
A TOPOLOGICAL -COBORDISM THEOREM FOR n b

BY

E. H. CONNELL

An H-cobordism is a compact manifold M with boundary components N
and

_
which are deformation retracts of M. IfM M is a simply connected

differentiable manifold and n _> 6, then M is diffeomorphic to N X I [11].
If M is a combinatorial manifold and n >_ 5, then M is piecewise-linearly
homeomorphic to N X [0, 1) (p. 251 of [14]). In this paper it will be shown
that if M is a topological n-manifold and n >_ 5, then M -/ is homeomorphic
to N X [0, 1). This is done by a type of topological engulfirig (see Lemma 1).
A stronger form of Lemma 1 has independently (and previously) been

obtained by M. H. A. Newman [1]. A corollary to these procedures is that if
Y is a closed topological manifold which is a homotopy sphere, and n >_ 5,
then Y is homeomorphic to S. The reader is assumed familiar with the proof
of the combinatorial engulfing lemma [2], [5], [8].

Notation. Suppose M is a metric space with the distance between x and
y e M denoted by d(x, y). If Y c M is any subset of M, d(x, Y) will denote
the distance from x to Y, d(Y) will denote the diameter of Y, and for any
> 0, V( Y, M, e) will denote the set {z e N d(z, Y) < e}. If K is a finite

complex, the statement that f" K -- R is piecewise-linear (p.w.1.) means
i a subdivision K1 of K such that any simplex z of K1 is mapped linearly into
R by f. If M is a topological manifold, the interior and boundary of M are
denoted by Int M and OM respectively. D denotes the closed n-cell in R*,

D /(x, x, x) -1 _< x _< 1, i 1, 2, n}.

Hypothesis I. M M" is a compact, connected topological n-manifold
(n >_ 5) with boundary consisting of two components, 0M N u 2; r(M, N)

ri(M,]) =0fori= 1,2,...,n-3;

g N X [O, 1]-- M and ’X[0,1]-M-N
are topological embeddings with g(x, O) x for all x e N and (y, 0) y
for all y e R. (Note" If M is any topological manifold with boundary com-
ponents N and ], then it follows from [13] that the embeddings g and ff
exist.

LEMMA 1. Suppose Hypothesis I. Suppose K R is a finite m-complex
(a rectilinear complex in R), m <_ n 3, h" R Int M is a topological
embedding, and e is a number with 0 < e < 1. Then l a homeomorphism
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H M -- M satisfying:
(1) H(x) xforxetg(N X [0, 1 s])
(2) ,H(g[N [0, 1)]) h(K).

Proof. The proof is given for m

_
n 4. The case m n 3 contains

an extra difficulty that makes the proof less transparent. This difficulty may
be handled in a way completely analogous to the combinatorial case (see note
at end of Case 1).
The proof is by induction on m dim K. Suppose m

_
n 4 and the

lemma is true when dim K

_
m 1. The proof below actually shows with-

out any induction on m that the lemmu is true when 2(1 - dim K) n.
This is because no singularities re encountered in these dimensions.

Let each of h, h, h R - Int M be a topological embedding with

[(J_ h(R)] g(N [0, 1 ]) (/ [0, 1 ]) M.

Let > 0 such that V{h(K), M, 2/ h(R’).
Let K1 be a subdivision of K with Q1 and Q subcomplexes of K1 satisfying

dim QI n Q)

_
m 1, K Q t Q, h( Q) c g[N [0, 1)],

h(Q) Int M (N X (0, 1 s]),
and thus

h(QaQ) g[N (1 -,1)].

Let f’Q I-- Int M -g(N X (0, 1 s]) be a continuous function
satisfying"

(a) f(x, 1) h(x) for x e Q.
(b) f(x, t) h(x) V{h(K), M, } gin (1 , 1)] for xeQ Q

nd e [0, 1].
(c) f(x, O) g[N (1 , 1)] for xQ.

