A TOPOLOGICAL H-COBORDISM THEOREM FOR $n \geq 5$

BY
E. H. Connell ${ }^{1}$

An H-cobordism is a compact manifold M with boundary components N and \bar{N} which are deformation retracts of M. If $M=M^{n}$ is a simply connected differentiable manifold and $n \geq 6$, then M is diffeomorphic to $N \times I$ [11]. If M is a combinatorial manifold and $n \geq 5$, then $M-\bar{N}$ is piecewise-linearly homeomorphic to $N \times[0,1)(\mathrm{p} .251$ of [14]). In this paper it will be shown that if M is a topological n-manifold and $n \geq 5$, then $M-\bar{N}$ is homeomorphic to $N \times[0,1)$. This is done by a type of topological engulfing (see Lemma 1).

A stronger form of Lemma 1 has independently (and previously) been obtained by M. H. A. Newman [1]. A corollary to these procedures is that if Y is a closed topological manifold which is a homotopy sphere, and $n \geq 5$, then Y is homeomorphic to S^{n}. The reader is assumed familiar with the proof of the combinatorial engulfing lemma [2], [5], [8].

Notation. Suppose M is a metric space with the distance between x and $y \in M$ denoted by $d(x, y)$. If $Y \subset M$ is any subset of $M, d(x, Y)$ will denote the distance from x to $Y, d(Y)$ will denote the diameter of Y, and for any $\varepsilon>0, V(Y, M, \varepsilon)$ will denote the set $\{z \in N: d(z, Y)<\varepsilon\}$. If K is a finite complex, the statement that $f: K \rightarrow R^{n}$ is piecewise-linear (p.w.l.) means \exists a subdivision K_{1} of K such that any simplex σ of K_{1} is mapped linearly into R^{n} by f. If M is a topological manifold, the interior and boundary of M are denoted by Int M and ∂M respectively. D^{n} denotes the closed n-cell in R^{n},

$$
D^{n}=\left\{\left(x_{1}, x_{2}, \cdots x_{n}\right):-1 \leq x_{i} \leq 1, i=1,2, \cdots n\right\}
$$

Hypothesis I. $M=M^{n}$ is a compact, connected topological n-manifold ($n \geq 5$) with boundary consisting of two components, $\partial M=N \cup \bar{N} ; \pi_{i}(M, N)$ $=\pi_{i}(M, \bar{N})=0$ for $i=1,2, \cdots, n-3$;

$$
g: N \times[0,1] \rightarrow M-\bar{N} \quad \text { and } \quad \bar{g}: \bar{N} \times[0,1] \rightarrow M-N
$$

are topological embeddings with $g(x, 0)=x$ for all $x \in N$ and $\bar{g}(y, 0)=y$ for all $y \epsilon \bar{N}$. (Note: If M is any topological manifold with boundary components N and \bar{N}, then it follows from [13] that the embeddings g and \bar{g} exist.)

Lemma 1. Suppose Hypothesis I. Suppose $K \subset R^{n}$ is a finite m-complex (a rectilinear complex in R^{n}), $m \leq n-3, h: R^{n} \rightarrow$ Int M is a topological embedding, and ε is a number with $0<\varepsilon<1$. Then \exists a homeomorphism

[^0]$H: M \rightarrow M$ satisfying:
(1) $H(x)=x$ for $x \in \bar{N} \cup g(N \times[0,1-\varepsilon])$
(2) $H(g[N \times[0,1)]) \supset h(K)$.

Proof. The proof is given for $m \leq n-4$. The case $m=n-3$ contains an extra difficulty that makes the proof less transparent. This difficulty may be handled in a way completely analogous to the combinatorial case (see note at end of Case 1).

The proof is by induction on $m=\operatorname{dim} K$. Suppose $m \leq n-4$ and the lemma is true when $\operatorname{dim} K \leq m-1$. The proof below actually shows without any induction on m that the lemma is true when $2(1+\operatorname{dim} K)<n$. This is because no singularities are encountered in these dimensions.

