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I. Introduction

Let X be non-empty set, 6t, -lgebr of subsets of X nd X, -finite
mesure on 6t. Let L(),) be the collection of ll rel-w!ued, ),-essentially
bounded 6t-mesurble functions defined on X, nd let a(},) be the collection
of ll finite, signed measures on ( which re bsolutely continuous to
Let M be n operator stisfying the following conditions"

M1. if re L(k) then Mf Lo()),
NI2. f e L() nd f _> 0 .e. (X) imply Mf
M3. f e L(k) nd f. $ 0 .e. (k) imply Mf

Based on Nil, M2 nd M3 we cn then define M for ny
signed mesure stisfying

f M(dx)f(x) f (dx)Mf(x)

for every f e L(k). ThenM is again an element of a(). Such an operator
is a k-measurable M:arkov operator of E. Hopf if an additional condition
M1 _< 1 u.e. (k) is satisfied (cf. [4]). An M stisfying M1, M2 and NI3 shall
be called a )-measurable positive operator or simply, a positive operator. In
this paper, the main concern is the "periodic" or "cyclic moving" behavior of
sets. If X is discrete nd is the measure which assigns measure 1 to every
singleton then a positive operator M is just a non-negative matrix M(i, j).
If M(i,j) is irreducible, a period for M(i,j) may be defined in the same manner
as that for probability matrix. In [8] the present author has treated the
period behavior of an ergodic conservative h/Iarkov operator. In this paper
the "periodic" behavior of a positive operator is investigated. It is discovered
that the irreducibility of M alone is enough to enable us to study the "cyclic
moving" behavior. Notions of "},-continuity" and the more general "quasi
h-continuity" for u positive operator are introduced. If an irreducible M is
quasi N-continuous then M has a positive integer as its period. This number

is characterized by the following fact" the space X is partitioned into
cyclic moving sets C,, Cs, C each of which is irreducibly M-closed for
n 1, 2, --.. This fact has been proved for u )-continuous, egodic, con-
servative operator in [8]. This work, again, is inspired by Doeblin [2] and
Chung [1] although the method used here is quite different. In Section III,
positive operators with transition functions ure studied. This kind of positive
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operators arises from Markov processes and branching processes. The rela-
tion between quasi k-continuity of the operator and properties of transition
functions is studied. It is shown for instance, that if the probability transi-
tion function satisfies a condition of Harris (see [6]) then the associated
Markov operator is irreducible and quasi k-continuous. This fact enables us
to apply a result of Section II to establish a period for the operator.

II. Theory of periods for an irreducible positive operative
In this section all subsets of X are elements of 63 and all functions on X are

63-measurable. Unless otherwise indicated, for two sets A, B, A B, A B
are to mean k(A B) 0, k(A/ B) 0 respectively. For two functions
f, g on X, f g, f _< g are to mean that the equality and the inequality
respectively, are satisfied except on a k-null set. Occasionally we still indicate

a.e. (k) or _< a.e. (),) for emphasis. A set A is null or non-null according as
k(A) 0 or k(A > O. We shall always assume that 63 is non-trivial, i.e.,
63 contains at least one set A such that (A) > 0 and (X A) > 0. For
any set A, 1 is to represent the function which is equal to 1 on A and 0 on
the complement i ofA. a+(k) is to denote the collection of all finite measures
which are absolutely continuous to k. For any e (+(),), the support of, supp is the set of all points x e X such that (d/dk)(x) > O.

DEFINITION 1. A set C is Mk-closed, where k is a positive integer, if
Mklv 0 a.e. (k) on C where is the complement of C. A set is closed if it is
M-closed.

LEMMA 1. If {Cn} is a sequence of M-closed sets then ,, C, and [J,, C,, are
M-closed. An M-closed set is also M’Lclosed for m 1, 2,

Proof. We shall prove the lemma for k 1. For (k) almost all x e f’l C,
we have Mle(x) 0 for n 1, 2,.... Since Mluv <_ ,,MI and

Mlv 0 on f3 C, we have

0 Mlue Mla--
and f’l C is M-closed. The fact that LI C is M-closed follows from the ob-
servation Mlu--- _< Mle for n 1, 2, therefore, Mlu- 0 on C
forn 1,2,....