Such an f exists because

{IntM-g(NX(0,1-s]),g[NX(1-s, 1)]} =0

for i 1, 2, m. Let K be a subdivision of K with L1 and L the induced
subdivision of Q and Q. Let a, z, a,() be the closed/-simplexes of
(L,LnL) fori=0,1,...,m. Finally, let0 t0<t< <t 1be
a partition of [0, 1]. If the subdivision K and the partition to t t
are fine enough, thenf L X I -- M will satisfy Property P below.

DEFINITION. A continuous function f’L I -- M has Property P
provided

(1) f(L X I) c Inti-g[N X (0,1 ]]
(2) f(x, 1) h(x) for x eL
(3) f(L1 o L [0, 1]) V(h(K), M, )



302 . H. CONNELL

(4) f(f" Ira--l, ta]) C hb(R’) for some b b(i,j, a) when 0

_
i <: m,

1 _j

_
r(i), and 1

_
a

_
/.

(5) d[f(. X [ta-1, ta])] < for0

_
i

_
m, 1

_
j

_
r(i) and 1

Now suppose that the subdivision K2 and the partition to < tl < < t
are given so that f satisfies Property P. Note also that, in addition to (3),
f satisfies

f(L1 n L X [0, 1]) c giN X (1 , 1)].

For the remainder of this proof, the simplexes f., the partition to < h <
< t, and the function b b(i, j, a) are fixed. The statemeat that

some a L I -- M satisfies Property P means with respect to this fixed
data. Notice that if a satisfies Property P and : L I - M has
f(x, 1) h(x) and t is a close enough approximation to , then will also
have Property P.

DEFiNiTiON. For0

_
i

_
m, 1 _j

_
r( i), l

_
a

_
,

X(i,j, a) (L X I)
is defined by

X(i,j,a) L X 0o[LnL] X [0,1]

L X [0, ta-] t {f X [ta-, ta] 8 < i, 1

_ _
r(s)}

U {fit X [ta-1, ta] 1

__
j}.

Inductive Hypothesis (i, j, a) IH(i, j, a).
function

a(,’,a) L I -- M
There exists a continuous

which satisfies Property P and a homeomorphism

H(i,i,a) M -- Mssatisfying
(1) H(ij,a)(X) x for x e 2 u g(N X [0, 1 s]).
(2) H(i.i,a)(g[N X [0, 1)]) h(L)u a(i,i,a)[Z(i,j a)].

The purpose of the proof is to show that IH(m, r(m), v) is true.

Fact 1. IH(O, 1, 1) is true.

Fact 2. IH(i, j 1, a) IH(i, j, a) for0

_
i

_
m, 2

_
j

_
r(i),

l_a_v.

Fact 3. IH(i,r(i),a) IH(iZr 1,1, a) forO_< i< m, 1 _< a_< v.

Fact 4. IH(m,r(m),a) IH(O,l,a-- 1) forl

_
a < v.

The proof of Fact 2 is presented in detail. The proofs of Facts 1, 3, and 4
require only trivial modifications and are not included.
Suppose0_ i_ m, 2 _j

_
r(i),l_ a_ v, andIH(i,j- 1, a) istrue.
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For simplicity of notation, let

H H(,-I,a)’M--M and a a(,’-t,a)’L I--M.

Then a has Property P and

(1) H(x) x for x 2 t g(N [0, 1 ])
(2) H(g[N [0, 1)]) h(L)t a[X(i,j- 1, a)]

Proof of Fact 2, Case 1. Suppose

a(a. X [ta-1, ta]) n {Y h(L) t a(L n L [0, 1] t L X 1} 0.

Let U1, Us, U3 be open subsets of Int M with a(a.
CI(U) c Us ,C1 (Us) U3, C1 (Ua) hb(,,a)(R), and Ua a F 0. Let
Z c L I be a finite subcomplex of some subdivision of L X I with
a- (Us) Z c a-1(U). Now by a general position approximation argu-
ment, I a continuous

a(,.,) fl" L X I-- M

which satisfies Property P and

(1)
(2)
(3)
(4)

x to]) c
--1(U1) o/-1(U2) Z.
l a-l(M Ua) a [a-l(M U).
-1 Rhb(,.,a) Z Z -- is p.w.1, and in general position. In particular, if

S C1 {xez. [t_, t]’yeZ with x y, (x) (y)},

then dim S

_
2(m + 1) -n

_
(n-4) -I-m + 2-n m-2.