Let each of $h_{1}, h_{2}, \cdots h_{k}: R^{n} \rightarrow \operatorname{Int} M$ be a topological embedding with

$$
\left[\cup_{1 \leq i \leq k} h_{i}\left(R^{n}\right)\right] \cup g(N \times[0,1-\varepsilon]) \cup \bar{g}(\bar{N} \times[0,1-\varepsilon])=M
$$

Let $\delta>0$ such that $V\{h(K), M, 2 \delta\} \subset h\left(R^{n}\right)$.
Let K_{1} be a subdivision of K with Q_{1} and Q subcomplexes of K_{1} satisfying

$$
\begin{gathered}
\operatorname{dim}\left(Q_{1} \cap Q\right) \leq m-1, \quad K_{1}=Q_{1} \cup Q, \quad h\left(Q_{1}\right) \subset g[N \times[0,1)] \\
h(Q) \subset \operatorname{Int} M-g(N \times(0,1-\varepsilon])
\end{gathered}
$$

and thus

$$
h\left(Q_{1} \cap Q\right) \subset g[N \times(1-\varepsilon, 1)]
$$

Let $f: Q \times I \rightarrow \operatorname{Int} M-g(N \times(0,1-\varepsilon])$ be a continuous function satisfying:
(a) $f(x, 1)=h(x)$ for $x \in Q$.
(b) $f(x, t)=h(x) \in V\{h(K), M, \delta\} \cap g[N \times(1-\varepsilon, 1)]$ for $x \in Q_{1} \cap Q$ and $t \in[0,1]$.
(c) $f(x, 0) \in g[N \times(1-\varepsilon, 1)]$ for $x \in Q$.

Such an f exists because

$$
\pi_{i}\{\operatorname{Int} M-g(N \times(0,1-\varepsilon]), g[N \times(1-\varepsilon, 1)]\}=0
$$

for $i=1,2, \cdots m$. Let K_{2} be a subdivision of K_{1} with L_{1} and L the induced subdivision of Q_{1} and Q. Let $\sigma_{1}^{i}, \sigma_{2}^{i}, \cdots \sigma_{r(i)}^{i}$ be the closed i-simplexes of $\left(L, L_{1} \cap L\right)$ for $i=0,1, \cdots, m$. Finally, let $0=t_{0}<t_{1}<\cdots<t_{v}=1$ be a partition of [0, 1]. If the subdivision K_{2} and the partition $t_{0}<t_{1} \cdots<t_{v}$ are fine enough, then $f: L \times I \rightarrow M$ will satisfy Property P below.

Definition. A continuous function $f: L \times I \rightarrow M$ has Property P provided
(1) $f(L \times I) \subset \operatorname{Int} M-g[N \times(0,1-\varepsilon]]$
(2) $f(x, 1)=h(x)$ for $x \epsilon L$
(3) $f\left(L_{1} \cap L \times[0,1]\right) \subset V(h(K), M, \delta)$
(4) $f\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right) \subset h_{b}\left(R^{n}\right)$ for some $b=b(i, j, a)$ when $0 \leq i \leq m$, $1 \leq j \leq r(i)$, and $1 \leq a \leq k$.
(5) $d\left[f\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right)\right]<\delta$ for $0 \leq i \leq m, 1 \leq j \leq r(i)$ and $1 \leq a \leq k$.

Now suppose that the subdivision K_{2} and the partition $t_{0}<t_{1}<\cdots<t_{v}$ are given so that f satisfies Property P. Note also that, in addition to (3), f satisfies

$$
f\left(L_{1} \cap L \times[0,1]\right) \subset g[N \times(1-\varepsilon, 1)]
$$

For the remainder of this proof, the simplexes σ_{j}^{i}, the partition $t_{0}<t_{1}<$ $\cdots<t_{v}$, and the function $b=b(i, j, a)$ are fixed. The statement that some $\alpha: L \times I \rightarrow M$ satisfies Property P means with respect to this fixed data. Notice that if α satisfies Property P and $\beta: L \times I \rightarrow M$ has $\beta(x, 1)=h(x)$ and β is a close enough approximation to α, then β will also have Property P.

Definition. For $0 \leq i \leq m, 1 \leq j \leq r(i), 1 \leq a \leq v$,

$$
X(i, j, a) \subset(L \times I)
$$

is defined by

$$
\begin{aligned}
X(i, j, a)= & L \times 0 \cup\left[L \cap L_{1}\right] \times[0,1] \\
& \mathbf{u} L \times\left[0, t_{a-1}\right] \mathbf{\cup}\left\{\sigma_{t}^{s} \times\left[t_{a-1}, t_{a}\right]: s<i, 1 \leq t \leq r(s)\right\} \\
& \mathbf{u}\left\{\sigma_{t}^{i} \times\left[t_{a-1}, t_{a}\right]: 1 \leq t \leq j\right\}
\end{aligned}
$$

Inductive Hypothesis $(i, j, a)=I H(i, j, a)$. There exists a continuous function

$$
\alpha_{(i, j, a)}: L \times I \rightarrow M
$$

which satisfies Property P and a homeomorphism

$$
H_{(i, j, a)}: M \rightarrow M
$$

ssatisfying
(1) $H_{(i, j, a)}(x)=x$ for $x \in \bar{N} \cup g(N \times[0,1-\varepsilon])$.
(2) $H_{(i, j, a)}(g[N \times[0,1)]) \supset h\left(L_{1}\right) \cup \alpha_{(i, j, a)}[X(i, j, a)]$.