If C is M-closed, then Mlo lo.Mlo, therefore, M21o M(lv.Mle) ._<
(Mlo). a where a is a number for which M1 _< a. Hence M21o 0 on C and
C is M2-closed. Proceeding in the same manner, we arrive at the conclusion
that C is Mm-closed for m 3, 4, ....
DEFINITION 2. An Mk-closed set C is decomposable if there are two non-

null M-closed sets A, B such that A u B c C and A n B 0 (empty set).
An M-closed set is indecomposble if it is not decomposable. An M-closed
set C is irreducible if it is non-null and if A c C, ),(A) > 0, X(C A) > 0
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imply A is not M-closed. M is irreducible if X, as an M-closed set, is ir-
reducible.

It is clear that an irreducible M-closed set is indecomposably M-closed.
LEMM_ 2. If M is irreducible then Mf > O, provided f > 0 and f L(k).

It follows that M’I > 0 for n 1, 2, ....
Proof. LetA [x’Ml(x) 0]. ThenM1. 0onA for every setB,

hence every subset of A is closed. Since M is irreducible, either N(A) 0 or
)(X A) 0. If)(X A) 0, then there is a set D A such that
h(D) > 0 and )(A D) > 0 since we assumed that (B is non-trivial. D being
closed clearly contradicts the hypothesis that M is irreducible. Hence
)(A) 0 and M1 > 0 a.e. ()). Now, let f > 0 a.e. ()) nd

E, [x" f(x) > l/n], G [x" Mf(x) 0] and n, [x" il.(x) 0];

thenGDforn 1, 2,.... NowMl " Ml, henceM1 0 onGand
)(G) 0 follows immediately.

LEMMA 3. If a set C is decomposably M-closed then C is also decomposably
M*’-closed for an arbitrary positive integer n. If C is M*-closed and inde-
composably M*’-closed where n is a positive integer, then C is also indecomposably
M=closed.
The above lemma follows immediately from Lemma 1.

LEMMA 4. If, , are elements of C+()) such that t is absolutely continuous to
, then supp tiM* supp M for an arbitrary positive integer k.

Proof. We shall prove for ]c 1. Let g d/d,. Let
g,(x) g(x), if g(x)

_
n;

n, otherwise.

Let be defined by (E) f g d. Then t

_
n, hence ,M

_
nM so

that supptM supp ,M. Now for every set E, t,M(E) tM(E), hence
dt,M/dX’ dtM/dk. Hence

suppM (J suppM supp M.

We remark that, for two measures , t in a+()), is absolutely continuous to
if and only if supp supp . Thus, Lemma 4 may be stated as follows"
M is absolutely continuous to M if is absolutely continuous to .

It follows from Lemma 4 that if supp supp , then supp M suppM
DEFINITION 3. For any set A, define

Fo(A) A, F,(A) suppM" for n 1, 2,...,

F(A [J:_-0 F,(A
where is an element of a+()) which has A as its support.
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By Lemma 4, particular , chosen in Definition 3 does not matter and
Fn+l(A) Fl(Fn(A)) forn 0,1,2,-...
The following lemma follows immediately from Lemma 4 and the fact that

the support of the sum of several measures is equal to the union of the supports
of measures.

LEMMA 5. If A1, A2 are two sets such that A A then F,(A) F,(A)
for n O, 1, 2, therefore F(A1) F(A). If Ai} is a sequence of sets
then

F,(iA) F,(A) and [JFn(Ai) Fn([JA) for n 0,1,2, ....
LEMMA 6. 1. A set C is Mk-closed if and only if C Fk( C). If C is M-closed then F( C) Fk( C) and F( C) is M-closed for n O, 1, 2, ...
2. If a set C is M-closed then

C t F( C) t t Fk_I( C) and C n F( C) a F_I( C)

are M-closed.

3. For any set A, F(A is the smallest closed set containing A.

Proof. If C is M-closed, then MIE 0 on C for every subset E of (.
Hence, if e a+()) has C as its support then ,M(E) 0 for every subset E
of (. Hence Fk(C) suppM c C. Conversely, if Fk(C) C and if

e a+(k), supp C then supp M F(C) C. Hence M(() 0 for
every , e a+()) with supp C. This implies that Mle 0 a.e. ()) on C.
If C is M-closed, C F(C), then, by Lemma 5,

F,( C) Fn+( C) F(F,( C) ).

Hence F(C) is also M-closed.
Let C be an M-closed set, then, by Lemma 5,

FI(C u F(C) u u Fk_l(C))

Ft(C) u F(C) u u F(C) C u F(C) u u F_(C),

F(C F( C) F_( C)

F(C) F2(C) ... F(C) C FI(C) n... n F_(C).

