointwise fixed, is contractible. In [4] Hamstrom showed that, denoting
by H the identity component of the space of homeomorphisms of a disc with
n holes onto itself, keeping the boundary pointwise fixed, we have (H) 0
for all i 0.

This paper shows that H is contractible for all n.

Re,naris. On all function spaces we shall use the compact-open topology,
and refer the reader to Hu [5] for results. In particular, for the space XY,
where X and Y are both compact metric, the induced metric topology agrees
with the compact-open topology, [5, p. 102].

The theorem is proved in two steps, which are summarized here.
Define H* to be the identity component of the space of homeomorphisms

of a disc with n holes onto itself, keeping the boundary, and also one interior
point a, pointwise fixed.

,
LEMMA 1. Hn-1 deformation retracts onto Hn-.

(A sketch proof follows. The details are given later.)
To every homeomorphism h in H_ we assign continuously a point s(h) in

in the interior of the universal cover of the manifold which lies above the
point h(a).
To every point of the interior of the universal cover we assign a canonically

defined path to a chosen base point lying above a, and lso a canonical isotopy
of the manifold, keeping the boundary fixed. This isotopy starts at the
identity, and makes the projection of the point follow the projection of the
canonical path to the point a. By following a homeomorphism h with this
isotopy for the point s(h) we get a canonical isotopy of h to a homeomorphism.h*, which keeps a fixed. This h* lies in H_..LEMMA 2. Hn-1 is homotopy equivalent to H

(The details of this proof are given later.)
We define an inclusion i H - H._ by filling in one hole of the disc with n

holes and extending h H over this by the identity. Taking a as the centre
of this filled-in disc, the extended map is in H_.
The reverse map, r" H_I -- H is constructed using a technique of H.
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Kneser [6]. This relies on the existence and uniqueness of certain conformal
maps of annuli to produce canonical homeomorphisms of a standard annulus
onto any other, given the map on the boundary.
From these two lemmas the theorem will follow by induction on n if H0 is

contractible. This, however, is just Alexander’s theorem for the deformations
of a 2-cell, [1], and so the induction is complete.

Proof of Lemma 1. Take a core C consisting of lines oil the unit lattice in
the plane, and thicken it as shown to form An_l, a standard disc with n 1
holes. Choose the point a on C and an arc J ioiling a to the point b on the
boundary as shown. Choose a point above b in the universal cover of the
manifold, )in_l. Then lift the arc J to )I_1 to define 5 above a in .

For.any h e H_I the arc hJ ioins b to h(a). Lifting this gives an arc in n-
ioining to a point s(h) above h(a). Under the compact-open topology s
gives a continuous map

Suppose f I -- A_I is a path. (See Figure 1.) Then we say that a con-
tinuous family of homeomorphisms h, in H_ lollows f from f(0) to f(1) if

h0 is the identity

ht(f(O) f(t) for all t.

If two paths can be composed, then this defines uniquely a composition of
the two families to give a family which follows the new path.

Note. If we regard the pathf as an isotopy of the pointf(0), then the family
h is an extension of this isotopy to the manifold.

The core C divides A_ into n annular regions, B, B, each bounded
by C and by one boundary curve C, Cn of A_l. Of these regions,
n 1 are square with C outside, and the other is rectangular with C inside.
Extend each of these regions an equal distance on the other side of C as shown,

=0
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FIGURE 2

to form new square or rectangular annuli, with a part of C as a central core.
(See Figure 2.) For each annulus define a family of parametrising rectangles
S(X), each side of S(k) being at a distance k from C normalised so that the
boundary curve in A_I is S( 1 ), and the other boundary curve of the extended
region is S( 1).
Any point x e B--C lies on some S(X) for 0 _< < 1. For such x we define

f(x, t) e H_I, which maps the annulus

{S(1), S(X)}

linearly onto the annulus

and

{S(1), S((1 t)x)},

{8(X), 8(-- 1)}

linearly onto
{8((1 t)X), 8(--1)},

and is the identity outside the region. The maps f(x, t) follow a straight line
path, which we shall call P(x), from x to a point of C. We have a continuous
map

f: (B.- C) X I--->H,,_

which sends C X I to the identity. Hence we have a continuous map

F int A_ X I - H_.

Since the linear structure of An_ lifts to the universal cover, this defines an
obvious map

i int -i X I -- H_.The paths P lift and define a continuous map e int/_ -o where e(2) is
the end-point of the path P(2).

This produces and follows paths from the interior of the manifold to the
core. We now show how to follow paths from points of C to the base-point a.
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For each side of a square in C we have two distance-preserving linear map-
pings h I - C, depending on the orientation, so there are 6n + 2 such h. hi
is then a directed straight-line segment of C. Take a rectangular area in
surrounding hi as shown. (See Figure 3.) For any two points hx, hy in
define a homeomorphism of the rectangular area by ioining hx and hy to the
four corners of the rectangle and mapping the four triangles formed from hx
linearly to those formed from hy. Extend this to A_I by the identity, to give
hx(x, y) in H_I, which depends continuously on x and y. Define the con-
tinuous map

g: hi X I -- H_Iby gx(hx, t) hx(x, (1 t)x). Then gx(hx, t) are homeomorphisms which
follow the obviously parametrised path from hx to
The linear and local metric structures of C lift to ( in an obvious way. For

any two points 2 and in , there is a unique piecewise linear arc joining them,
of length p(2, ). In particular, for each 2 e , we have the unique piecewise
linear arc

[o, (a, )1 -->

such that 2(0) a, 2(p(a, 2) 2. Then g2[i, i + 1] is a component of the
inverse image of hi for some h.