In addition, it is assumed that approximates a close enough that

H(g[N X [0, 1)1 ::::) h(L) t [X(i,j 1, a)]

see (2) above).
Let r" . [ta--, t -- " be the projection. Since has Property P,

(r(S) [ta_, t]) h(,,)(R’).

Since -h(,,a) ((S) X [ta-, t]) is a rectilinear complex in R. of dimension
_
m 1, the inductive hypothesis on m may be applied. (Note that

if 2(m -I- 1) n, then no induction on m is necessary.)
Let 0 / e such that

H(g[N X [0, 1 A)I) =:) h(L) [X(i, j 1, a)].

Then a homeomorphism G M - M satisfying

(a) GI(x) x for

x e u H(g(Y X [0, 1 A])) :::) t g(Y X [0, 1 s]).

(b) G(H(g[N X [0, 1)])) :::) ((S) X [t_,
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Now since a. Ira-l, ta] collapses to

IX(i, j 1, a) n (a. )< Ira-l, ta])] U (’n’() X [ta-1,

(r. X ta-) U (qr() t O(r.) )< [ta-- ta],
! a homeomorphism G2 M -- M satisfying

(A) G.(x) x for x (M U1) u g(N X [0, 1 s])
(B) G2 G1U(g[N X [0, 1)] D h(il) u [X(i, j, a)].

(See p. 486 of [2].)
The homeomorphism H(i,j,a) is given by

H(i,.,a) G2 G1 H G G H(,j-I,a)

H(,,a) and O(i,i,a) satisfy IH(i, j, a). (Note" The changes necessary
for the case m n 3 are almost identical to the changes necessary in the
combinatorial case. The inductive hypothesis IH(i, j 1, a) would require
covering only the m-skeleton of a(,-l,a)[X(i, j 1, a) ], i.e., the (m -F 1)-cells
need not be contained in H(i,_,a)(g[N X [0, 1)]). The singular set S would
be defined by intersections of a(a. )< [ta--, ta]) with a(Z"), where Z is the
m-skeleton of Z.)

Proof of Fact 2, Case 2. Suppose

(x((r. X [ta-x ta]) n {Y h(il) u a(L n L )< [0, 1] UL X 1)} 0.

This case is similar to Case 1 except h(R") is used instead of hb(,,a)(Rn).
Note that Case 2 always holds when a v.

Since
h(L) u a(L n L X [0, 1] u L X 1) V(h(K),M, 6)

and
ta])] <

it follows that

a(z. X [t._, ta]) V(h(K), M, 21t) h(R").
Let Ux, U2, Ua be open subsets of Int M with

h(K) u a(a. X [t._x, t.] u L n L X [0, 1]) U,

C1 (V,) V=, C1 (V) V, C1 (U,) h(R").

Let Z L X I be a finite subcomplex of some subdivision of L I with

O/--1(U2) ( Z ( o/-1(U3).
Now by a relative general position approximation argument, .’:! a continuous

a(,’,a) ’L I- M

which satisfies Property P and

(1) (. [to_, to] u L n L X [0, 1]) U
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(2) -(u) c .-(u) z
(3) O la-l(M Ua) a a-(M Ua)
(4) h-BiZ Z -- R is p.w.1, and in general position relative to L1.

In particular, if S C1 x a. X [ta_l, ta] (y Z, y # x,/(x) O(y) or
(:w Lx L with (x) h(w)} then

dims _< 2(m + 1) -n _< n- 4+m+ 2-n m- 2.

The remainder of the proof is now a repeat from Case 1. Since

dim (r(S) X [ta_, t]) < m,

it may be engulfed without uncovering

h(L) u t(i a L [0, 1] X(i,j 1, a)).

Then using the collapsing technique, engulf all of B(a X Ira-l, t]). This
completes Lemma 1.

