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Introduction

Assume that A is the algebra of all completely continuous operators on a
Hilbert space. If T is a normal operator in A, then T has a spectral expan-
sion in A in the sense that T k Ek where the set {k} is the non-zero
spectrum of T and {Ek} is a corresponding set of self-adioint proiections (of
course these sets are either finite or countably infinite). This is the standard
spectral theorem for normal completely continuous operators (see for ex-
ample, [2, Theorem 4, p. 183, and Theorem 6, p. 186]). In this paper we
consider general algebras A with involution in which a spectral theorem of
this type holds for every normal element in A. The formal definitions of
what this means in an arbitrary algebra are given in Definitions 3.1 and 3.2.
In Theorems 3.3 and 3.5 we characterize these algebras as *-subalgebras of
the completely continuous operators on a Hilbert space which are modular
annihilator algebras. It is a consequence of Theorem 3.3 that every semi-
simple normed modular annihilator algebra A with a proper involution has
the property that every normal element in A has a spectral expansion in A.
The first version of this paper was concerned only with a proof of this

result. We acknowledge a debt to the referee who strengthened the original
theorem and simplified its proof. In particular the proof of Lemma 2.6 is
due to the referee.

1. Preliminaries

In general we use the definitions in C. Rickart’s book, [4]. We assume
throughout this paper that A is a complex algebra. For M a subset of A,
we denote by R[M] and L[M] the right and the left annihilator of M re-
spectively (that is R[M] {a e AlMa 0} ). When A is semi-simple, A
is a modular annihilator algebra if for any maximal modular left ideal M of
A, R[M] 0; the elementary properties of modular annihilator algebras are
given in [1] and [7]. A subset M of A is orthogonal if whenever u, v e M,
u v, thenuv O.
We shall be concerned with algebras which have an iavolution .. is a

proper involution if whenever vv* 0, then v 0. If A has an involution *
and a norm Jl" such that w* v jj2 for all v e A, then we say that the
norm II" has the B*-property. u e A is self-adioint if u u* and normal if
U ? U,

Now assume that A is a semi-simple modular annihilator algebra with a
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proper involution. A has minimal left ideals, and therefore, minimal idem-
potents (see [4, Lemma (2.1.5), p. 45]). Then since A has a proper involu-
tion, A contains self-adjoint minimal idempotents by [4, Lemma (4.10.1),
p. 261]. Furthermore it follows from [1, Theorem 4.2, p. 569] that every
non-zero left or right ideal of A contains a self-adioint minimal idempotent,
and that every maximal modular left (right) ideal M is of the form
A 1 h) 1 h)A) where h is a self-adioint minimal idempotent. We
denote the set of all self-adioint minimal idempotents in A by HA and the
socle of A by SA.

DEFINITION. Assume that A is semi-simple and that K is a right (left)
ideal of A which is the sum of a finite number of minimal right (left) ideals of
A. Then we say that K has finite order and define the order of K to be the
smallest number of minimal right (left) ideals which have the sum K.

Assume that A is semi-simple. Using a modification of the proof of the
lemma on page 573 of [1], we can prove the following"

(1.1) If K is a right (left) ideal of A with finite order n, and

{el e2 era}

is an orthogonal set of minimal idempotents of A in K, then m _< n.

Let A be a normed algebra with norm II" ]]. The normed algebra A is
called a Q-algebra if the set of all quasi-regular elements of A is open in the
topology of the norm; in this case the norm is called a Q-norm. If A is a
Banach algebra, then A is a Q-algebra by a standard theorem; see [4, Theorem
(1.4.20), p. 18]. When A is a semi-simple Q-algebra with dense socle, then A
is a modular annihilator algebra by [7, Lemma 3.11, p. 41]. Also if A is a
semi-simple modular annihilator algebra, then any norm on A is a Q-norm
by [6, Lemma 2.8, p. 376].
For any v e A, we denote the spectrum of v in A as aA(v), and we define

p.(v) sup

When the algebra A is understood from the context, we write simply a(v)
and p(v). A norm I[" on A is a Q-norm if and only if p(v) _< v for all
v e A by [6, Lemma 2.1, p. 373].
We close this section with a technical lemma needed in Section 3.