Hence both sets C F(C) t Fk_(C) and C a F(C) a a F_(C) are
M-closed.
For any setA. MI+() 0onF,(A) forn 0, 1, 2,.... Hence

M1-7- 0 on F,(A) for n 0, 1, 2, .... Therefore M1-7 0 on F(A)
and F(A) is closed. If C is an arbitrary closed set containing A, then
F(C) E(A) byLemma5, ttowever,C F(C). HenceC F(A). Thus
F(A is the smallest closed set containing A.
The following lemma follows from Lemma 2 and Lemma 6.
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LEMMA 7. If M is irreducible and if A is non-null, then F,(A is non-null
for n 1,2,....

COnOT.T.IY 1. M is irreducible if and only if
Z [x" ]n=l MI(x) > 0]

for every non-null set E.

Proof. If M is not irreducible, then, there is a non-null closed set C such
thatB X Cisnon-null. WehuveMnl, 0onCforn 1,2, ...sothat

CcX- [x" ]:=MI(x) > 0] and X [x" :=Ml(x) > 0].

Suppose that M is irreducible. If there were a non-null set E such that

Z- Ix" ’:=M"l(x) > 0] D

is non-null, then M"I 0 on D so that F,(D) n E 0 for n 1, 2, ....
Hence

F(F(D) n E U:=F,(D) n E 0.

By Lemma 6 and Lemma 7 F(F(D)) is a non-null closed set which con-
tradicts the supposition that M is irreducible.

LEMMA 8. If M is irreducible and if C, C. are two non-null, disjoint,
M-closed sets, then F,(C), F,(C) are also two non-null, disjoint, M-closed
sets where n is an arbitrary positive integer.

Proof. If C, C are two non-null M-closed sets then F(C), F(C) are lso
two non-null, M-closed sets by Lemma 6 and Lemma 7. Now suppose that
F(C) n F(C:) is non-null. Then F_(F(C) n F(C)) is non-null by
Lemma 7. However, by Lemma 5 and Lemma 6.

F_(F(C) n F(C) F(C) n F(C) C n C.

Hence C n C. would be non-null. Hence the fact that C n C is null implies
that F(C) n F(C) is null. The conclusion for an arbitrary positive integer
n follows easily from mathematical induction.

LEMMA 9. Let M be irreducible. Then, if E is decomposably M-closed, so is

F,(E); if E is indecomposably M-closed, so is F,(E). k, n are two arbitrary
positive integers.

Proof. If E is decomposably M-closed, then, there are two non-null M-closed sets B und C such that B n C 0 and B u C c E. By Lemma 8, F,(B)
and F,(C) are also non-null, disjoint, M-closed sets. By Lemma 5, F,(B) u

F,(C) c F,(E). Thus F,(E) is decomposably M-closed. If E is M-closed
and F,(E) is decomposably M-closed then there are two non-null M-closed
setsD andGsuchthtDu G c F,(E), D n G O. Letmbeupositive
integer such that mk > n. Then

F_,(D) c F(E), F_,(G) F(E).
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Both Fmk_,(D) and Fmk_,(G) are Mk-closed, non-null and mutually disjoint by
Lemma 8. E is also Mink-closed, hence F,(E) c E by Lemma 6. Hence

F.-n(n u F._( G) E

and E is decomposably M-closed.
LEMMA 10. If M is irreducible and C1, C C, are M-closed, non-null

and pairwise disjoint, then n

Proof. LetG CuFI(C,) u u Fk_( C,), m 1,2,...,n. By
Lemma 6, G are closed, n:=t G 0 since M is indecomposable. Now

n:= G u(il.....,) IFI(C) n n Fi.(C,)}

where (il, i,) is n rbitrry n-tuple of integers lying between 0 nd
k 1. There exists one n-tuple (i, i,) such that

F(C) n n F.(C,)

is non-null. Hence i, i, must be distinct integers, for to be other wise
would imply that the set F(C) n n F.(C) is null by Lemm 8. Hence

LEMMA 11. IfM is irreducible and k is a positive integer then there is an inde-
composably M-closed, non-null set.

Proof. If X is not indecomposably M-closed, then there are two disjoint,
non-null, M-closed sets C), C). If neither C) nor C1) is indecomposably
M-closed, then there are four pairwise disjoint, non-null, M-closed sets
C), C:), C), C(), etc. By Lemmu 10, this process must stop after
finitely many times and we obtain an indecomposably M-closed, non-null set.