The purpose of the proof is to show that $\operatorname{IH}(m, r(m), v)$ is true.
Fact 1. $\operatorname{IH}(0,1,1)$ is true.
Fact 2. $I H(i, j-1, a) \Rightarrow I H(i, j, a)$ for $0 \leq i \leq m, 2 \leq j \leq r(i)$, $1 \leq a \leq v$.

Fact 3. $I H(i, r(i), a) \Rightarrow I H(i+1,1, a)$ for $0 \leq i<m, 1 \leq a \leq v$.
Fact 4. $I H(m, r(m), a) \Rightarrow I H(0,1, a+1)$ for $1 \leq a<v$.
The proof of Fact 2 is presented in detail. The proofs of Facts 1, 3, and 4 require only trivial modifications and are not included.

Suppose $0 \leq i \leq m, 2 \leq j \leq r(i), 1 \leq a \leq v$, and $I H(i, j-1, a)$ is true.

For simplicity of notation, let

$$
H=H_{(i, j-1, a)}: M \rightarrow M \quad \text { and } \quad \alpha=\alpha_{(i, j-1, a)}: L \times I \rightarrow M
$$

Then α has Property P and
(1) $H(x)=x$ for $x \epsilon \bar{N} \cup g(N \times[0,1-\varepsilon])$
(2) $H(g[N \times[0,1)]) \supset h\left(L_{1}\right) \cup \alpha[X(i, j-1, a)]$

Proof of Fact 2, Case 1. Suppose

$$
\alpha\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right) \cap\left\{Y=h\left(L_{1}\right) \cup \alpha\left(L_{1} \cap L \times[0,1] \cup L \times 1\right\}=\emptyset\right.
$$

Let U_{1}, U_{2}, U_{3} be open subsets of Int M with $\alpha\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right) \subset U_{1}$, $\mathrm{Cl}\left(U_{1}\right) \subset U_{2}, \mathrm{Cl}\left(U_{2}\right) \subset U_{3}, \mathrm{Cl}\left(U_{3}\right) \subset h_{b(i, j, a)}\left(R^{n}\right)$, and $U_{3} \cap Y=\emptyset$. Let $Z \subset L \times I$ be a finite subcomplex of some subdivision of $L \times I$ with $\alpha^{-1}\left(U_{2}\right) \subset Z \subset \alpha^{-1}\left(U_{3}\right)$. Now by a general position approximation argument, \exists a continuous

$$
\alpha_{(i, j, a)}=\beta: L \times I \rightarrow M
$$

which satisfies Property P and
(1) $\beta\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right) \subset U_{1}$.
(2) $\beta^{-1}\left(U_{1}\right) \subset \alpha^{-1}\left(U_{2}\right) \subset Z$.
(3) $\beta\left|\alpha^{-1}\left(M-U_{3}\right)=\alpha\right| \alpha^{-1}\left(M-U_{3}\right)$.
(4) $h_{b(i, j, a)}^{-1} \beta \mid Z: Z \rightarrow R^{n}$ is p.w.l. and in general position. In particular, if $S=\mathrm{Cl}\left\{x \in \sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]: \exists y \in Z\right.$ with $\left.x \neq y, \beta(x)=\beta(y)\right\}$,
then $\operatorname{dim} S \leq 2(m+1)-n \leq(n-4)+m+2-n=m-2$.
In addition, it is assumed that β approximates α close enough that

$$
H\left(g[N \times[0,1)] \supset h\left(L_{1}\right) \cup \beta[X(i, j-1, a)]\right.
$$

(see (2) above).
Let $\pi: \sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right] \rightarrow \sigma_{j}^{i}$ be the projection. Since β has Property P,

$$
\beta\left(\pi(S) \times\left[t_{a-1}, t_{a}\right]\right) \subset h_{b(i, j, a)}\left(R^{n}\right)
$$

Since $h_{b(i, j, a)}^{-1} \beta\left(\pi(S) \times\left[t_{a-1}, t_{a}\right]\right)$ is a rectilinear complex in R_{n} of dimension $\leq m-1$, the inductive hypothesis on m may be applied. (Note that if $2(m+1)<n$, then no induction on m is necessary.)