LEMMA 1.2. Let A be a *-algebra with a norm [1" which satisfies the B*-prop-
erty. If for every self-adjoint u e A, u _> p(u), then v _> p(v) for all
yeA. Thus ]1"1] is a Q-norm on A.

Proof. Assume that keg(v), k O.,
and we may assume that 1 e z(w -b w

][w--w*-- ww*[[ >_ 1.

v/k. Then 1 ez(w),
Thus by hypothesis,
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Therefore
211wll + Ilwll >_ 1 and (1 + Iiw11) >_ 2.

Finallyllwll -> (v/2- 1). Leta (x/2- 1) >0. We have shown that
for anyke(v), ][v[[ _> a[k]. Thus for any yeA, ]]vll >- ap(v). Then

>- ’; []l/n . (Ol.p(}n))l/n ol/np())o
T king the limit --+ (R), we h ve >- to be shown.

2. Modular annihilator algebras with involution

Throughout this section we assume that A is a semi-simple, normed,
modular annihilator algebra with a proper involution .. The results in this
section are the basis of the proofs of the main theorems of this paper, Theorems
3.3 and 3.5.

IEMMA 2.1. Assume that u e A is normal. If h eH has the property that
hu uh, then there exists k e r(u) such that (k u)h O. Conversely if
k e (u) and k O, then there exists h e H such that uh kh. Finally when-
ever uh kh, h e H. then uh hu.

Proof. First assume that h e H and hu uh. Then there is
such that kh huh uh (bAh is a complex normed division ring). Clearly
X

Conversely assume that k e g(u) and k 0. Then either A (X u) A
or (k u)A A. We may assume that A(k u) A; then A(X u) is
contained in some maximal modular left ideal M of A. Since A is a modular
annihilator algebra, M has the form A 1 h) for some h eH see Section 1 ).
Therefore (k u)h O. Then h(k u)( u*)h 0 since u is normal.
But * is a proper involution, and hence h(k u) 0. Thus uh hu

If k e g(u) and there exists h eH such that uh kh, then we call
eigenwlue of u. By Lemma 2.1, when u e A is normal, then all non-zero ele-
ments of the spectrum of u are eigenwlues. Also we have the following
interesting fact"

(2.2) Let kl and X be distinct eigenvalues of normal element u e A.
Assume that hi and h2 eH are such that uhl klhl and uh2 k,.h. Then
hi and h2 are orthogonal.

The proof of (2.2) is easy" Note that ks h2 hi uh h h uhl (by Lemma
2.1), and h2 uhl h2 h. Then h2 hi 0, and taking the involution of this
equation, hi h2 0.

LEMMA 2.3. Assume that K is a right ideal of A offinite order. Then there
exists a unique self-adjoint idempotent e S such that K eA.

Proof. We may assume that K 0. Let M be a maximal orthogonal
set of self-adjoint minimal idempotents in K (note that M is non-empty).
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By (1.1) M must be a finite set, and we write

M Ihl,h2, ,h}.
Assume that veK, and let w v _lhv. Clearly hw 0 when
1

_
/ _< n. If w 0, then there exists a self-adjoint minimal idempotent

h wA c K. Then h h 0 for 1 _</c

_
n. But also taking the involution of

both sides of this equation, we have that hh 0 for 1

_
/

_
n. This con-

tradicts the maximality of M. Therefore w 0, and it follows that for any
vK, v (-_h)v. Let e h -t- h. ThenK eA. The
uniqueness of e is easy to verify.
Now assume that u is a normal element of A, and that ) e z(u.), ) 0.

Since A/S is a radical algebra u/h must be quasi-regular modulo S. In par-
ticular there must exist v e A and s e S such that 1 v) 1 u/)) 1 s).
Then whenever (1 u/))x 0 for some x eA, then (1 s)x O. It
follows that R[A() u)] c sA. Now sA is of finite order. Thus
R[A() u)] is of finite order; similarly, L[() u)A] is of finite order.
Applying Lemma 2.1 and Lemma 2.3, we have the following result"

PROSOPITION 2.4. Assume that u is a normal element of A. Assume that
is a non-zero scalar in (r(u). Then there is a unique self-adjoint idempotent
e e S. such that

R[A(h u)] eA and L[(k-u)A] Ae.