LEMMA 12. Let M be irreducible and let C be a non-null, indecomposably
Mk-closed set. Consider the following sequence of sets:

1 C, FI(C), F(C), F(C), ....
Let be the smallest positive integer such that C n F( C) is non-null; then

1. for all non-negative integers m, n

(2) Fro(C) n F+(C) n n F+(C)

are non-null, indecomposably M-closed,
2. if Fz( C) n F,( C) is non-null then divides m 1. It follows that divides

k and C, F(C) F_(C) are pairwise disjoint.

Proof. It is clear that (2) is indecomposably Mk-closed. To show tha (2)
is non-null we shall show that (2) is non-null for m 0 and then apply Lemmas
5 and 7.

We know that C n F(C) is non-null. Assume that

C n F(C) n n Fz(C)
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is non-null; then

F(Cn F(C) n n F(C)) F(C) n F(C) n n F(+)(C)

so that
F(C) F2(C) l fl F(/+i)(

is non-null. If C n F(C) n n F(+)(C) were null then

CnF(C) n... nF(C) and F(C) nF(C) n... nF(+)(C)

would be two disjoint, non-null M-closed sets both contained in F(C) which
contradicts the fact that all sets in (1) are indecomposably M-closed
Lemma 9).
Suppose F(C) n F(C) is non-null and m > 0. Let m =nti + d

where n, d are non-negative integers such that 0 _< d < ti. By the preceeding
result, F(C) n F+(C) is non-null. Then F(C) n F+(C) n F(C) is non-
null for if it were otherwise then F(C) n F+(C) and F(C) n F(C) would
be two disjoint, non-null, M-closed subsets of F(C) which is impossible. If
d > 0, then C n Fe(C) is null, which in turn implies that F+n(C) f] Fro(C) is
null (Lemma 8). Hence d 0 and divides m 1.

THEOaEM 1. If M is irreducible and ] is a positive integer, then there is a
unique positive integer ( c), which divides , such that

1. X is partitioned into non-null, indecomposably M-closed sets
C, C:, ..., C withF(Ct) C, F(C.) Ca, ..., F(C) C,

2. each C i 1, , is also indecomposably M-closed but not Me-closed
ford 1,... 1,

3. C, C C} consists of all non-null indecomposably M-closed sets.

Proof. By Lemma 11, there exists a non-null, indecomposably M-closed
set C. Consider the sequence of sets, C, F(C), F(C), .... Let be the
smallest positive integer such that C n F(C) is non-null. By Lemma 12,
t divides k. Let ] l. Let

Co C n F(C) a n F(_I)(C).

Then Co is M-closed by Lemma 6. Co is non-null by Lemma 12. Since X is
irreducibly closed,

X C0uF(C0) u... uF-(C0).

Since Co C, F(C0) F(C), F_(C0) F_(C),

X C0 u F(C0) u u F_(C0) C F(C) u u F_(C).

Sets C, F(C), F_(C) are pairwise disjoint by Lemma 12; hence C Co
and C isM-closed;therefore C F(C). NowC0 F(C),henceC F(C).
Let C C, C F(C), F(C) C, ..., C F_(C);thenC, ,C
satisfy conclusion I of Theorem 1. Since C C is M-closed, C, C are
also M-closed. They are indecomposably M-closed since they are inde-
composably M-closed (Lemma 3 and Lemma 9). None of C is M-closed if
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d < i for C and Fe(C) are disjoint. Now suppose that C’ is an arbitrary
non-null indecomposably M-closed set. Then C’ Ce for some integer d,
1 _< d _< . Let us proceed for C’ as we did for C and let ’ be the for C’.
Since F(C’) F+e(C) for n 1, 2, t’ must be an integral multiple of
i by Lemma 12. Interchanging the rules of C and C’, we arrive at the con-
clusion that must be an integral multiple of ’. Hence ’ and

X C’ u F(C’) u u F_(C’).

Since C’ a C, F(C’) a, C+, F_(C’) a C_, we hve C’ C and
[C, C} consists of all non-null-indecomposably M-closed set.

COROLLARY 2. If M is irreducible, then every non-null indecomposably
M-closed set is also an irreducibly M-closed set for every positive integer k.

Proof. If C is a non-null indecomposably M-closed set, then C must be
one of C, say Ce, of Theorem 1. If C’ is a non-null, M-closed set contained
in C, then C’ is also indecomposably M-closed; therefore it is also one of C,
say Ce, of Theorem 1. d’ must equal d for, if not, Ce n Ce, 0. Hence C
contains no smaller non-null M-closed subset. Hence C is irreducibly
M-closed.