Let $0<\Delta<\varepsilon$ such that

$$
H(g[N \times[0,1-\Delta)]) \supset h\left(L_{1}\right) \cup \beta[X(i, j-1, a)] .
$$

Then \exists a homeomorphism $G_{1}: M \rightarrow M$ satisfying
(a) $G_{1}(x)=x$ for

$$
x \in \bar{N} \cup H(g(N \times[0,1-\Delta])) \supset \bar{N} \cup g(N \times[0,1-\varepsilon]) .
$$

(b) $\quad G_{1}(H(g[N \times[0,1)])) \supset \beta\left(\pi(S) \times\left[t_{a-1}, t_{a}\right]\right)$.

Now since $\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]$ collapses to

$$
\begin{aligned}
{\left[X(i, j-1, a) \cap\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right)\right] } & \mathbf{u}\left(\pi(S) \times\left[t_{a-1}, t_{a}\right]\right) \\
& =\left(\sigma_{j}^{i} \times t_{a-1}\right) \mathbf{u}\left(\pi(S) \cup \partial \sigma_{j}^{i}\right) \times\left[t_{a-1}, t_{a}\right]
\end{aligned}
$$

\exists a homeomorphism $G_{2}: M \rightarrow M$ satisfying
(A) $\quad G_{2}(x)=x$ for $x \epsilon\left(M-U_{1}\right) \cup g(N \times[0,1-\varepsilon])$
(B) $\quad G_{2} G_{1} H\left(g[N \times[0,1)] \supset h\left(L_{1}\right) \cup \beta[X(i, j, a)]\right.$.
(See p. 486 of [2].)
The homeomorphism $H_{(i, j, a)}$ is given by

$$
H_{(i, j, a)}=G_{2} G_{1} H=G_{2} G_{1} H_{(i, j-1, a)}
$$

$H_{(i, j, a)}$ and $\alpha_{(i, j, a)}=\beta$ satisfy $I H(i, j, a)$. (Note: The changes necessary for the case $m=n-3$ are almost identical to the changes necessary in the combinatorial case. The inductive hypothesis $\operatorname{IH}(i, j-1, a)$ would require covering only the m-skeleton of $\alpha_{(i, j-1, a)}[X(i, j-1, a)]$, i.e., the $(m+1)$-cells need not be contained in $H_{(i, j-1, a)}(g[N \times[0,1)])$. The singular set S would be defined by intersections of $\alpha\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right)$ with $\alpha\left(Z^{m}\right)$, where Z^{m} is the m-skeleton of Z.)

Proof of Fact 2, Case 2. Suppose

$$
\alpha\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right) \cap\left\{Y=h\left(L_{1}\right) \cup \alpha\left(L_{1} \cap L \times[0,1] \cup L \times 1\right)\right\} \neq \emptyset
$$

This case is similar to Case 1 except $h\left(R^{n}\right)$ is used instead of $h_{b(i, j, a)}\left(R^{n}\right)$. Note that Case 2 always holds when $a=v$.

Since

$$
h\left(L_{1}\right) \cup \alpha\left(L_{1} \cap L \times[0,1] \cup L \times 1\right) \subset V(h(K), M, \delta)
$$

and

$$
d\left[\alpha\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right)\right]<\delta,
$$

it follows that

$$
\alpha\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right) \subset V(h(K), M, 2 \delta) \subset h\left(R^{n}\right)
$$

Let U_{1}, U_{2}, U_{3} be open subsets of Int M with

$$
\begin{aligned}
& h(K) \cup \alpha\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right] \cup L_{1} \cap L \times[0,1]\right) \subset U_{1} \\
& \mathrm{Cl}\left(U_{1}\right) \subset U_{2}, \quad \mathrm{Cl}\left(U_{2}\right) \subset U_{3}, \quad \mathrm{Cl}\left(U_{3}\right) \subset h\left(R^{n}\right) .
\end{aligned}
$$

Let $Z \subset L \times I$ be a finite subcomplex of some subdivision of $L \times I$ with

$$
\alpha^{-1}\left(U_{2}\right) \subset Z \subset \alpha^{-1}\left(U_{3}\right)
$$

Now by a relative general position approximation argument, \exists a continuous

$$
\alpha_{(i, j, a)}=\beta: L \times I \rightarrow M
$$

which satisfies Property P and
(1) $\beta\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right] \cup L \cap L_{1} \times[0,1]\right) \subset U_{1}$
(2) $\beta^{-1}\left(U_{1}\right) \subset \alpha^{-1}\left(U_{2}\right) \subset Z$
(3) $\beta\left|\alpha^{-1}\left(M-U_{3}\right)=\alpha\right| \alpha^{-1}\left(M-U_{3}\right)$
(4) $h^{-1} \beta \mid Z: Z \rightarrow R^{n}$ is p.w.l. and in general position relative to L_{1}.