LEMMA 2. Suppose Hypothesis I, b is a number with 0 b 1,

g(N [0, 1]) c M ( X [0, 1 b]),

(2 X [0, 1]) c M g(N X [0, 1 bl),

and h R" -- Int M is a topological embedding. Then for any number a with
0 < a < b, - homeomorphisms f" M --> M and ]" M - M with

f lg(N X [0, 1 a]) o (2 X [0, 1 b]) Id.

]iO(R [0, 1 a]) o g(N [0, 1 b]) Id.
and

fg[N [0, 1)] o f[R [0, 1)] D h(D).

Proof. Let T be a rectilinear triangulation of R which has D as a sub-
complex. Let X be the subcomplex of T composed of all closed simplexes
a c D with h(z) n

{i [g(N X [0, 1 a/2]) o (2 X [0, 1 a/2])]} 0
and let Y be the closed star of X in T (in all of Rn). Suppose that the tri-
angulation T is fine enough that

h(Y) {i [g(N [0, 1 3a/4]) o (_ X [0, 1 3a/4])]}.

LetA > 0
V{h(X),M, 35} h(Y) and V{g(N [0, 1 a/2]),M,A}

g(N X [0, 1 a/4]).

Let T be a subdivision of T for any simplex of T1, d(h(a)) a. Let
X and Y be the sets X and Y under he triangulation T. Let K be the
(n 3)-skeleton of Y and K be the maximal complex of the first derived
of Y which does not intersect K. Then dim/ 2 _< n 3. Now apply
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Lemma 1 to the H-cobordismM [. X [0, 1 b)] and obtain a homeomor-
phism

fl:i [ X [0, 1 b)]--M [57 X [0, 1 b)]

such that fl(x) x for x e @(, 1 b) u g(N X [0, 1 a/4]) and

f(g[N X [0, 1)] D h(K).

Extend f to a homeomorphismf M - M satisfying

(1) fl(X) x for x (, [0, 1 b]) u g(N X [0, 1 a/4])
(2) fl(g[N X [0, 1)]) D h(K).

In the same manner, apply Lemma 1 to the H-cobordism M gin X [0,
1 b)] and obtain a homeomorphism ] M - M satisfying

(1) ](x) x for x g(N X [0, 1 b]) u g( X [0, i a/4l).
(2) ([ [o, )l) D ().
Statement A. S a homeomorphism f2 M -- M(i) ’(z) x

for x e M h(Y1) g(N X [0, 1 3a/4]) u (2V X [0, 1 3a/4])
(ii) %fx(g[N X [0, 1)l) u ](y[N x [0, 1)1)
(iii) d(f(x), x) < a for any x e M.

Statement B. The proof of Lemma 2 is completed by setting f

Proof of Statement B assuming Statement A. It must be shown that if
p eD",

h(p) eff(g[N X [0, 1)])u ]([/V X [0, 1)]).

If p e X, then this follows from Statement A (ii). Now suppose p e D X1.
Then it follows from the definition of X that

h(p) e g(N X [0, 1 a/2]) u #(2q X [0, 1 a/2]).

Case 1. h(p) e #(/V X [0, 1 a/2]). Since] #( X [0, 1 a/2]) Id.,
it follows that

h(p) ef(g[N X [0, 1)])

and this case is immediate.

Case 2. h(p) e g(N X [0, 1 a/2]). The sequence of facts

(a) flg(N X [0, 1 -a/4]) Id.
(b) V{g(N X [0, 1 a/2]), M, z} g(N X [0, 1 a/4])
(c) d(fi(x), x) < z for x eM.

imply that h(p) eff(g[N X [0, 1)]). This completes the proof of State-
ment B.

Sketch of Proof of Statement A. The ideas here are taken from p. 499-500
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of [5]. Each point y e Y can be described in terms of "barycentric coor-
dinates", k(y) e K, ,(y) e, and t(y) [0, 1], such that

y t(y)k(y) - [1 t(y)](y).