DEFINITION 4. Let M be irreducible and i(k) be the number of distinct,
non-null, indecomposably M-closed sets. Let

(3) i sup [(]c) k 1, 2, 3,...1.

may be a positive integer or -t-. If is finite, we say that M has a
period . If 1, we say that M is aperiodic.

LEMMA 13. Let M be irreducible and m, n be two positive integers such that m
divides n. Let (m (n be the numbers of non-null, distinct, indecomposably
Mm-closed sets and Mn-closed sets, respectively. Then (m) divides (n). Let

(n)/(m). Then each non-null, indecomposably Mm-closed set is par-
titioned into non-null, indecomposably Mn-closed sets.

Proof. Let C be a non-null, indecomposably M-closed set. Consider the
sequence of sets" C, Ft(C), F(C), .... By Lemma 12 and Theorem 1, X is
partitioned into (m) sets C, Ft(C), F(,)_(C) and F(C) n F(C) 0
implies that (m) divides /c j. Let D be a non-null indecomposably
M’-closed set. Then D a Fi(C) for some j, say j 0. Consider the se-
quence of sets" D, F(D), F(D), .... Then X is partitioned into i(n) sets
D, F(D), F(n)_(D) and D F()D. Since D C, F(n)(D)
F(,)(C), C n F(,)(C) . Hence i(m) divides (n). Let (n)/(m).
Now, sets D, F(D), F(,)_(D) are M(’)-closed. Let

C D u F(,)(D) u u F(_)(,)(D),
C. F(D) u F()+t(D) u u F(_)()+(D),

C(,) F()_(D) u F()(D) u u F(,)_(D).
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Then sets C1, C., Ct(m) are M(m)-closed by Lemma 6. It is clear that
C1, C2, C() are pairwise disioint, therefore, all distinct. Each C must
be indecomposably M-closed for to be otherwise would imply that the number
of distinct M-closed sets is greater than 8(m). Hence C1, C2, C()
constitute the totality of all non-null, indecomposably Mm-closed sets. Each
C is partitioned into non-null, indecomposably Mn-closed sets by definition.

THEOREM 2. Let M be irreducible. M has a period d if and only if I is
true.

(I) X is partitioned into d sets C1, C2 Cd such that FI( C) C
F(C2) C3, FI(Cd) C and each C is irreducibly M’*-closed for
n- 1,2, ....
M does not have a period if and only if (II) is true.
(II) There is an increasing sequence of positive integers m m such

that each m divides its successor m+(m+ m.l+ where l+ is a positive
integer) and for every i, X is partitioned into m non-null, indecomposably

C and each C is partitioned into l+ C(+ sets.M’-closed sets C), ,
Proof. If (I) is true, then 8(/) of Theorem i is equal to d provided ] n d

where n is a positive integer. By Lemma 13, 8(n) _< 8(n d) d. Hence the
8 given by (3) is equal to d. Hence M has period d. Conversely, if M
has period d, then there is a positive integer/ such that 8(/) d and X is
partitioned into d non-null sets C, C., C, each of which is both inde-
composably M-closed and indecomposably M-losed, such that F(C) C,
F(C) C3, FI(C) C. The fact that each C is indecomposably
Md-closed implies that 8(d) d. By Lemma 13, 8(n d) >_ d, hence 8(n d) d
Hence each C is indecomposably Mn-closed; therefore, irreduciblyM-closed
by Corollary 2.

It is clear that (II) implies that the 8 given by (3) is , hence, M does not
have a period. Conversely, if M does not have a period then there is an increas-
ing sequence of positive integers n, n., such that lim 8(n) + .
Let k n n then lim 8(/) - . Let m 8(/). Applying
Lemma 13, we conclude that the sequence m, m, satisfies the require-
ment of (II).

LEMMA 14. Let M be irreducible and possess no period. Let the sequence of
positive integers Imp} and the sequence of partitions C) (),, ofX be as in
(II) of Theorem 2. Let )(X 1 and

a max [),(C()) "/ 1, 2,... m].

Then a} is a decreasing sequence which converges to O.