In particular, if $S=\mathrm{Cl}\left\{x \in \sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]:(\exists y \in Z, y \neq x, \beta(x)=\beta(y))\right.$ or $\left(\exists w \in L_{1}-L\right.$ with $\left.\beta(x)=h(w)\right\}$ then

$$
\operatorname{dim} S \leq 2(m+1)-n \leq n-4+m+2-n=m-2
$$

The remainder of the proof is now a repeat from Case 1. Since

$$
\operatorname{dim}\left(\pi(S) \times\left[t_{a-1}, t_{a}\right]\right)<m
$$

it may be engulfed without uncovering

$$
h\left(L_{1}\right) \cup \beta\left(L_{1} \cap L \times[0,1] \cup X(i, j-1, a)\right)
$$

Then using the collapsing technique, engulf all of $\beta\left(\sigma_{j}^{i} \times\left[t_{a-1}, t_{a}\right]\right)$. This completes Lemma 1.

Lemma 2. Suppose Hypothesis I, b is a number with $0<b<1$,

$$
\begin{aligned}
& g(N \times[0,1]) \subset M-\bar{g}(\bar{N} \times[0,1-b]), \\
& \bar{g}(\bar{N} \times[0,1]) \subset M-g(N \times[0,1-b]),
\end{aligned}
$$

and $h: R^{n} \rightarrow \operatorname{Int} M$ is a topological embedding. Then for any number a with $0<a<b, \exists$ homeomorphisms $f: M \rightarrow M$ and $\bar{f}: M \rightarrow M$ with

$$
\begin{aligned}
& f \mid g(N \times[0,1-a]) \cup \bar{g}(\bar{N} \times[0,1-b])=\mathrm{Id} \\
& \bar{f} \mid \bar{g}(\bar{N} \times[0,1-a]) \cup g(N \times[0,1-b])=\mathrm{Id} .
\end{aligned}
$$

and

$$
f g[N \times[0,1)] \cup \bar{f} \bar{g}[\bar{N} \times[0,1)] \supset h\left(D^{n}\right)
$$

Proof. Let T be a rectilinear triangulation of R^{n} which has D^{n} as a subcomplex. Let X be the subcomplex of T composed of all closed simplexes $\sigma \subset D^{n}$ with $h(\sigma) \cap$

$$
\{M-[g(N \times[0,1-a / 2]) \cup \bar{g}(\bar{N} \times[0,1-a / 2])]\} \neq \emptyset
$$

and let Y be the closed star of X in T (in all of R^{n}). Suppose that the triangulation T is fine enough that

$$
h(Y) \subset\{M-[g(N \times[0,1-3 a / 4]) \cup \bar{g}(\bar{N} \times[0,1-3 a / 4])]\}
$$

Let $\Delta>0$ э
$V\{h(X), M, 3 \Delta\} \subset h(Y)$ and $V\{g(N \times[0,1-a / 2]), M, \Delta\}$

$$
\subset g(N \times[0,1-a / 4])
$$

Let T_{1} be a subdivision of $T \ni$ for any simplex σ_{1} of $T_{1}, d\left(h\left(\sigma_{1}\right)\right)<\Delta$. Let X_{1} and Y_{1} be the sets X and Y under the triangulation T_{1}. Let K be the ($n-3$)-skeleton of Y_{1} and \bar{K} be the maximal complex of the first derived of Y_{1} which does not intersect K. Then $\operatorname{dim} \bar{K}=2 \leq n-3$. Now apply

Lemma 1 to the H-cobordism $M-\bar{g}[\bar{N} \times[0,1-b)]$ and obtain a homeomorphism

$$
f_{1}: M-\bar{g}[\bar{N} \times[0,1-b)] \rightarrow M-\bar{g}[\bar{N} \times[0,1-b)]
$$

such that $f_{1}(x)=x$ for $x \epsilon \bar{g}(\bar{N}, 1-b) \cup g(N \times[0,1-a / 4])$ and

$$
f_{1}(g[N \times[0,1)] \supset h(K)
$$

Extend f_{1} to a homeomorphism $f_{1}: M \rightarrow M$ satisfying
(1) $f_{1}(x)=x$ for $x \in \bar{g}(\bar{N},[0,1-b]) \cup g(N \times[0,1-a / 4])$
(2) $f_{1}(g[N \times[0,1)]) \supset h(K)$.