Clearly e has the property that ue eu )e.

in A corresponding to the eigenvalue ) u
We call e the spectral projection

LEMMA 2.5. Assume that B is a semi-simple, modular annihilator *-sub-
algebra of A. Assume that u is a normal element in B, and ) e az(u), ) O.
Then the spectral projection in B corresponding to ) is the same as the spectral
projection in A corresponding to

Proof. Let f be the spectral projection in B corresponding to the non-zero
eigenvalue ) of u. Let w u },f. w is a normal element of B. Suppose
) e zB(w). Then by Lemma 2.1, there exists g e HB such that gw wg )g.
Now fw wf O, and thus 0 fwg )fg; it follows that fg gf O.
Therefore ug gu )g, and by the definition of f it follows that g fg.
This is a contradiction. Then ) e z.(w), and since B is a subalgebra of A,
(w).
Now assume that e is the spectral projection in A corresponding to the

eigenvalue h of u. Note that f ef. But then (e f)w (e f) (u
)e -)ef h(e- f). Since h e(w), (e -f) 0. This completes

the proof of the Lemma.
The last lemma of this section plays an important role in the proof of

Theorem 3.3.

LEMMA 2.6. Assume that A has a norm which has the B*-property. Let
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B be the completion of A in this norm. Then S is dense in B with respect to

Proof. Let I be the closure of S in B. Let be the natural projection of
B onto the quotient algebra B/I. Now since A is a modular annihilator
algebra, by [7, Theorem 2.4, p. 38], whenever v e A, then r(v) is quasi-regular
in B/I. Now assume that u is an arbitrary self-adjoint element in B. There
exists a sequence of self-adjoint elements {u,/ c A such that u, u --* 0.
Now (u.) has zero spectral radius and is self-adjoint in B/I. By [4, Theorem
(4.9.2), p. 249], B/I is a B*-algebra. Therefore (u) 0 for all n, and it
follows that u e I. Therefore B I. It is easy to verify that S c Sz,
and therefore the closure of S is B.

3. Algebras with the spectral expansion property
DEFINITION 3.1. Assume that A is a *-algebra and that A has a norm

I1" with the B*-property. Then u e A has a spectral expansion in A if
(1) either (i) the non-zero spectrum of u in A is a sequence {k} or (ii) the
non-zero spectrum of u in A is a finite set,/k,
(2) In case (i), there exists an orthogonal sequence of self-adjoint idem-
potents/h} c S such that u k h (convergence in the norm
In case (ii) there exists a finite orthogonal set of self-adioint idempotents
{hi, h,} S such that u klhl - - k,h,.

For convenience when u e A has a spectral expansion in A, we shall not
distinguish between cases (i) and (ii) in the definition. We write simply
u kk hk, leaving the summation without limits.

DEFINITION 3.2. An algebra A has the spectral expansion property if A
has an involution and a norm with the B*-property, and every normal ele-
ment of A has a spectral expansion in A.

Let 3C be a Hilbert space. We denote by ff[3], the algebra of bounded oper-
ators on 3C which have finite-dimensional range, e[] denotes the algebra of
completely continuous operators on 3C. When we say that a *-subalgebra A
of e[3C] has the spectral expansion property, it is to be understood that the in-
volution and the norm in Definition 3.2 are those induced by the unique in-
volution and B*-norm on e[].

In the next theorem we characterize those algebras which have the spectral
expansion property.

THEOREM 3.3. Assume that A is a semi-simple algebra with a proper in-
volution Then the following are equivalent:

(1) There exists a Hilbert space C such that A is ,-isomorphic to a *-sub-
algebra of e[C] which has the spectral expansion property.

(2) A has the spectral expansion property.
(3) A has dense socle in some Q-norm.
(4) A is a normed modular annihilator algebra.
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Proof. Assume (1). Then certainly A has a norm with the B*-property.
The image of A under the given *-isomorphism has the spectral expansion
property, and therefore A does also.