Proof. It is clear that /a} is a decreasing sequence. Let lim_. a a.

a is equal to k(C()) for some/ /c. By rearranging the indices/ we may
assume/ 1 for i 1, 2, If a > 0, then there would be a subsequence
/i} of the sequence li} such that C) C+) forj 1, 2, which, in
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C(i.); thenturn, implies C[i) C[+1) for j 1, 2,.... Let D n.--1
k(D) a. Consider the following sequence of sets: D, FI(D), F2(D), ....
Since k(D) > 0, every set in t.his sequence is non-null by Lemma 7. Now,
D C[) and

C ), F,_(
are pairwise disjoint, hence

D, F(D), F,_,(D)
are paiise disjoint. Since this is true for j 1, 2,... and since

limm , we conclude that the sets in the sequence D, F(D),
F(D), are pairwise disjoint. However, U,_ F,(D) F(F(D) is a
non-null closed set by Lemma 6. D X F(D) and D being non.null
contradict the fact that X is irreducibly closed. Hence a 0.

THEOREM 3. If M is irreducible and if M does not have a period, then the
measure k is non-atomic.

Proof. If k(X) is not equal to 1, we replace it by an equivalent measure
which assigns measure 1 to X. The new measure is non-atomic if and only if
the origal one is non-atomic. Hence it is sufficient to prove the theorem for
the case that k(X) 1. Let the sequence of positive integers {m} and the
sequence of partitions } of X be as in (II) of Theorem 2. If
had a h-atom A then

X(A) g max [k(C))" 1, m]

which contradicts the conclusion of Lemma 14. Hence is non-atomic.

DEFINITION 5. _h_ positive operator M is said to be k-continuous if there is a
real-valued, X measurable function m(x, y) such that

if(x) f m(x, y)f(y)k (dy)

for every f e L(k). The function re(x, y) is called the density function of M
with respect to measure k. The iterates M of a k-continuous positive oper-
ator M are also k-continuous with density functions m(n)(x, y) defined in-
ductively by

m(1)(x, y) m(x, y),

y) f m()(x, z)X (dz)m(z, y)./(n/l) (X

DEFINITION 6. )k positive operator M is said to be quasi k-continuous if
there is a positive integer r such that M is the sum of two positive operators
M1, M2 one of which is non-zero and k-continuous.

It is clear that a N-continuous M is quasi ),-continuous.
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THEOREM 4. An irreducible, quasi k-continuous positive operator M has a
period.

Proof. Suppose r is the positive integer such that M M1 - M2 where
M1, M2 are two positive operators for whichM is non-zero and k-continuous.
Let m(x, y) be the density function ofM with respect to k. Without loss of
generality we may assume k(X) 1. Let E be the subset of X X X,

E [(x,y) "m(x,y) > 0].

Since M is not zero, X k(E) > 0. Now, if M did not have a period, then
(II) of Theorem 2 would be satisfied. Let the sequence {m} and the sequence

.(i) C()of partitions {C ! of X be as in (II) of Theorem 2. We have
(i) (i) ,(i) (i)F,(C + ..., etc. (Herewelet C) C) if

n > m, 1 k m n k + lm, k, l, n are positive integers.) If (k)
(i) (i)has U as its support, then M(X 0 On the other handr+f

x-

Hence

f 0.
X--C’r+

Since m(x, y) is non-negative a.e. (h X k), (4) implies that m(x, y) 0
(i) --r+). This is true forj 1,2, ,mi. Hence

(i) (i)k Xk[E-- O=c X + 0
so that

mi ( i) (() x X(E) < X X(Offi c’ +.).

Leta=max[k( )’j= 1,2,... ,m];thenkXk(-C X+) ga.
By Lemma 14, a 0. This fact, together with (5), implies that
k X k(E) 0 which contradicts k X k(E) > 0. Hence M must possess a
period. . Positive operators with tansition vnctions
We call a real-valued function M(x, A) of two variables, x X, A , a

transition function if the following two conditions are satisfied.

(T1) For every fixed x X, M(x, is measure.
(T2) For every fixed set A , M(., A) is measurable function.

This is a generalization of a probability transition function of a Markov process.
If the mesurable spce (X, ) is the space of all types of branching process,
then the first moment function of the process is a transition function. We
shall always assume that (T3) is satisfied by a transition function.

(T3) There is a number a such that M(x, X) g a for all x X.
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If M(x, X) is a probability transition function, then the stronger condition
(T3’) is satisfied:

(T3’) M(x,X) lforallxeX.

M(n)(x, A ), n 1, 2, are defined inductively as follows:

M(1) (x, A M(x, A),

M(+) (x, A) f dy)M(y, A).

Mn(x, A) are also transition functions. For a bounded, 63 measurable func-
tion f, we define Mf by

(6) Mf(x) J M(x, dy)f(y).