Using these c0.ordinates it is possible to define ahomeomorphism U Y1 -- Y1
each interval [k(y), (y)] is mappe(:l onto itself and

Vh-l{f(g[N X [0, 1)]) n h(Y1)} u h-l{/([] X [0, 1)]) n h(Y)} Y.
Define a homeomorphism W Y -- Y by

1 d[V{h(X) M, A}, h(k(y)]yW(y) - ( l d[v{h(X) M, A}, h(k(y)]) U(y)+ 1--
when

ye Y (KtK) and A>_d[V{h(X),M,/l,h(X(y))],

W( y) y otherwise.

Define a homeomorphism f M -- M by

f(x) hWh-(x) for x e h(Y)

f.(x) x for x e M h(Y).
The facts

W([X(y), X(y)]) [h(y), X(y)] for y e Y (K /),
d[h(a)] < A for each simplex of Y,

and

imply

and

V{h(X), M, 35} c h(Y1)

wIx=uIx,
f2]M h(Y) Id,

W IOY Id,

d(f2( x) x) < A

ff(g[N X [0, 1)]) ]([_ X [0, 1)]) o h(X)

This completes the proof of Statement A and Lemma 2.

THEOREM 1. Suppose Hypothesis I, and that

g(N [0, 1]) (f X [0, 1]) t.
Then if b is a number, 0 < b < 1, homeomorphisms f M M and
]:M---M

f lg(N [0, 1 -b])o (. [0, 1 -b]) Id

]lg(N X [0, 1 b]) (_ [0, 1 b]) Id
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and
f(g[N X [0, 1)]) u ]([_h7 X [0, 1) ]) M.

Also l a homeomorphism H g[N X [0, 1)] - M f.

Proof. Let each of h, h, h R -- Int M be a topological embedding
with

U<,< h(D’) u g(N X [0, 1 b]) u 7( X [0, 1 b]) M.

Inductive Hypothesis (i) IH(i) i 1, 2, It. [ homeomorphisms
f and ] M --* M

each of f and ] [g(N X [0, 1 b]) u 7(57 X [0, 1 b]) Id
and

f(g[N X [0, 1)]) u ]([/V )< [0, 1)]) LI<< h(D).
The proof involves showing IH(k) is true and setting f f and ] ].
IH(1) follows immediately from Lemma 2. Suppose IH(i) is true for some
i, 1 _< i < k, and show IH(i + 1) is true. The collar neighborhoods of Lemma
2 will be

fg(N X [O, 1]) cM-(X[0,1-b]) =M-],([0,1-b])
and

],a(2V[0,1]) M g(N [O, l b]) M f,g(N [O, l b]).

Now ! a number a, 0 < a < b with

f,g[N X [0, 1 a)] u], 7[/V X [0, 1 a)] [J<,<, h,(D)
By Lemma 2, homeomorphisms a and a M -- M with

a f g(N )< [0, 1 a]) 0] (_h7 X [0, 1 b]) Id

a l](f X [01 a]) ufg(N X [0,1 b]) Id
and

xf, gin X [0, 1)] u a], a[h7 [0, 1)] h+(D).

The induction is completed by setting

f/ af:M-M nd ]+ a]:M-M.
This completes the proof of the first prt of Theorem 1. (The f nd ] con-
structed here re ctuMly isotopic to the identity.)
Note that ]-f M - M stisfies

]-’fl(v [0, 1 b]) Id
and

]-’f(g[N X [0, I)]) u ([h7 X [0, i)] M.

Thus the existence of the homeomorphism H :g[N )< [0, 1)] -- M 2"
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follows in a standard way from a countable number of applications of the
first part of the theorem.

COaOLAaV 1. If Y is a compact topologica n-manifold (n >_ 5) without
boundary, which has the homotopy type of S’, then Y is homeomorphi to S.

Sketch of proof. Let B and B be disjoint topological n-cells in Y and
p e B. Then Y B is homeomorphic to Y p. It follows from Theorem
1 and the fact that

Y (Int B u Int BI*)

is a topological H-cobordism that Y B is homeomorphic to R. Thus
Y p is homeomorphic to R and Y is homeomorphic to .S".
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