In the same manner, apply Lemma 1 to the H-cobordism $M-g[N \times[0$, $1-b)$] and obtain a homeomorphism $\bar{f}: M \rightarrow M$ satisfying
(1) $\bar{f}(x)=x$ for $x \epsilon g(N \times[0,1-b]) \cup \bar{g}(\bar{N} \times[0,1-a / 4])$.
(2) $\bar{f}(\bar{g}[\bar{N} \times[0,1)]) \supset h(\bar{K})$.

Statement A. ヨa homeomorphism $f_{2}: M \rightarrow M \ni$

$$
\begin{equation*}
f_{2}(x)=x \tag{i}
\end{equation*}
$$

$$
\text { for } x \in M-h\left(Y_{1}\right) \supset g(N \times[0,1-3 a / 4]) \cup \bar{g}(\bar{N} \times[0,1-3 a / 4])
$$

(ii) $f_{2} f_{1}(g[N \times[0,1)]) \cup \bar{f}(\bar{g}[\bar{N} \times[0,1)]) \supset h\left(X_{1}\right)$
(iii) $d\left(f_{2}(x), x\right)<\Delta$ for any $x \in M$.

Statement B. The proof of Lemma 2 is completed by setting $f=f_{2} f_{1}$.
Proof of Statement B assuming Statement A. It must be shown that if $p \in D^{n}$,

$$
h(p) \epsilon f_{2} f_{1}(g[N \times[0,1)]) \cup \bar{f}(\bar{g}[\bar{N} \times[0,1)])
$$

If $p \in X_{1}$, then this follows from Statement A (ii). Now suppose $p \in D^{n}-X_{1}$. Then it follows from the definition of X that

$$
h(p) \epsilon g(N \times[0,1-a / 2]) \cup \bar{g}(\bar{N} \times[0,1-a / 2])
$$

Case 1. $h(p) \epsilon \bar{g}(\bar{N} \times[0,1-a / 2]) . \quad$ Since $\bar{f} \mid \bar{g}(\bar{N} \times[0,1-a / 2])=\mathrm{Id}$., it follows that

$$
h(p) \in f(g[N \times[0,1)])
$$

and this case is immediate.
Case 2. $h(p) \in g(N \times[0,1-a / 2])$. The sequence of facts
(a) $f_{1} \mid g(N \times[0,1-a / 4])=\mathrm{Id}$.
(b) $V\{g(N \times[0,1-a / 2]), M, \Delta\} \subset g(N \times[0,1-a / 4])$
(c) $d\left(f_{2}(x), x\right)<\Delta$ for $x \in M$.
imply that $h(p) \in f_{1} f_{2}(g[N \times[0,1)])$. This completes the proof of Statement B.

Sketch of Proof of Statement A. The ideas here are taken from p. 499-500
of [5]. Each point $y \in Y_{1}$ can be described in terms of "barycentric coordinates", $\lambda(y) \in K, \bar{\lambda}(\mathrm{y}) \epsilon \bar{K}$, and $t(y) \in[0,1]$, such that

$$
y=t(y) \lambda(y)+[1-t(y)] \bar{\lambda}(y)
$$

Using these coordinates it is possible to define a homeomorphism $U: Y_{1} \rightarrow Y_{1}{ }^{\boldsymbol{7}}$ each interval $[\lambda(y), \bar{\lambda}(y)]$ is mapped onto itself and
$U h^{-1}\left\{f_{1}(g[N \times[0,1)]) \cap h\left(Y_{1}\right)\right\} \cup h^{-1}\left\{\bar{f}(\bar{g}[\bar{N} \times[0,1)]) \cap h\left(Y_{1}\right)\right\}=Y_{1}$.
Define a homeomorphism $W: Y_{1} \rightarrow Y_{1}$ by

$$
\begin{aligned}
W(y)=\frac{1}{\Delta} d[V\{h(X), M, \Delta\}, h(\lambda(y)] y & \\
& +\left(1-\frac{1}{\Delta} d[V\{h(X), M, \Delta\}, h(\lambda(y)]) U(y)\right.
\end{aligned}
$$

when

$$
\begin{gathered}
y \in Y_{1}-(K \cup \bar{K}) \quad \text { and } \quad \Delta \geq d[V\{h(X), M, \Delta\}, h(\boldsymbol{\lambda}(y))] \\
W(y)=y \quad \text { otherwise. }
\end{gathered}
$$