For a bounded, countably addition set function defined on 63, we define M by

(7) f (ax)M(x, A).
d

,M is also a bounded, countably additive set function and Mf is also a bounded
63-measurable function. Mnf and M are then given by

M’f(x) f M(’) (x, dy)f(y),

,M(A) f (dx)M()(x, A).

Furthermore, if is absolutely continuous to a finite measure r, then M is
absolutely continuous to rM. Let r be an arbitrary finite measure and let
X ’=0 (2a)-nrM. Then, if is absolutely continuous to X, so is M; and
if f e L(X), so is Mr. Thus a X-measurable positive operator is generated.
We call a positive operatorM given by (6) a positive operator with a transition

function. A X-continuous positive operator is a positive operator with a tran-
sition function. If 63 is generated by a countable collection, and if M is a
positive operator with a transition function then the transition function
M(x, A is uniquely determined up to a set of X-measure 0 by M in the sense
that, if M has another transition function M’(x, A then M(x, M’(x,
for (X) almost all x.

Let M be a positive operator with a transition function M(x, A). Define
a measure on 63 X 63 as follows. If E is a 63 X (g-measurable subset of
XX,

,(E) j- X (dx) j i(x, dy)lE(x, y).

V is uniquely determined by the operator M as

,(A B) f (dx)il,(x), A
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or all rectangles A B in X (B. v is called the measure associated with M.
It is clear that is absolutely continuous to X X if and only if M is ),-con-
tinuous. For the general case, may be decomposed into two parts c and
s where vc is absolutely continuous to X X X and vs is singular to X X X. Let
ml(x, y) be a derivative of v c with respect to X X X and let us define a ),-con-

tinuous operator M1 by

(8) ilf(x) f ml(x, y)f(y)X (dy).

This ),-continuous positive operator M1 is characterized by two facts"
(1) M1

_
M; (2) if N is a k-continuous positive operator such that N

_
M,

then N

_
M1. M1 is called the N-continuous part of M.

THEOBEM 5. If 5 is generated by a countable collection, M is a positive oper-
ator with a transition function M(x, A ), M1 is the N-continuous part of M and
ml x, y) is a density function of M1 with respect to , then there is a set Z e 5 with
X(X Z) 0 such that x Z implies that ml(x, is a derivative of the N-con-
tinuous part of M( x, with respect to . Furthermore, M M -F M2 where
M2 is a positive operator with a transition function M(x, A such that M.( x,
is singular to for every x Z.

Proof. If ( is generated by a countable collection, then there is a sequence
of finite subalgebras 631 c (B C such that (g is generated by U= (g.

Each (Bn is generated by a partition Bn)
,’",.i of X. We shall definea

sequence of functions/f(x, y)} as follows.

][: (n) ][: (n) B) X(f,(xy) M(x,.i )/X(. ), if y e . )> 0,
(n) ---(n)X( =0.0, if yB

For any A e

x,()
f,(x, y)X X X (d(x, y) M(x, B))X (dx) v(A X B(’)

If we restrict the domain of definition of v and X X to (B X (Bn, thenf is the
derivative of with respect to X X X. Since U:I 5 X ( generates
/f/converges a.e. (X X k) to the derivative of vc with respect to X X X, which
is ml(x, y) of (8). On the other hand, for each fixed x, the a.e. (X) limit of the
sequence lf(x, )} is the derivative of the X-continuous part of M(x, with
respect to X (See Example 2.7, pp. 616 of [3]). Hence, there is a set Z e (B with
X(X Z) 0 such that if x e Z, ml(x, is the derivative of the X-con-
tinuous part of M(x, with respect to X. Now for x e Z, A e , define

i(x, A) M(x, A) f m(x, y)X (dy)

nd for x Z, define M(x, arbitrarily. Thus M(x, is singular to X if
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xeZ and

Mf(x) MiX(x) f Ms(x, dy)f(y)

forxeZandM MlMswhere

Mf(x) f Ms(x, dy)f(y).

LEMMA 15. Let M be a positive operator with a transition function M( x, A ).
If the )-continuous part of M is O, then there is a set Z 5 with )(X Z) 0
such that M( x, is singular to ) for every x e Z. The converse is also true if 5
is generated by a countable collection.

Proof. If the )-continuous part of M is 0, then the measure of associated
with M is singular to ) k. There is a set S e with k ),(S) 0 such
that,(ShE) (E) foreveryEe5 X 5. LetS [y" (x,y) eS]. Since
), )(S) 0, there is a set Z with )(X Z) 0 such that x e Z iaplies
),(S) 0. Now

0 v(XX X-S) JX(dx)M(x,X-S).
Hence there is set Z e S with )(X Z) 0 such that x e Z. implies
M(x, X S) O. Hence ifxeZ ZnZ,thenM(x,X S) O,
k(S) 0 and the singularity of M(x, to k follows.