Let p(, 2) m + v(2) where 0

_
v(2) < 1. Then the arc t() splits up

into m + 1 linear segments, and hence can be represented as the sum of m + 1
linear segments each lying above some hi. By using the appropriate function
gx, there is, for each segment, a family of homeomorphisms which follows the
projection of the segment from its initial point to its final point. These seg-
ments combine to form the path t(2), with the parametrisation of arc length,
normalised so that the total length of the path is 1. Similarly we combine the
families of homeomorphisms to form one family following the projection of
t(2) from x to a.

Since the function hx(x, y) is continuous in x and y, and becomes the identity
when x and y coincide, the definition of the family is the same when p(, 2)
rWl, whetherwetakem=rand= 1, orm=r+land=0. Hence the
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families above define globally a continuous function G X I -o H_I, where
G(4, t) is the family defined by the path ().
For a point inint _1 we have the paths P() from to e(), and t(e()

from e() to 5. Perform the first path in time [0, 1/2] and the second in [1/2, 1]
for each . Then the homeomorphisms corresponding to each path combine
to give the continuous map

K int .,_ X I - H_with K(, t) following the projection of the combined path from y to a.
Note that if 5 then both paths become the constant path and K(, t)

identity, for all t.
The following composition r will give the required deformation retraction by

rl rlH,_ X 1:

H_ X I- Hn_l X H_I X I--H_ X int

__
X I--H_ X H_-H_I

(h, t) (h, h, t) (h, s(h), t) (h, K(s(h), t)

the last map being composition f X g - g f. Put rt r lH,_ X t. Then
r0 is the identity, for r(h, O) K(s(h), O) h h, since K(, 0) identity
for all . K(s(h), t) was defined to follow a path from the projection of s(h)
to a, and since s(h) projects to h(a), then

K(s(h), 1)(h(a)) a.

So r(h, 1)(a) a, therefore r Hn_ are homeomorphisms which keep a fixed.
s(h) 5 for h e H,_, since hJ J for such h, and so r(h, t) h for all t,

H,_I is the identity. Hence r will provide the deformation retractioni.e. rtl *
when we show that its image lies in H,_. This follows immediately from
the fact that rl is continuous and H,_ is connected. Then the image lies only
in one component of homeomorphisms keeping the boundary of An_ and a,
fixed, but we know that some of it lies in H,_, and so it all does.

For the second lemma we require a theorem about uniqueness and con-
vergence of certain maps of annuli, similar to one quoted in [3].

It is a standard result in complex variable theory, see R. Courant [2, p. 38],
that, given two non-intersecting Jordan curves , and , in the plane, with- inside , then there is an annulus B(r), 1 _< z

_
r, and a homeomorphism

w taking the annulus B(r) onto the annulus G defined by - and ,., which is
conformal on the interior of B(r), and is uniquely determined by the orienta-
tion of the boundary and the image of one boundary point.
An important extension of this result is the following continuity property.

Suppose that Gn is a sequence of annuli, point sets bounded by two Jordan
curves, whose boundaries, .,, converge to the boundary 7 of an annulus G in
the sense of Frchet. This means that the boundaries converge to , as sets,
and if two points P, and Q, on , tend to P and Q on ,, then the whole arc
P, Q, must tend to one of the two arcs PQ. Then the values of r, for G. con-
verge to the value r for G, and if the image of a convergent sequence of bound-
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ary points, one from each B(r,,), is prescribed as a convergent sequence of
boundary points of the corresponding G, then the resulting homeomorphisms
w will converge uniformly to w.
The Riemann mapping theorem, which gives the similar result for discs

certainly has this continuity property [2, p. 191]. But we can use this theorem
to make the boundaries of the annuli analytic. The harmonic functions used
by Courant to produce the map to B(r) can now be extended across the bound-
ary, and an examination of these gives the continuity property.
To define a canonical map--no longer conformal--which takes prescribed

boundary values on an annulus we proceed as follows.
Suppose R is the annulus 1 _< z -< 2, and fl, f2 are homeomorphisms of the

inner and outer boundary curves onto themselves, which have the same orien-
tation. Then these extend to a homeomorphism of R, given by

(r, 0) - (r, (2 r)(f(O) + 2n r) - (r 1)(f2(O) + 2n2r)).