Define a homeomorphism $f_{2}: M \rightarrow M$ by

$$
\begin{array}{ll}
f_{2}(x)=h W h^{-1}(x) & \text { for } x \in h\left(Y_{1}\right) \\
f_{2}(x)=x & \text { for } x \in M-h\left(Y_{1}\right) .
\end{array}
$$

The facts

$$
\begin{array}{rlrl}
W([\boldsymbol{\lambda}(y), \bar{\lambda}(y)]) & =[\lambda(y), \bar{\lambda}(y)] & & \text { for } y \epsilon Y_{1}-(K \mathbf{u} \bar{K}), \\
d[h(\sigma)]<\Delta & & \text { for each simplex } \sigma \text { of } Y_{1},
\end{array}
$$

and

$$
V\{h(X), M, 3 \Delta\} \subset h\left(Y_{1}\right)
$$

imply

$$
\begin{gathered}
W|X=U| X, \quad W \mid \partial Y_{1}=\mathrm{Id} \\
f_{2} \mid M-h\left(Y_{1}\right)=\mathrm{Id}, \quad d\left(f_{2}(x), x\right)<\Delta
\end{gathered}
$$

and

$$
f_{2} f_{1}(g[N \times[0,1)]) \cup \bar{f}(\bar{g}[\bar{N} \times[0,1)]) \supset h\left(X_{1}\right)
$$

This completes the proof of Statement A and Lemma 2.
Theorem 1. Suppose Hypothesis I, and that

$$
g(N \times[0,1]) \cap \bar{g}(\bar{N} \times[0,1])=\emptyset
$$

Then if b is a number, $0<b<1, \exists$ homeomorphisms $f: M \rightarrow M$ and $\bar{f}: M \rightarrow M$ э

$$
\begin{aligned}
& f \mid g(N \times[0,1-b]) \cup \bar{g}(\bar{N} \times[0,1-b])=\mathrm{Id} \\
& \bar{f} \mid g(N \times[0,1-b]) \cup \bar{g}(\bar{N} \times[0,1-b])=\mathrm{Id}
\end{aligned}
$$

and

$$
f(g[N \times[0,1)]) \cup \bar{f}(\bar{g}[\bar{N} \times[0,1)])=M
$$

Also \exists a homeomorphism $H: g[N \times[0,1)] \rightarrow M-\bar{N}$.
Proof. Let each of $h_{1}, h_{2}, \cdots h_{k}: R^{n} \rightarrow \operatorname{Int} M$ be a topological embedding with

$$
\bigcup_{1 \leq i \leq k} h_{i}\left(D^{n}\right) \cup g(N \times[0,1-b]) \cup \bar{g}(\bar{N} \times[0,1-b])=M .
$$

Inductive Hypothesis $(i)=I H(i) i=1,2, \cdots k$. \exists homeomorphisms f_{i} and $\bar{f}_{i}: M \rightarrow M$ э
each of f_{i} and $\bar{f}_{i} \mid g(N \times[0,1-b]) \mathbf{u} \bar{g}(\bar{N} \times[0,1-b])=\mathrm{Id}$ and

$$
f_{i}(g[N \times[0,1)]) \cup \bar{f}_{i}(\bar{g}[\bar{N} \times[0,1)]) \supset \cup_{1 \leq t \leq i} h_{t}\left(D^{n}\right) .
$$

The proof involves showing $I H(k)$ is true and setting $f=f_{k}$ and $\bar{f}=\bar{f}_{k}$. $I H(1)$ follows immediately from Lemma 2. Suppose $I H(i)$ is true for some $i, 1 \leq i<k$, and show $I H(i+1)$ is true. The collar neighborhoods of Lemma 2 will be

$$
f_{i} g(N \times[0,1]) \subset M-\bar{g}(\bar{N} \times[0,1-b])=M-\bar{f}_{i} \bar{g}(\bar{N} \times[0,1-b])
$$

and

$$
\bar{f}_{i} \bar{g}(\bar{N} \times[0,1]) \subset M-g(N \times[0,1-b])=M-f_{i} g(N \times[0,1-b])
$$

Now \exists a number $a, 0<a<b$ with

$$
f_{i} g[N \times[0,1-a)] \cup \bar{f}_{i} \bar{g}[\bar{N} \times[0,1-a)] \supset \cup_{1 \leq t \leq i} h_{t}\left(D^{n}\right)
$$