If is generated by a countable collection then the converse follows from
Theorem 5.

THEOREM 6. Let M be a positive operator with a transition function M(x, A ).
IfM is not quasi -continuous, then there is a set Z e 5 with )(X Z) 0 such
that, for every x e Z, M(n)(x, is singular to ) for n 1, 2, 3, .... The con-
verse is also true if is generated by a countable collection.

Proof. M is not quasi k-continuous if and only if the k-continuous part of
M is zero for n 1, 2, .... This fact, together with Lemma 15, implies
Theorem 6.

COROLLARY 3. Let M(x, A) be a transition function, - be a non-zero finite
measure on 5 and ) :..o 2a)-n’M’. Let M be the )-measurable positive
operator given by (6). If for ()) almost all x, :=1M(n)(x, H) > 0 for every
set H with r(H) > O, then M is irreducible and quasi )-continuous, therefore,
possesses a period by Theorem 4.

Proof. Clearly e a*(k). Let G be the support of r. Then

)(. F(G) O.

If E is a non-null subset of G, then ’_1MI > 0 a.e. ()) for n..M l(x)
M() E). Now, if E is a non-null subset of F(G) then

H G[x’Ml(x) > O]



38 SHU-TEH C. MOY

is a non-null set. Hence Z:=I fH M(n)(x, dy)MklE(y) > 0 for every x e Z.
Hence =+1Mnl, > 0 a.e. (}). Applying Corollary 1, we arrive at the
irreductibility of M. To show the quasi h-continuity of M, we set

,(x, A) -n=l (2a)-nM(’)(x, A).

For each fixed x, (x, is a finite measure and (x, A) > 0 if and only if
:-’=1 M(n)(x, A) > 0. If M is not quasi X-continuous, then, by Theorem 6,
,(x, .) is singular to X for (X) almost all x. But (x, H) > 0 for every
non-null subset H of G. This fact implies the restriction of X to subsets of G
is absolutely continuous to the same restriction of (x, for (X) almost all x.
This is incompatible with the statement that (x, is. singular to X for (X)
almost all x. Hence M is quasi X-continuous.
Now we turn to a probability transition function. We shall write P(x, A)

instead of M(x, A) and operator P instead of M. A complete theory of
Markov process with a discrete parameter under a condition (D) of Doeblin
is given in Chapter V of [3]. In [3] the special ease (e) is treated first. Com-
bining (D) and (e) one obtained a period for the probability transition
function. T.E. Harris gave a condition (H) on the probability transition
function in 1956. An extensive amount of theory of Markov process was
developed by T. E. Harris [6] and S. Orey [9] based on condition (H). In
both eases the existence of a finite period is established after a considerable
amount of knowledge of p(n)( x, A) is obtained.

Condition (D). There is a finite measure r on 63, a positive integer
and a positive number e such that

(9) P()(x, A) _< 1 e for all x

whenever r(A) _<. e.

Special Case e ). Sup_l P()(x, A > 0 for all x e X whenever r(A > 0.

Condition (H). There is a non-zero finite measure r on 63 such that
(10) r(A) > 0 implies that the probability that A is visited infinitely

many times is 1 for all starting point x X.

Under either condition obtain a X-measurable Markov operator P by letting
X _=o 2--n’Pn. Clearly, (9) implies that P()(x, is not singular to r,
therefore, not singular to X, for all x. Hence, by Theorem 6, P is quasi
X-continuous under Condition (D). (e) is equivalent to (11).

1 1) r(A > 0 implies that = p(n) (x, A) > 0 for all x e X.

Hence, by Corollary 3, (c) alone implies that P is irreducible and quasi X-con-
tinuous, therefore, possesses a period. (c) is a much weaker condition
than (10). Hence, under condition (H), we also have a irreducible, quasi X-
continuous P. We summarize these facts in the following.

COROLLARY 4. If the probability transition function satisfies Condition
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(D) then the k-measurable Markov operator P is quasi k-continuous. If Con-
dition (H) is satisfied by the probability transition function then (c) is also
sated. (c) implies that P is irreducible and quasi )-continuous and, there-
fore, possesses a period.

We remark that, in the above corollary, we do not assume that is generated
by a countable collection as was the case in [6] and [9].
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