If (2) holds, A has a norm with the B*-property, I1" II. If u is any self-
adjoint element of A, u has a spectral expansion kk hk in A. Then

Thus X _< u II. Then p(u) _< u and by Lemma 1.2, p(v) <_ v for
any v e A. Thus I1" is a Q-norm on A. Clearly S is dense in A in the norm

(3) implies (4) by [7, Lemma 3.11, p. 41].
Now assume thut (4) holds. As a consequence of [5, Theorem 5.2, p. 318],

A has a faithful *-representation into the bounded operators on a Hilbert space.
In particular A has a norm with the B*-property. Let B be the completion of
A in this norm. By Lemma 2.6, S. is dense in B. Then by a result of I.
Kaplansky, [3, Theorem 2.1], there exists a .-isomorphism of B into the com-
pletely continuous operators on some Hilbert space . It remains to be shown
that ,(A) has the spectral expansion property as a subalgebra of []. The
norm and involution on (A are those induced by the unique involution and
B*-norm on [C]. Assume that u e ,(A) is normal. Then by the standard
spectral theorem for normal completely continuous operators, u has a spectral
expansion X h in []. Now [C] is a modular annihilator algebra, and
it is easy to verify that h is the spectral projection in [] corresponding to
the eigenvalue of u in the sense of Proposition 2.4. Now u has the same
non-zero spectrum in (A) as in [C]. Then by Lemma 2.5, hk is the spectral
projection in -(A) corresponding to ). Therefore u has the spectral ex-
pansion ), h in ,(A ).
Now we concern ourselves specifically with *-subalgebras of [C]. After the

following preliminary lemma, we characterize those *-subalgebras which have
the specturl expansion property.

LEMMA 3.4. Assume that is a Hilbert space, and that A is a *-subalgebra
of e[C]. Then S 5:[c] n A.

Proof. If E H, then since E is a projection in ([C], E ff[C]. This
implies that S c ff[C] n A.
Now assume that T 0, T e ff[] A. Then the *-algebra TAT* is finite

dimensional (in fact T([SC]T* is finite-dimensional) and semi-simple. Let F
be a minimal self-adjoint idempotent in TAT*. For some V A, F TVT*.
Then

FAF F(TVT*)A(TVT*)F F(TAT*)F FAF.

Thus FAF F( TAT*)F which is a division ring, and it follows that F e H.
Also F TA. We have shown that whenever T e ff[C] n A, then TA con-
tains a minimal idempotent of A.
Again assume that T [C] A, T 0. Let M be a maximal set of or-
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thogonal self-adjoint minimal idempotents of A in TA. M must be finite since
otherwise there would be infinitely many mutually orthogonal projections in
[C] with ranges contained in the range of T e []. Proceeding as in the
proof of Lemma 2.3 (and using the conclusion of the previous paragraph), we
find that TA EA where E is a self-adjoint idempotent in SA Now for any
WeA, TW ETW, and therefore T ET)A O. Thus T ET and
TS.
THEOREM 3.5. Assume that is a Hilbert space and that A is a *-subalgebra

of []. Then the following are equivalent:
(1) Whenever T e A is a normal operator and kk Ek is the spectral ex-

pansion of T in a[], then Ek A for all k and E is spectral expansion
for T in A.

(2) [] n A is dense in A in some Q-norm.
(3) A is a modular annihilator algebra.

Proof. First we note that A must be semi-simple ly [4, Theorem (4.1.19),
p. 188]. Next by Lemma 3.4, SA [] n A.
Assume that (1) holds. Then A satisfies Theorem 3.3 (1). Then by

Theorem 3.3 (3), A has dense socle in some Q-norm. Thus [] A is dense
in A in some Q-norm.

(2) implies (3) by [7, Lemma 3.11, p. 41].
Now assume (3) holds. By Theorem 3.3, A has the spectral expansion

property. Assume T e A is a normal operator. Let k E be the spectral
expansion of T in []. Ek is the spectral projection in a[C] corresponding to
the eigenvalue ), of T in the sense of Proposition 2.4. Then by Lemma 2.5,
Ek A for all/, and thus T has spectral expansion E in A.
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