By Lemma 2, \exists homeomorphisms α and $\bar{\alpha}: M \rightarrow M$ with

$$
\begin{aligned}
& \alpha \mid f_{i} g(N \times[0,1-a]) \cup \bar{f}_{i} \bar{g}(\bar{N} \times[0,1-b])=\mathrm{Id} \\
& \bar{\alpha} \mid \bar{f}_{i} \bar{g}(\bar{N} \times[0,1-a]) \cup f_{i} g(N \times[0,1-b])=\mathrm{Id}
\end{aligned}
$$

and

$$
\alpha f_{i} g[N \times[0,1)] \cup \bar{\alpha} \bar{f}_{i} \bar{g}[\bar{N} \times[0,1)] \supset h_{i+1}\left(D^{n}\right)
$$

The induction is completed by setting

$$
f_{i+1}=\alpha f_{i}: M \rightarrow M \quad \text { and } \quad \bar{f}_{i+1}=\bar{\alpha} \bar{f}_{i}: M \rightarrow M .
$$

This completes the proof of the first part of Theorem 1. (The f and \bar{f} constructed here are actually isotopic to the identity.)

Note that $\bar{f}^{-1} f: M \rightarrow M$ satisfies

$$
\bar{f}^{-1} f \mid g(N \times[0,1-b])=\operatorname{Id}
$$

and

$$
\bar{f}^{-1} f(g[N \times[0,1)]) \cup \bar{g}[\bar{N} \times[0,1)]=M
$$

Thus the existence of the homeomorphism $H: g[N \times[0,1)] \rightarrow M-\bar{N}$
follows in a standard way from a countable number of applications of the first part of the theorem.

Corollary 1. If Y is a compact topological n-manifold ($n \geq 5$) without boundary, which has the homotopy type of S^{n}, then Y is homeomorphi to S^{n}.

Sketch of proof. Let B^{n} and B_{1}^{n} be disjoint topological n-cells in Y and $p \in B_{1}^{n}$. Then $Y-B_{1}^{n}$ is homeomorphic to $Y-p$. It follows from Theorem 1 and the fact that

$$
Y-\left(\operatorname{Int} B^{n} \cup \operatorname{Int} B_{1}^{n}\right)
$$

is a topological H-cobordism that $Y-B_{1}^{n}$ is homeomorphic to R^{n}. Thus $Y-p$ is homeomorphic to R^{n} and Y is homeomorphic to S^{n}.

References

1. M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math., vol. 84 (1966), pp. 555-571.
2. J. Stallings, The piecewise-linear structure of euclidean space, Proc. Cambridge Philos. Soc., vol. 58 (1962), pp. 481-488.
3. ——, Groups with infinite products, Bull. Amer. Math. Soc., vol. 68 (1962), pp. 388-389.
4. ——, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc., vol. 66 (1960), pp. 485-488.
5. -, On topologically unknotted spheres, Ann. of Math., vol. 77 (1963), pp. 490503.
6. E. C. Zeeman, The Poincaré conjecture for $n \geq 5$, Topology of 3-manifolds by M. K. Fort, Jr., Englewood Cliffs, Prentice-Hall, 1962, pp. 198-204.
7. ——, The generalized Poincaré conjecture, Bull. Amer. Math. Soc., vol. 67 (1961), p. 270 .
8. ——, Seminar on combinatorial topology, Institute Des Hautes Etudes Scientifiques, 1963, revised 1965.
9. E. C. Zeeman and D. R. McMillan, On contractible open manifolds, Proc. Cambridge Philos. Soc., vol. 58 (1962), pp. 221-224.
10. B. Mazur, Relative neighborhoods and the theorems of Smale, Ann. of Math., vol. 77 (1963), pp. 232-249.
11. S. Smale, Generalized Poincaré's conjecture in dimensions greater than 4, Ann. of Math., vol. 74 (1961), pp. 391-406.
11a. ——, Differentiable and combinatorial structures on manifolds, Ann. of Math., vol. 74 (1961), pp. 498-502.
12. -_, On the structure of manifolds, Amer. J. Math., vol. 84 (1962), pp. 387-399.
13. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math., vol. 75 (1962), pp. 331-341.
14. S. Cairns, Differential and combinatorial topology, Princeton, Princeton University Press, 1965.

Rice University

Houston, Texas

[^0]: Received April 25, 1966.
 ${ }^{1}$ The author has been supported by the Sloan Foundation and by a National Science Foundation grant.