This is uniquely determined by f and f, and by n n, or by the angle
change along the image of an arc in R ioining the two boundary components,
for example that part of the real axis 1 _< x _< 2.
To map the annulus R onto a given annulus G with prescribed similarly

oriented homeomorphisms g and g on the boundary, we find r, and
w B(r) - G as above, which restricts to wl and w. on the boundary. Choose
f w o g, i 1, 2, and extend to the homeomorphism F(n) of R to itself,
where n n n. Shrink R radially to B(r) and follow this with w. The
combined map is a homeomorphism of R to G which uniquely determined on
choosing n. This can be done by choosing the angle change along, say, the
image in G of the arc r, 1 <_ x _< 2, in R.
The continuity property above now shows that if fi and gi are sequences of

similarly oriented disjoint homeomorphisms of S into the plane which con-
verge uniformly to f and g, and if F, F, are homeomorphisms of R extending
f, g ;f, g, as above, then if the angle change along the arcs F(r) converges to
that along F(r), the sequence F will converge uniformly to F.

Since, for metric spaces, sequential continuity implies continuity, we have a
continuous map from the (space of similarly oriented embeddings of a pair of
disjoint circles into the plane, with one inside the other) X (real line), repre-
senting the angle change, into the space of embeddings of an annulus in the
plane, if we regard such embeddings as having the metric topology.

Proof of Lemma 2. Let A be a disc with n holes embedded in the plane so
that one of the holes has z 1/2 as its boundary curve, and 1/2 _< ]zl _< 2 lies
in A, with the point (2, 0) lying on a boundary curve. This implies that
n > 0. Let An_I be A with the disc z -< 1/2 filled in, and choose the origin as.
the point a. Then the inclusion i Hn - H_ is defined simply by extending
g e H by the identity over zl <_ 1/2.,

Let h e H_I. Then h maps the circle zl 1 into a Jordan curve a(h)
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around a. Let p(h) be the distance from a to this curve, and choose
e(h) min (1/2, 1/2o(h)). Then the circle (h), z e(h), lies inside the
Jordan curve a(h). We have a continuous map from H_I to homeo-
morphisms of two disjoint circles into the plane taking zl 1 to a(h), and
’.zl 1/2 by radial contraction to (h).
Let the angle change under h along the arc 1 _< x 2 be 0(h), and then

specify that the angle change along 1/2 _< x _< 1 shall be -0(h). This defines
uniquely a homeomorphism from the annulus 1/2 _< z _< 1 to the plane, taking
the boundary as prescribed. Since 0 depends continuously on h then, by the
continuity property above, so does this homeomorphism. We can now define
a map on A using this one on 1/2 _< z _< 1, and h on the rest of A. Follow-
ing this with a map shrinking the annulus (h) <_ zl _< 1 linearly onto
1/2 <_ zl _< 1, gives a homeomorphism r(h) from A to itself which keeps the,
boundary pointwise fixed, and depends continuously on h Hn_I. Choosing
h as the identity we have (h) 1/2, 0(h) 0 so that the map on the annulus,

H_ is connected, andand hence the whole map r(h) is the identity. Since *

r is continuous, r(h) lies in the component of the identity, i.e. H, for all h.
We want to prove

,
r i - 1 Hn H and i r

__
1 H_ - H_.The annulus 1/2 _< zl _< 1 is a collar of a boundary component of A, and

hence there is a continuous family of homeomorphisms ht, [0, 1], shrinking
A off this collar, with h0 being the identity, and ht mapping the boundary
z 1/2 linearly to lzl 1/2 -[- 1/2t. This. provides a homotopy

1 a H -- Hby taking a homeomorphism g on A into g on h An -- An extended by the
identity over 1/2 _< z -< 1/2 1/2t. Then a sends g to a homeomorphism which
is the identity on 1/2 _< z _< 1, and this is unaltered by r i. So

roiol_roioa= a,l.

This proves the first part of the lemma.
Define a map f from H*_I to itself, so that f(h) agrees with h outside

[z 1, maps the disc z -< 1/2 by radial contraction to [z _< e(h), and fills
the annulus in between similarly to the map r(h). There is then an obvious
homotopy f i r.
Now define a family ft 0 _< 1, of such maps, which have ft(h) h out-

side z t, and send z -< 1/2t to z -< s(h, t), filling the annulus between as
bove. (See Figure 4.) By the continuity property of the maps of nnuli,
this gives a continuous map (0, 1] X H*_-- H_. Taking f0 H_I -- H_to be the identity gives a map

f" I X H_ -- H_.It remains to show that this is continuous at (0, h).
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The map ft{h)

ft(h)

FmuE 4

Given > 0, choose such thut diam h(Iz _< i) < e/4. Choose a neigh-
bourhood of h, rudius e/4, then diam h’([z <_ t) < 3/4 for h’ in this neigh-
bourhood. For x in An_ outside

Ill(0, h)(x) f(t, h’)(x)l h(x) h’(x)]] < /4.

For x inside zl ,
f(O, h)(x) f(t, h’)(x)l <_ f(O, h)(x) 0 +

< /4 -t- 3/4.

So f(0, h) f(t, h) < e. Hence the map f is continuous and so the lemma
is proved.
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